CLASS X (2019-20)
 MATHEMATICS STANDARD(041)
 SAMPLE PAPER-3

Time : 3 Hours
Maximum Marks : 80
General Instructions :
(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. (i) The L.C.M. of x and 18 is 36 .
(ii) The H.C.F. of x and 18 is 2 .

What is the number x ?
(a) 1
(b) 2
(c) 3
(d) 4

Ans: (d) 4
L.C.M. \times H.C.F. $=$ First number \times second number

Hence, \quad required number $=\frac{36 \times 2}{18}=4$
2. In a number of two digits, unit's digit is twice the tens digit. If 36 be added to the number, the digits are reversed. The number is
(a) 36
(b) 63
(c) 48
(d) 84

Ans: (c) 48
Let unit's digit : x
tens digit : y
Then,

$$
x=2 y
$$

$$
\text { Number }=10 y+x
$$

According to the question.

$$
\begin{align*}
10 y+x+36 & =10 x+y \\
9 x-9 y & =36 \\
x-y & =4 \tag{1}
\end{align*}
$$

or
Solve,

$$
x=2 y
$$

$$
2 y-y=4
$$

$$
y=4
$$

Now, from equation,

$$
\begin{aligned}
x-4 & =4 \Rightarrow x=8 \\
\text { Number } & =10 \times 4+8=40+8=48 \\
x-y & =4
\end{aligned}
$$

3. The linear factors of the quadratic equation $x^{2}+k x+1=0$ are
(a) $k \geq 2$
(b) $k \leq 2$
(c) $k \geq-2$
(d) $2 \leq k \leq-2$

Ans: (d) $2 \leq k \leq-2$
We have,

$$
\begin{aligned}
& x^{2}+k x+1=0 \\
& a x^{2}+b x+c=0, \\
& a=1, b=k \text { and } c=1 \\
& D \geq 0
\end{aligned}
$$

On comparing with
we get
For linear factors,

$$
b^{2}-4 a c \geq 0
$$

$$
k^{2}-4 \times 1 \times 1 \geq 0
$$

$$
\left(k^{2}-2^{2}\right) \geq 0
$$

$$
(k-2)(k+2) \geq 0
$$

$$
k \geq 2 \text { and } k \leq-2
$$

4. An $A P$ starts with a positive fraction and every alternate term is an integer. If the sum of the first 11 terms is 33 , then the fourth term is
[1]
(a) 2
(b) 3
(c) 5
(d) 6

Ans: (a) 2
Given,

$$
\begin{aligned}
S_{11} & =33 \\
\frac{11}{2}[2 a+10 d] & =33 \Rightarrow a+5 d=3 \\
a_{6} & =3 \Rightarrow a_{4}=2
\end{aligned}
$$

i.e.,
[Since, Alternate terms are integers and the given sum is possible]
5. Which of the following statement is false?
(a) All isosceles triangles are similar.
(b) All quadrilateral triangles are similar.
(c) All circles are similar.
(d) None of the above

Ans: (a) All isosceles triangles are similar.
An isosceles triangle is a triangle with two side of equal length hence statement given in option (a) is false.
6. C is the mid-point of $P Q$, if P is $(4, x), C$ is $(y,-1)$ and Q is $(-2,4)$, then x and y respectively are [1]
(a) -6 and 1
(b) -6 and 2
(c) 6 and -1
(d) 6 and -2

Ans: (a) -6 and 1
Since, $C(y,-1)$ is the mid-point of $P(4, x)$ and
$Q(-2,4)$.
We have, $\quad \frac{4-2}{2}=y$
and

$$
\begin{equation*}
\frac{4+x}{2}=-1 \tag{1}
\end{equation*}
$$

From equation (1) and (2), we get

$$
\begin{aligned}
& y=1 \\
& x=-6
\end{aligned}
$$

and
7. If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, then the value of A is
(a) 12°
(b) 18°
(c) 36°
(d) 48°

Ans: (c) 36°

$$
\text { Given, } \begin{aligned}
& \tan 2 A=\cot \left(A-18^{\circ}\right) \\
& \cot \left(90^{\circ}-2 A\right)=\cot \left(A-18^{\circ}\right) \\
& 90^{\circ}-2 A=A-18^{\circ} \\
& {\left[\text { since, }\left(90^{\circ}-2 A\right) \text { and }\left(A-18^{\circ}\right)\right.} \\
&\quad \text { both are acute angles }] \\
& 90^{\circ}+18^{\circ}=A+2 A \\
& 3 A=108^{\circ} \\
& A=\frac{108^{\circ}}{3}=36^{\circ}
\end{aligned}
$$

8. An equation of the circle with centre at $(0,0)$ and radius r is
(a) $x^{2}+y^{2}=r^{2}$
(b) $x^{2}-y^{2}=r^{2}$
(c) $x-y=r$
(d) $x^{2}+r^{2}=y^{2}$

Ans: (a) $x^{2}+y^{2}=r^{2}$
Here, $h=k=0$. Therefore, the equation of the circle is $x^{2}+y^{2}=r^{2}$.
9. The ratio of the sides of the triangle to be constructed with the corresponding sides of the given triangle is known as
(a) scale factors
(b) length factor
(c) side factor
(d) K-factor

Ans: (a) scale factors
The ratio of the sides of the triangle to be constructed with the corresponding sides of the given triangle is known as scale factor.
10. Ratio of volumes of two cylinders with equal height is
(a) $H: h$
(b) $R: r$
(c) $R^{2}: r^{2}$
(d) None of these

Ans: (c) $R^{2}: r^{2}$

$$
\pi R^{2} h: \pi r^{2} h=R^{2}: r^{2}
$$

(Q.11-Q.15) Fill in the blanks.

11. If p is a prime number and it divides a^{2} then it also divides \qquad , where a is a positive integer.
Ans : a
12. \qquad equation is valid for all values of its variables.

Ans: Identity

The highest power of a variable in a polynomial is called its \qquad
Ans: Degree
13. Area of a circle is \qquad
Ans : πr^{2}
14. The volume and surface area of a sphere are numerically equal, then the radius of sphere is \qquad units. [1]
Ans: 3
15. Someone is asked to make a number from 1 to 100 . The probability that it is a prime is \qquad
Ans: $\frac{1}{4}$

(Q.16-Q.20) Answer the following

16. Find the value (s) of k if the quadratic equation $3 x^{2}-k \sqrt{3} x+4=0$ has real roots.

Ans :

If discriminant of quadratic equation is equal to zero, or more than zero, then roots are real.

$$
\begin{aligned}
& \text { We have } \begin{aligned}
3 x^{2}-k \sqrt{3} x+4 & =0 \\
\text { Compare with } a x^{2}+b x+c & =0 \\
D & =b^{2} \\
\text { For real roots } b^{2}-4 a c & \geq 0 \\
(-k \sqrt{3})^{2}-4 \times 3 \times 4 & \geq 0 \\
3 k^{2}-48 & \geq 0 \\
k^{2}-16 & \geq 0 \\
(k-4)(k+4) & \geq 0
\end{aligned}
\end{aligned}
$$

$$
D=b^{2}-4 a c
$$

Thus $k \leq-4$ and $k \geq 4$
17. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find area of minor segment. (Use $\pi=3.14$)
Ans :
Radius of circle $r=10 \mathrm{~cm}$, central angle $=90^{\circ}$
Area of minor segment

$$
\begin{aligned}
& =\frac{1}{2} \times 10^{2} \times\left[\frac{3.14 \times 90}{180}-\sin 90^{\circ}\right] \\
& =\frac{1}{2} \times 100 \times[1.57-1]=28.5 \mathrm{~cm}^{2}
\end{aligned}
$$

18. Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere ?
Ans:
Let radius of sphere be r.
Given, \quad volume of sphere $=$ S.A. of hemisphere

$$
\begin{aligned}
\frac{2}{3} \pi r^{3} & =3 \pi r^{2} \\
r & =\frac{9}{2} \text { units } \\
d & =\frac{9}{2} \times 2=9 \text { units } \\
& \text { or }
\end{aligned}
$$

Diameter

Find the number of solid sphere of diameter 6 cm can be made by melting a solid metallic cylinder of height 45 cm and diameter 4 cm .

Ans :
Let the number of sphere $=n$

$$
\begin{aligned}
\text { Radius of sphere } & =3 \mathrm{~cm}, \\
\text { radius of cylinder } & =2 \mathrm{~cm}
\end{aligned}
$$

Volume of spheres $=$ Volume of cylinder

$$
\begin{aligned}
n \times \frac{4}{3} \pi r^{3} & =\pi r_{1}^{2} h \\
n \times \frac{4}{3} \times \frac{22}{7} \times(3)^{3} & =\frac{22}{7} \times(2)^{2} \times 45 \\
36 n & =180 \\
n & =\frac{180}{36}=5
\end{aligned}
$$

Number of solid sphere $=5$.
19. What is abscissa of the point of intersection of the "Less than type" and of the "More than type" cumulative frequency curve of a grouped data?
Ans :
The abscissa of the point of intersection of the "Less than type" and "More than type" cumulative frequency curve of a grouped data is median.
20. A dice is thrown once. Find the probability of getting a prime number.
[1]

Ans :

Total outcomes $=6$
Prime numbers $=2,3,5=3$

$$
P(\text { prime no. })=\frac{3}{6}=\frac{1}{2}
$$

Section B

21. Solve the following system of linear equations by substitution method:

$$
\begin{aligned}
& 2 x-y=2 \\
& x+3 y=15
\end{aligned}
$$

Ans:
We have $\quad 2 x-y=2$

$$
\begin{equation*}
x+3 y=15 \tag{1}
\end{equation*}
$$

From equation (1), we get $y=2 x-2$
Substituting the value of y in equation (2),

$$
\text { or, } \quad \begin{aligned}
x+6 x-6 & =15 \\
7 x & =21 \\
x & =3
\end{aligned}
$$

Substituting this value of x in (3), we get
From equation (1), we have

$$
\begin{aligned}
& y=2 \times 3-2=4 \\
& x=3 \text { and } y=4
\end{aligned}
$$

22. Let $\triangle A B C \sim \triangle D E F$. if $\operatorname{ar}(\triangle A B C)=100 \quad \mathrm{~cm}^{2}$, $\operatorname{ar}(D E F)=196 \mathrm{~cm}^{2}$ and $D E=7$, then find $A B$. [2] Ans:

We have $\triangle A B C \sim \triangle D E F$, thus

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{are}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}
$$

$$
\begin{aligned}
\frac{100}{196} & =\frac{A B^{2}}{(7)^{2}} \\
\frac{100}{196} & =\frac{A B^{2}}{49} \\
A B^{2} & =\frac{49 \times 100}{196} \\
A B^{2} & =25 \\
A B & =5 \mathrm{~cm}
\end{aligned}
$$

23. If $A(5,2), B(2,-2)$ and $C(-2, t)$ are the vertices of a right angled triangle with $\angle B=90^{\circ}$, then find the value of t.

Ans :
As per question, triangle is shown below.

Now $\quad A B^{2}=(2-5)^{2}+(-2-2)^{2}=9+16=25$

$$
B C^{2}=(-2-2)^{2}+(t+2)^{2}=16+(t+2)^{2}
$$

$$
A C^{2}=(5+2)^{2}+(2-t)^{2}=49+\left(2+t^{2}\right)
$$

Since $\triangle A B C$ is a right angled triangle

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
& 49+(2-t)^{2}=25+16+(t+2)^{2} \\
& 49+4-4 t+t^{2}=41+t^{2}+4 t+4 \\
& 53-4 t=45+4 t \\
& 8 t=8 \\
& t=1 \\
& \quad \text { or }
\end{aligned}
$$

For what values of k are the points $(8,1),(3,-2 k)$ and $(k,-5)$ collinear?
Ans :
Since points $(8,1),(3,-2 k)$ and $(k,-5)$ are collinear, area of triangle formed must be zero.

$$
\begin{aligned}
\frac{1}{2}[8(-2 k+5)+3(-5,-1)+k(1+2 k)] & =0 \\
2 k^{2}-15 k+22 & =0 \\
k & =2, \frac{11}{2}
\end{aligned}
$$

24. A book seller has 420 science stream books and 130 Arts stream books. He wants to stack them in such a way that each stack has the same number and they take up the least area of the surface.

(i) What is the maximum number of books that can be placed in each stack for this purpose?
(ii) Which mathematical concept is used to solve the problems?

Ans :

(i) Given number of science books $=420$ and number of Arts books $=130$

$$
420=2 \times 2 \times 3 \times 5 \times 7
$$

$$
130=2 \times 5 \times 13
$$

Maximum number of books that can be placed in each stack for the given purpose

$$
\begin{aligned}
& =\operatorname{HCF}(420,130) \\
& =2^{1} \times 5^{1}=10
\end{aligned}
$$

(ii) Prime factorisation method.
25. Write the relationship connecting three measures of central tendencies. Hence find the median of the give data if mode is 24.5 and mean is 29.75 .
Ans :

$$
\begin{array}{lrl}
\text { Given, } & & \text { Modal }
\end{array}=24.50 \text { and } \quad \text { Mean }=29.75
$$

The relationship connecting measures of central tendencies is:

$$
\begin{aligned}
3 \text { Median } & =\text { Mode }+2 \text { Mean } \\
3 \text { Median } & =24.5+2 \times 29.75 \\
& =24.5+59.50 \\
3 \text { Median } & =84.0 \\
\therefore \quad \text { Median } & =\frac{84}{3}=28
\end{aligned}
$$

or
A bag contains cards bearing numbers from 11 to 30 . A card is taken out from the bag at random. Find the probability that the selected card has multiple of 5 on it.

Ans :

Here, \quad Number of cards $=20$
Multiples of 5 from 11 to 30 are 15, 20, 25, 30
Number of favourable outcomes $=4$

$$
\text { Required probability }=\frac{4}{20}=\frac{1}{5}
$$

26. Rajesh starts walking from his house to office. Instead of going to the office directly, he goes to a mall first, from there to his wife's office and then reaches the office. What is the extra distance travelled by Rajesh in reaching his office? Assume that all distance covered are in straight lines, if the house is situated at $(2,4)$, mall at $(5,8)$, wife's office at $(13,14)$ and office at $(13,26)$ and coordinates are in kilometre.

Ans :

From questions,

Extra distance travelled by Vicky

$$
\begin{aligned}
& =(A B+B C+C D)-A D \\
& =\sqrt{(5-2)^{2}+(8-4)^{2}}+\sqrt{(13-5)^{2}+(14-8)^{2}} \\
& +\sqrt{(13-13)^{2}+(26-14)^{2}}-\sqrt{(13-2)^{2}+(26-4)^{2}} \\
& =\sqrt{9+16}+\sqrt{64+36}+\sqrt{0+14}-\sqrt{121+484} \\
& =5+10+12-24.6=2.4 \mathrm{~km}
\end{aligned}
$$

Section C

27. Find the zeroes of the quadratic polynomial $x^{2}-2 \sqrt{2} x$ and verify the relationship between the zeroes and the coefficients.
Ans :
We have

$$
\begin{aligned}
x^{2}-2 \sqrt{2} x & =0 \\
x(x-2 \sqrt{2}) & =0
\end{aligned}
$$

Thus zeroes are 0 and $2 \sqrt{2}$.
Sum of zeroes

$$
2 \sqrt{2}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}
$$

and product of zeroes

$$
0=\frac{\text { Constan term }}{\text { Coefficient of } x^{2}}
$$

Hence verified

or

What should be added to $x^{3}+5 x^{2}+7 x+3$ so that it is completely divisible by $x^{2}+2 x$.

Ans :

$$
\begin{array}{r}
x+3 \\
\left.x^{2}+2 x\right) x^{3}+5 x^{2}+7 x+3 \\
\frac{x^{3}+2 x^{2}}{3 x^{2}+7 x+3} \\
\frac{3 x^{2}+6 x}{x+3}
\end{array}
$$

28. Solve for x and y :

$$
\begin{align*}
\frac{x}{2}+\frac{2 y}{3} & =-1 \tag{3}\\
x-\frac{y}{3} & =3
\end{align*}
$$

Ans :
We have

$$
\begin{equation*}
\frac{x}{2}+\frac{2 y}{3}=-1 \tag{1}
\end{equation*}
$$

or $\quad 3 x+4 y=-6$
and

$$
\frac{x}{1}-\frac{y}{3}=3
$$

or

$$
\begin{equation*}
3 x+y=9 \tag{2}
\end{equation*}
$$

Subtracting equation (2) from equation (1), we have

$$
5 y=-15 \Rightarrow y=-1
$$

Substituting $y=-3$ in eq (1), we get

$$
\begin{aligned}
3 x+4(-3) & =-6 \\
3 x-12 & =-6 \\
3 x & =12-6 \\
x & =2
\end{aligned}
$$

Thus
Hence

$$
x=-2 \text { and } y=-3 .
$$

29. For what value of n, are the $n^{\text {th }}$ terms of two A.Ps 63 , $65,67, \ldots$ and $3,10,17, \ldots$ equal?
[3]

Ans :

Let a, d and A, D be the $1^{s t}$ term and common difference of the 2 APs respectively.
n is same
For 1st AP, $\quad a=63, d=2$
For 2nd AP, $\quad A=3, D=7$
Since nth term is same,

$$
\begin{aligned}
a n & =A n \\
a+(n-1) d & =A+(n-1) D \\
63+(n-1) 2 & =3+(n-1) 7 \\
63+2 n-2 & =3+7 n-7 \\
61+2 n & =7 n-4 \\
65 & =5 n \Rightarrow n=13
\end{aligned}
$$

When n is 13 , the $n^{\text {th }}$ terms are equal i.e., $a_{13}=A_{13}$

In an A.P., if the $12^{\text {th }}$ term is -13 and the sum of its first four terms is 24 , find the sum of its first ten terms.

Ans :

Let the first term be a, common difference be d, nth term be a_{n} and sum of n term be S_{n}.

$$
\begin{equation*}
a_{12}=a+11 d=-13 \tag{1}
\end{equation*}
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Now

$$
\begin{align*}
S_{4} & =2[2 a+3 d]=24 \\
2 a+3 d & =12 \tag{2}
\end{align*}
$$

Multiplying (1) by 2 and subtracting (2) from it we get

$$
\begin{aligned}
(2 a+22 d)-(2 a+3 d) & =-26-12 \\
19 d & =-38 \\
d & =-2
\end{aligned}
$$

Substituting the value of d in (1) we get

$$
\begin{aligned}
a+11 \times-2 & =-13 \\
a & =-13+22 \\
a & =9
\end{aligned}
$$

Now,

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{10} & =\frac{10}{2}(2 \times 9+9 \times-2) \\
& =5 \times(18-18)=0
\end{aligned}
$$

Hence, $S_{10}=0$
30. $A B C$ is a triangle, $P Q$ is the line segment intersecting $A B$ in P and $A C$ in Q such that $P Q \| B C$ and divides $\triangle A B C$ into two parts, equal in area, find $B P: A B,[3]$
Ans :
As per given condition we have drawn the figure below.

Here, Since $P Q \| B C$ and $P Q$ divides $\triangle A B C$ into two equal parts, thus $\triangle A P Q \sim \triangle A B C$

$$
\text { Now } \begin{aligned}
\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)} & =\frac{A P^{2}}{A B^{2}} \\
\frac{1}{2} & =\frac{A P^{2}}{A B^{2}} \\
\frac{1}{\sqrt{2}} & =\frac{A P}{A B} \\
\frac{1}{\sqrt{2}} & =\frac{A B-B P}{A B} \quad(A B=A P+B P) \\
\frac{1}{\sqrt{2}} & =1-\frac{B P}{A B} \\
\frac{B P}{A B} & =1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}} \\
B P: A B & =(\sqrt{2}-1): \sqrt{2}
\end{aligned}
$$

31. The tallest free-standing tower in the world is the CN Tower in Toronto, Canada. The tower includes a rotating restaurant high above the ground. From a distance of 500 m the angle of elevation to the
pinnacle of the tower is 60°. The angle of elevation to the restaurant from the same vantage point is 45°. How tall is the CN Tower? How far below the pinnacle of the tower is the restaurant located?

Ans :
Let h_{t} be the height of the tower and h_{r} be the height of the restaurant.

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{h_{t}}{500} ; h_{t}=500 \tan 60^{\circ} \\
h_{t} & =500 \sqrt{3}=866.025 \mathrm{~m} \\
\tan 45^{\circ} & =\frac{h_{r}}{500} ; h_{r}=500 \tan 45^{\circ} \\
& =500 \mathrm{~m}
\end{aligned}
$$

Difference, $\quad 866.025-500=366.025 \mathrm{~m}$
32. In the given figure, $P A$ and $P B$ are tangents to a circle from an external point P such that $P A=4 \mathrm{~cm}$ and $\angle B A C=135^{\circ}$. Find the length of chord $A B$. [3]

Ans :

Since length of tangents from an external point to a circle are equal,

$$
P A=P B=4 \mathrm{~cm}
$$

Here $\angle P A B$ and $\angle B A C$ are supplementary angles,

$$
\angle P A B=180^{\circ}-135^{\circ}=45^{\circ}
$$

Angle $\angle A B P$ and $=\angle P A B=45^{\circ}$ opposite angles of equal sides, thus

$$
\angle A B P=\angle P A B=45^{\circ}
$$

In triangle $\triangle A P B$, we have

$$
\begin{aligned}
\angle A P B & =180^{\circ}-\angle A B P-\angle B A P \\
& =180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}
\end{aligned}
$$

Thus $\triangle A P B$ is a isosceles right angled triangle
Now

$$
A B^{2}=A P^{2}+B P^{2}=2 A P^{2}
$$

$$
=2 \times 4^{2}=32
$$

Hence

$$
A B=\sqrt{32}=4 \sqrt{2} \mathrm{~cm}
$$

or

Two tangents $T P$ and $T Q$ are drawn to a circle with centre O from an external point T. Prove that

$$
\angle P T O=\angle O P Q
$$

Ans :
As per question we draw figure shown below.

Let $\angle T P Q$ be θ. the tangent is perpendicular to the end point of radius,

$$
\begin{array}{rlrl}
\angle T P O & =90^{\circ} \\
\text { Now } & \angle T P Q & =\angle T P O-\theta=\left(90^{\circ}-\theta\right)
\end{array}
$$

Since, $T P=T Q$ and opposite angels of equal sides are always equal, we have

$$
\angle T Q P=\left(90^{\circ}-\theta\right)
$$

Now in $\triangle T P Q$ we have

$$
\begin{aligned}
& \angle T P Q+\angle T Q P+\angle P T Q=180^{\circ} \\
& 90^{\circ}-\theta+90^{\circ}-\theta+\angle P T Q=180^{\circ} \\
& \quad \angle P T Q=180^{\circ}-180^{\circ}+2 \theta=2 \theta
\end{aligned}
$$

Hence $\angle P T Q=2 \angle O P Q$.
33. Construct an isosceles triangle whose base is 7.5 cm and altitude 3.5 cm then another triangle whose sides are $\frac{4}{7}$ times the corresponding sides of the isosceles triangle.
Ans :

Steps of construction :

1. Draw a line $B C=7.5 \mathrm{~cm}$.
2. Draw a perpendicular bisector of $B C$ which intersects the line $B C$ at O.
3. Cut the line $O A=3.5 \mathrm{~cm}$.

4. Join A to B and A to C.
5. Draw a ray $B X$ making an acute angle with $B C$.
6. Locate 7 points at equal distance among $B_{1}, B_{2}, \ldots \ldots B_{7}$ on line segment $B X$.
7. Join $B_{7} C$. Draw a parallel line through B_{4} to $B_{7} C$ intersecting line segment $B C$ at C.
8. Through C draw a line parallel to $A C$ intersecting line segment $A B$ at A^{\prime}.
9. Hence, $\triangle A^{\prime} B C$ is a required triangle.
10. A boy, standing on the top of a tower 20 meter height, saw the top of a building at an elevation of 50° and its base at a depression of 30°
(a) Draw a rough figure according to the given data.
(b) Find the distance between the tower and the building.
(c) Find the distance from the top of the tower to the base of the building.
[use $\sin 50^{\circ}=0.77, \cos 50^{\circ}=0.64, \tan 50^{\circ}=1.2$,

$$
\sqrt{3}=1.7]
$$

Ans :
(a)

(b) In $\triangle E A B$

$$
\tan 60^{\circ}=\frac{A B}{A E}
$$

Difference between tower and building,
(c) In $\triangle E A B$

$$
\begin{aligned}
A B & =A E \tan 60^{\circ} \\
& =20 \times \sqrt{3} \mathrm{~m}
\end{aligned}
$$

$$
(E B)^{2}=(A E)^{2}+(A B)^{2}
$$

$$
(E B)^{2}=(20)^{2}+(20 \sqrt{3})^{2}
$$

$$
(E B)^{2}=400+1200
$$

$$
E B=\sqrt{1600}=40 \mathrm{~m}
$$

Section D

35. Show that the square of any positive integer is of the forms $4 m$ or $4 m+1$, where m is any integer.
Ans :
Let a be any positive integer, then by Euclid's division algorithm a can be written as

$$
a=b q+r
$$

Take $b=4$, then $0 \leq r<4$ because $0 \leq r<b$,
Thus
$a=4 q, 4 q+1,4 q+2,4 q+3$

Case 1: $a=4 q$

$$
\begin{aligned}
a^{2} & =(4 q)^{2}=16 q^{2}=4\left(4 q^{2}\right) \\
& =4 m \quad \text { where } m=4 q^{2}
\end{aligned}
$$

Case 2: $a=4 q+1$

$$
\begin{aligned}
a^{2} & =(4 q+1)^{2}=16 q^{2}+8 q+1 \\
& =4\left(4 q^{2}+2 q\right)+1 \\
& =4 m+1 \quad \text { where } m=4 q^{2}+2 q
\end{aligned}
$$

Case 3: $a=4 q+2$

$$
\begin{aligned}
a^{2} & =(4 q+2)^{2}=16 q^{2}+16 q+4 \\
& =4\left(4 q^{2}+4 q+1\right) \\
& =4 m \quad \text { where } m=4 q^{2}+4 q+1
\end{aligned}
$$

Case 4: $a^{2}=(4 q+3)^{2}=16 q^{2}+24 q+9$

$$
=16 q^{2}+24 q+8+1
$$

$$
=4\left(4 q^{2}+6 q+2\right)+1
$$

$$
=4 m+1 \quad \text { where } m=4 q^{2}+6 q+2
$$

From cases 1, 2, 3 and 4 we conclude that the square of any + ve integer is of the form $4 m$ or $4 m+1$.

or

Express the HCF/LCM of 48 and 18 as a linear combination.
Ans :
Using Euclid's Division Lemma, we have

$$
\begin{align*}
& 48=18 \times 2+12 \tag{1}\\
& 18=12 \times 1+6 \tag{2}\\
& 12=6 \times 2+0
\end{align*}
$$

Thus $\operatorname{HCF}(18,48)=6$
Now $\quad 6=18-12 \times 1$
From (2)
From (1)
$6=18-(48-18 \times 2)$
$6=18-48 \times 1+18 \times 2$
$6=18 \times(2+1)-48 \times 1=18 \times 3-48 \times 1$
$6=18 \times 3+48 \times(-1)$
Thus $\quad 6=18 x+48 y, \quad$ where $x=3, y=-1$
Here x and y are not unique.

$$
\begin{aligned}
6 & =18 \times 3+48 \times(-1) \\
& =18 \times 3+48 \times(-1)+18 \times 48-18 \times 48 \\
& =18(3+48)+48(-1-18) \\
& =18 \times 51+48 \times(-19) \\
6 & =18 x+48 y, \quad \text { where } x=51, y=-19
\end{aligned}
$$

36. The denominator of a fraction is two more than its numerator. If the sum of the fraction and its reciprocal is $\frac{34}{15}$, find the fraction.

Ans :

Let numerator be x, then denominator will be $x+2$.
and

$$
\text { fraction }=\frac{x}{x+2}
$$

$$
\text { Now } \begin{aligned}
\frac{x}{x+2}+\frac{x+2}{x} & =\frac{34}{15} \\
15\left(x^{2}+x^{2}+4 x+4\right) & =34\left(x^{2}+2 x\right) \\
30 x^{2}+60 x+60 & =34 x^{2}+68 x \\
4 x^{2}+8 x-60 & =0
\end{aligned}
$$

$$
\begin{array}{r}
x^{2}+2 x-15=0 \\
x^{2}+5 x-3 x-15=0 \\
x(x+5)-3(x+5)=0 \\
(x+5)(x-3)=0
\end{array}
$$

We reject the $x=-5$. Thus $x=3$ and fraction $=\frac{3}{5}$
37. Find the values of k so that the area of the triangle with vertices $(k+1,1),(4,-3)$ and $(7,-k)$ is 6 sq. units.
Ans :
We have $(k+1,1),(4,-3)$ and $(7,-k)$
Area of triangle

$$
\begin{gathered}
\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
6=\frac{1}{2}[(k+1)(-3+k)+4(-k-1)+7(1+3)] \\
12=\left[k^{2}-2 k-3-4 k-4+28\right] \\
12=k^{2}-6 k+21 \\
k^{2}-6 k+9=0 \\
k^{2}-3 k-3 k+9=0 \\
k(k-3)-3(k-3)=0 \\
(k-3)(k-3)=0 \\
k=3,3 \\
\text { or }
\end{gathered}
$$

The base $Q R$ of an equilateral triangle $P Q R$ lies on x-axis. The co-ordinates of point Q are $(-4,0)$ and the origin is the mid-point of the base. find the coordinates of the point P and R.
Ans :
As per question, line diagram is shown below.

Co-ordinates of point R is $(4,0)$
Thus

$$
Q R=8 \text { units }
$$

Let the co-ordinates of point P be $(0, y)$
Since

$$
P Q=Q R
$$

$$
\begin{aligned}
(-4-0)^{2}+(0-y)^{2} & =64 \\
16+y^{2} & =64 \\
y & = \pm 4 \sqrt{3}
\end{aligned}
$$

Coordinates of P are $(0,4 \sqrt{3})$ or $(0,-4 \sqrt{3})$
38. The angle of elevation of a cloud from a point 120 m above a lake is 30° and the angle of depression of its
reflection in the lake is 60°. Find the height of the cloud.
Ans :
As per given in question we have drawn figure below.

Here, A is cloud and A^{\prime} is refection of cloud.
In right $\triangle A O P$ we have

$$
\begin{align*}
\tan 30^{\circ} & =\frac{H-120}{O P} \\
\frac{1}{\sqrt{3}} & =\frac{H-120}{O P} \\
O P & =(H-120) \sqrt{3} \tag{1}
\end{align*}
$$

In right $\triangle O P A^{\prime}$ we have

$$
\begin{align*}
\tan 60^{\circ} & =\frac{H+120}{O P} \\
O P & =\frac{H+120}{\sqrt{3}} \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
\frac{H+120}{\sqrt{3}}=\sqrt{3}(H-120)
$$

Thus height of cloud is 240 m .
or
The angle of depression of two ships from an aeroplane flying at the height of 7500 m are 30° and 45°. if both the ships are in the same that one ship is exactly behind the other, find the distance between the ships.
Ans :
Let A, C and D be the position of aeroplane and two ship respectively. Aeroplane is flying at 7500 m height from point B. As per given in question we have drawn figure below.

In right $\triangle A B C$, we have

$$
\begin{align*}
\frac{A B}{B C} & =\tan 45^{\circ} \\
\frac{7500}{y} & =y \\
y & =7500 \tag{1}
\end{align*}
$$

In right $\triangle A B D$, we have

$$
\begin{align*}
\frac{A B}{B D} & =\tan 30^{\circ} \\
\frac{7500}{x+y} & =\frac{1}{\sqrt{3}} \\
x+y & =7500 \sqrt{3} \tag{2}
\end{align*}
$$

Substituting the value of y from (1) in (2) we have

$$
\begin{aligned}
x+7500 & =7500 \sqrt{3} \\
x & =7500 \sqrt{3}-7500 \\
& =7500(\sqrt{3}-1) \\
& =7500(1.73-1) \\
& =7500 \times 0.73 \\
& =5475 \mathrm{~m}
\end{aligned}
$$

Hence, the distance between two ships is 5475 m .
39. In figure, $P Q$, is a chord of length 16 cm , of a circle of radius 10 cm . the tangents at P and Q intersect at a point T. Find the length of $T P$.

Ans :

Here $P Q$ is chord of circle and $O M$ will be perpendicular on it and it bisect $P Q$. Thus $\triangle O M P$ is a right angled triangle.

$$
\begin{aligned}
& \text { We have } \\
& O P=10 \mathrm{~cm} \\
& P M=8 \mathrm{~cm} \\
& \text { (Radius) } \\
& \text { (} P Q=16 \mathrm{~cm} \text {) } \\
& \text { Now in } \triangle O M P, O M=\sqrt{10^{2}-8^{2}} \\
& =\sqrt{100-64}=\sqrt{36} \\
& =6 \mathrm{~cm} \\
& \text { Now } \quad \angle T P M+\angle M P O=90^{\circ} \\
& \text { Also, } \quad \angle T P M+\angle P T M=90^{\circ} \\
& \angle M P O=\angle P T M \\
& \angle T M P=\angle O M P=90^{\circ} \\
& \triangle T M P \sim \triangle P M O(A A) \\
& \text { or, } \quad \frac{T P}{P O}=\frac{M P}{M O}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{T P}{10}=\frac{8}{6} \\
& T P=\frac{80}{6}=\frac{40}{3}
\end{aligned}
$$

Hence length of $T P$ is $\frac{40}{3} \mathrm{~cm}$.
40. Monthly expenditures on milk in 100 families of a housing society are given in the following frequency distribution :

Monthly expendi- ture (in Rs.)	0 175	$175-$ 350	$350-$ 525	$525-$ 700	$700-$ 875	$875-$ 1050	$1050-$ 1125
Number of families	10	14	15	21	28	7	5

Find the mode and median for the distribution.

Ans :

C.I.	f	$c . f$.
$0-175$	10	10
$157-350$	14	24
$350-525$	15	39
$525-700$	21	60
$700-875$	28	88
$875-1050$	7	95
$1050-1225$	5	100

Median $=\frac{N}{2}$ th term

$$
=\frac{100}{2}=50 \mathrm{th} \text { term }
$$

$\therefore \quad$ Median class $=525-700$

$$
\begin{aligned}
\text { Median } & =l+\frac{\frac{N}{2}-c . f .}{f} \times h \\
& =525+\frac{50-39}{21} \times 175 \\
& =525+\frac{11}{21} \times 175 \\
& =525+91.6 \\
& =616.6
\end{aligned}
$$

and \quad Modal class $=700-875$

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \\
l & =700, f_{0}=21, f_{1}=28 \\
f_{2} & =7, h=175 \\
& =700+\left(\frac{28-21}{2 \times 28-21-7}\right) \times 175 \\
& =700+\frac{7}{28} \times 175 \\
& =700+43.75 \\
& =743.75
\end{aligned}
$$

WWW.CBSE.ONLINE

Download unsolved version of this paper from www.cbse.online

