~» L.
I oS

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

COURSE NAME : 231TT101 PROGRAMMING IN C & DATA STRUCTURES
| YEAR/ Il SEMESTER
UNIT-11 C DECISION STATEMENTS & FUNCTIONS

Topic: Looping Statements

Ms.K.Papithasri
Assistant Professor
Department of Computer Science and Engineering

C Looping Statements

SHTIronls

In any programming language including C, loops are used to execute a set of statements repeatedly until a particular
condition is satisfied.

(

The looping statements are used to execute a single statement or block of statements repeatedly until the given condition is FALSE.)

Why use loops in C language?

The looping simplifies the complex problems into the easy ones. It enables us to alter the flow of the program so that instead of writing
the same code again and again, we can repeat the same code for a finite number of times. For example, if we need to print the first 10
natural numbers then, instead of using the printf statement 10 times, we can print inside a loop which runs up to 10 iterations.

Advantage of loops in C
1) It provides code reusability.

2) Using loops, we do not need to write the same code again and again.

3) Using loops, we can traverse over the elements of data structures (array or linked lists).

@ C Looping Statements

L e)

“~

~ How it Works

The below diagram depicts a loop execution,

‘ Loop Entry

false

Test

Condition
?

running...

Execute
Loop

v

Out of Loop

o C Looping Statements S S

STl

~

Types of Loopsin C

Depending upon the position of a control statement in a program, looping in C is classified into two types:

1. Entry controlled loop

2. Exit controlled loop

In an entry controlled loop, a condition is checked before executing the body of a loop. Itis also called as a pre-
checking loop.

In an exit controlled loop, a condition is checked after executing the body of a loop. It is also called as a post-
checking loop.

C Looping Statements S S

: : [Loop’
: . Block
Met? ; i

- :
E __5.~~ Conditions : §
FALSE | TRUE l
' | ' : :
' TRUE : E E
E . ' Conditions ;
5 : : Met? ;
i Loop's Code ; E
: : FALSE 5

Out of Loop <« (Out of Loop

Entry and Exit Controlled Loops

C Looping Statements

STl

An infinite loop is a looping construct that does not terminate the loop and executes the loop forever. It is also called an indefinite loop or

an endless loop. It either produces a continuous output or no output.

Reason:

1. No termination condition is specified.
2. The specified conditions never meet.

The specified condition determines whether to execute the loop body or not.

C Looping Statements

Types of Loop

There are 3 types of Loop in C language, namely:

1. while loop
2. for loop

3. do while loop

» B

'8

9
CLLSTITITIONS

- while Loop

while Statement

The while statement is used to execute a single statement or block of statements repeatedly as long as the given condition is TRUE.

while loop can be addressed as an entry control loop. It is completed in 3 steps.

 Variable initialization.(e.q int x = a;)
» condition(e.g while(x <= 10))

» Variable increment or decrement (x++ Or x-- or x = x + 2)

Syntax :

variable initialization;

while(condition)

{

statements;
variable increment or decrement;

AV i .
@ while Loop S S

%’Lz I~ . . TIYTIONS
Execution flow diagram:

-

Iout of loop statementsl

Example 1: while loop

M
LA
il

#include <stdio.h>
int main()

1

int 1 = 1:

while (i <= 5)

{
printf("%dwn", 1i):
++1;

y

return 0;

Ln

while Loop

STl

N(\r\fw,ll .
58 X - ~
e88g while Loop S S
<A%J> Trirnonls
Output

1

2

3

4

5

Here, we have initialized i tol.

1. When i is], the test expression i <= 5 istrue. Hence, the body of the while loopis

executed. This prints 1 on the screen and the value of i isincreased to 2.

2.Now, i is 2, the test expression i <= 5 isagain true. The body of the while loopis

executed again. This prints 2 on the screen and the value of i isincreased to 3.

3. This process goes on until i becomes 6. When i isé, the test expression i <= 5 will be

false and the loop terminates.

H for Loop 5'S

LI rrurions

for loop

for loop is used to execute a set of statements repeatedly until a particular condition is satisfied. We can say it is an open

ended loop.. General format is,

for(initialization; condition; increment/decrement)

{

statement-block;

In for loop we have exactly two semicolons, one after initialization and second after the condition. In this loop we can
have more than one initialization or increment/decrement, separated using comma operator. But it can have only one
condition.

for Loop

The for loop is executed as follows:

1. It first evaluates the initialization code.
2. Then it checks the condition expression.

3. If it is true, it executes the for-loop body:.

4. Then it evaluate the increment/decrement condition and again follows from step 2.

2. When the condition expression becomes false, it exits the loop.

r\J’Jw

o 3 for Loop S'S)

%4, "y TIYTIONS
Execution flow diagram: ¢

initialization

FALSE

condition

loop statements

v

modification

v

out of loop statements

-
% — 1 - = i m

r T i il
_— - L=

#include <stdio.h>

int main{) {
int 1i;

for (i =1; i < 11; ++1i)
1

printf("%d =, 1i):
I

return 0;

for Loop

N a..
»
SHTY IS

for Loop S S

Trarnonls
Output

123456728910

1. i isinitializedto .

2. The test expression i < 11 is evaluated. Since 1 less than 11 is true, the body of for loop

is executed. This will print the 1(value of i) on the screen.

3. The update statement ++i is executed. Now, the value of i will be 2. Again, the test
expression is evaluated to true, and the body of for loop is executed. This will print 2 (value

of i)on the screen.

4. Again, the update statement ++i is executed and the test expression i < 11 is

evaluated. This process goes on until i becomes 1.

5.When i becomesl], i < 11 will be false, and the for loop terminates.

for Loop S S

LI rrrurions

Nested for loop

We can also have nested for loops, i.e one for loop inside another for loop. Basic syntax is,

for(initialization; condition; increment/decrement)

{

for(initialization; condition; increment/decrement)

{

statement ;

for Loop

Example: Program to print half Pyramid of numbers

#include<stdio.h>

void main()

{

int i, j;

for(i = 1; 1 < 5; i++)

{
printf("\n");

for(J =1; j > @; j--)

{
printf("%d", j);

> .
LI rrrurions

21

321

4321

54321

for Loop

do....while Loop -

LI rrrurions

do while loop

In some situations it is necessary to execute body of the loop before testing the condition. Such situations can be handled
with the help of do-while loop. do statement evaluates the body of the loop first and at the end, the condition is checked

using while statement. It means that the body of the loop will be executed at least once, even though the starting condition

inside while is initialized to be false. General syntax is,

while(condition)

The do-while statement is also known as the Exit control looping statement.

71~
/\r\’ = i

@ do....while Loop

=
Execution flow diagram:

do - block of statements

out of loop statements

do....while Loop S S

ST rionts

Example: Program to print first 10 multiples of 5.

#include<stdio.h>

void main()

{

printf("%d\t", a*i);
i++;

while{(i <= 1©);

5 18 15 2@ 25 38 35 42 45 58

@ Looping S S

r o Trronls
r'f .

Jumping Out of Loops

Sometimes, while executing a loop, it becomes necessary to skip a part of the loop or to leave the loop as soon as certain

condition becomes true. This is known as jumping out of loop.

C break

The break statement ends the loop immediately when it is encountered. Its syntax is:

break:;

The break statement is almost always used with if...else statement inside the loop.

-

L_ooping S!S

SHTIronls

How break statement works?

while (testExpression) { do {
// codes [/ codes
if (condition to break) { if (condition to break) {
break; — break;

}
codes '/ codes

while (testExpression);
—

for (init; testExpression; update) {

if (condition to break) {
break;

}

f/

L O O p I n g SITUTIONS
Example 1: break statement

Program to calculate the sum of Ders) numbers max
If the user enters a negative number, the loop terminates
#include =<stdio.h>
int main{) {
int i;
double number, sum = 0.0;
for (i = 1: i <= 10; ++i) {
printf("Enter a n%d: ", i):
scanf{"%1f", &number):
if the user enters a negative numbe ~ealk the loof
if (number < 0.0) {
break:
¥
sum += number; [/ sum = s + number

printf("sSum = %.21T", sum});

return 0;

L_ooping S S

Tryronls

OQOutput
Enter a n1: 2.4
Enter a n2: 4.5
Enter a n3: 3.4
Enter a nd: -3
Sum = 10.30

This program calculates the sum of a maximum of 10 numbers. Why a maximum of 10
numbers? It's because If the user enters a negative number, the break statementis

executed. Thiswill end the for loop, and the sum is displayea.

In C, break Is also used with the switch statement.

Looping S S

Tryronls

C continue

The continue statement skips the current iteration of the loop and continues with the next

iteration. Its syntax is:

continue:

The continue statement s almost always used withthe if...else statement.

L_ooping

Al ‘\u"“L/-A

SHTIronls

How continue statement works?

do {
while (testExpression) { 9t coidas
// codes if (testExpression) {
if (testExpression) { continue;
continue;

}

}
while (testExpression);

for (init; testExpression; update) {
if (testExpression) {
continue;

L_ooping

Example 2: continue statement

SHTIronls

Program to calculate the sum of bers 0 numbers max

If the user enters a negative number, it's not added to the result
#include <stdio.h=
int main() {

int i;

double number, sum = 0.0;

for (1 = 1; 1 <= 10; ++i) {
printf("Enter a n%d: ", i):
scant("%1T", &number);
if (number < 0.0) {
continue;

sum += number; // sum = sum + number;

printf("Sum = %.21f", sum);

return 0;

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Sum =

In this program, when the user enters a positive number, the sum Is calculated using

n2:
n3:
n4:
ns:
nG:
n7v:
na:
na:
nio:
59.70

O o o o) o o o) Q) o i

da LA R =
o opa —

-45.5
34.5
-4.2
-1000
12

sum += number; statement.

When the user enters a negative number, the continue statement s executed and it skips

L_ooping

the negative number from the calculation.

Tryronls

Tryronls

