
SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.

An Autonomous Institution

COURSE NAME : 23ITT101 PROGRAMMING IN C & DATA STRUCTURES

I YEAR/ II SEMESTER

UNIT-II C DECISION STATEMENTS & FUNCTIONS

Topic: User Defined Functions

Ms. K.Papithasri

Assistant Professor

Department of Computer Science and Engineering

Functions

19/02/2021

Functions

19/02/2021

Functions

Functions

Functions

FUNCTION DECLARATION

 Like variables, all functions in a C program must be declared, before they are invoked.

 A function declaration (also known as function prototype) consists of four parts.

 Function type (return type).

 Function name.

 Parameter list.

 Terminating semicolon.

 They are coded in the following format:

 Function-type function-name (parameter list);

 This is very similar to the function header line except the terminating semicolon.

 For example, mul function defined in the previous section will be declared as:

 int mul (int m, int n); /* Function prototype */

FUNCTION DECLARATION

Points to Note

1. The parameter list must be separated by commas.

2. The parameter names do not need to be the same in the prototype declaration and the function

definition.

3. The types must match the types of parameters in the function definition, in number and

order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters, the list is written as (void).

6. The return type is optional, when the function returns int type data.

7. The retype must be void if no value is returned.

8. When the declared types do not match with the types in the function definition, compiler will

produce an error.

FUNCTION DECLARATION
A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration section), the prototype is

referred to as a global prototype.

Such declarations are available for all the functions in the program.

When we place it in a function definition (in the local declaration section), the prototype is called a local

prototype.

Such declarations are primarily used by the functions containing them.

The place of declaration of a function defines a region in a program in which the function may be used by other

functions.

This region is known as the scope of the function.

It is a good programming style to declare prototypes in the global declaration section before main.

It adds flexibility, provides an excellent quick reference to the functions used in the program, and enhances

documentation.

FUNCTION DECLARATION

Prototypes: Yes or No

Prototype declarations are not essential.

If a function has not been declared before it is used, C will assume that its details available at the time of

linking.

Since the prototype is not available, C will assume that the return type is an integer and that the types of

parameters match the formal definitions.

If these assumptions are wrong, the linker will fail and we will have to change the program.

The moral is that we must always include prototype declarations, preferably in global declaration section.

Parameters Everywhere!

Parameters (also known as arguments) are used in following three places:

1. in declaration (prototypes),

2. in function call, and

3. in function definition.

The parameters used in prototypes and function definitions are called formal parameters and those

used in function calls are called actual parameters.

Actual parameters used in a calling statement may be simple constants, variables, or expressions.

The formal and actual parameters must match exactly in type, order and number.

Their names however, do not need to match.

CATEGORY OF FUNCTIONS

A function, depending on whether arguments are present or not and whether a value

is returned or not, may belong to one of the following categories:

1. Category 1: Functions with no arguments and no return values.

2. Category 2: Functions with arguments and no return values.

3. Category 3: Functions with arguments and one return value.

4. Category 4: Functions with no arguments but return a value.

5. Category 5: Functions that return multiple values.

No Arguments and No Return Values

When a function has no arguments, it does not receive any data from the calling

function.

 Similarly, when it does not return a value, the calling function does not receive any

data from the called function.

 In effect, there is no data transfer between the calling function and the called

function.

 This is depicted in Fig.

 The dotted lines indicate that there is only a transfer of control but not data.

Arguments But No Return Values

 The actual and formal arguments should match in number, type, and order.

 The values of actual arguments are assigned to the formal arguments on a one to

one basis, starting with the first argument as shown in Fig

Arguments with Return

Values

No Arguments But Returns a Value

1. There could be occasions where we may need to design functions that may not take any

arguments but returns a value to the calling function.

2. A typical example is the getchar function declared in the header file <stdio.h>.

3. We have used this function earlier in a number of places.

4. The getchar function has no parameters but it returns an integer type data that represents

a character.

 We can design similar functions and use n our programs.

 Example
int get_number(void); main

{

int m = get_number(); printf(“%d”,m);

}

int get_number(void)

{

int number; scanf(“%d”, &number); return(number);

}

NESTING OF

FUNCTIONS C permits nesting of

functions freely.

 main can call function1,

which calls function2,

which calls function3,

………. and so on.

 There is in principle no

limit as to how deeply

functions can be nested.

