
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF CSE

23ITT101-PROGRAMMING IN C ANDDATASTRUCTURES
I YEAR - II SEM

UNIT 3 – ARRAYS AND INTRODUCTION TO DATA
STRUCTURES

TOPIC – Two - Dimensional Arrays

Two Dimensional Arrays

Definition

Two dimensional arrays are used in a situation where a table of values need to store in an array.

Two Dimensional array Declaration

Syntax:

datatype arrayname [row size][column size];

Example:

int a[3][3];

22/8

TWO-DIMENSIONAL ARRAYS

 So far we have discussed the array variables that can store a list of values.

 There could be situations where a table of values will have to be stored

 Consider the following data table, which shows the value of sales of three items by four sales girls:

 The table contains a total of 12 values, three in each line.

 We can think of this table as a matrix consisting of four rows and three columns.

 Each row represents the values of sales by a particular salesgirl

 Each column represents the values of sales of a particular item.

 In mathematics, we represent a particular value in a matrix by using two subscripts such as vij.

 Here v denotes the entire matrix and vij refers to the value in the ith row and jth column.

 For example, in the above table v23 refers to the value 325.

333/8

DECLARATION OF TWO-DIMENSIONALARRAYS

 C allows us to define such tables of items by using two-

dimensional arrays.

 The table discussed above can be defined in C as

v[4][3]

 Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

 Note that unlike most other languages, which use one

pair of parentheses with commas to separate array sizes,

C places each size in its own set of brackets.

Two Dimensional array Initialization

Two Dimensional array Initialization

Syntax:

datatype arrayname [row size][column size]={list of values};

Example

int a[3][3]={8,6,5,2,1,9,3,6,4};

44/8

INITIALIZING TWO-DIMENSIONALARRAYS

 As Like the one-dimensional arrays, two-dimensional arrays may be initialized by following

their declaration with a list of initial values enclosed in braces.

 For example, int table[2][3] = { 0,0,0,1,1,1};

 initializes the elements of the first row to zero and the second row to one.

 The initialization is done row by row.

 The above statement can be equivalently written as int table[2][3] = {{0,0,0}, {1,1,1}};

 by surrounding the elements of the each row by braces.

 We can also initialize a two-dimensional array in the form of a matrix as shown below:

int table[2][3] = {

{0,0,0},

{1,1,1}

};

 Commas are required after each brace that closes off a row, except in the case of the last row.

555/8

INITIALIZING TWO-DIMENSIONALARRAYS

 When the array is completely initialized with all values, explicitly, we need not specify the size of the first

dimension.

 That is, the statement int table [] [3] = {

{ 0, 0, 0},

{ 1, 1, 1}

};

 is permitted.

 If the values are missing in an initializer, they are automatically set to zero.

 For instance, the statement int table[2][3] = {

{1,1},

{2}

};

 will initialize the first two elements of the first row to one, the first element of the second row to two, and

all other elements to zero.

 When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};

 The first element of each row is explicitly initialized to zero while other elements are automatically

initialized to zero.

66/8

MEMORY LAYOUT

 The subscripts in the definition of a two-dimensional array represent rows and columns.

 This format maps the way that data elements are laid out in the memory

777/8

MULTI-DIMENSIONAL ARRAYS

 C allows arrays of three or more dimensions.

 The exact limit is determined by the compiler.

 The general form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

 where si is the size of the ith dimension.

 Some examples are:

int survey[3][5][12];

float table[5][4][5][3];

 survey is a three-dimensional array declared to contain 180 integer type elements.

 Similarly table is a four dimensional array containing 300 elements of floating-point type.

Multi Dimensional Array

Multi Dimensional Array

88/8

DYNAMIC ARRAYS

 Static Arrays:

 So far, we have created arrays at compile time.

 An array created at compile time by specifying size in the source code has a fixed size and cannot be

modified at run time.

 The process of allocating memory at compile time is known as static memory allocation

 The arrays that receive static memory allocation are called static arrays.

 This approach works fine as long as we know exactly what our data requirements are.

 Consider a situation where we want to use an array that can vary greatly in size.

 We must guess what will be the largest size ever needed and create the array accordingly.

 Dynamic Arrays:

 In C it is possible to allocate memory to arrays at run time.

 This feature is known as dynamic memory allocation and the arrays created at run time are called

dynamic arrays.

 Dynamic arrays are created using what are known as pointer variables and memory management functions

malloc, calloc and realloc.

 These functions are included in the header file <stdlib.h>.

Applications of array

• Arrays are used to Store List of values

• Arrays are used to Perform Matrix Operations

• Arrays are used to implement Search Algorithms

• Arrays are used to implement Sorting Algorithms

• Arrays are used to implement Data structures

