KENVDRI YA VI DYALA \mathcal{A} GACHIBO WLI, GPRA CAMPUS, $\mathcal{H Y D}-32$ S AMPLE PAPER - 01 (2019-20)

S UBI ECT: MATHEMATICS (041)

BLULE PRINTI: CLASS XII

Chapter	$\begin{gathered} \hline \text { MCQ } \\ (1 \mathrm{mark}) \end{gathered}$	$\begin{gathered} \text { FIB } \\ (1 \text { mark }) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { VSA } \\ \text { (1 mark) } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathbf{S A} \\ \text { (2 marks) } \end{array}$	$\begin{array}{\|c\|} \hline \text { LA - I } \\ (4 \text { marks }) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { LA- II } \\ (6 \text { marks }) \\ \hline \end{array}$	Total
Relations and Functions	--	1(1)	--	2(1)*	4(1)	--	5(2)
Inverse Trigonometric Functions	1(1)	--	--		--	--	3(2)
Matrices	2(2)	1(1)	--	--	--	--	3(3)
Determinants	--	--	1(1)	--	--	6(1)*	7(2)
Continuity \& Differentiability	--	1(1)	--	--	4(1)*	--	5(2)
Applications of Derivatives	--	1(1)*	--	2(1)	--	6(1)*	9(3)
Integrals	1(1)	--	$\begin{gathered} 2(2) \\ \mathbf{1 (1) *} \end{gathered}$	--	4(1)	--	8(5)
Applications of the Integrals	--	--	--	--	--	6(1)	6(1)
Differential Equations	--	--	1(1)	2(1)	4(1)	--	7(3)
Vector Algebra	1(1)	1(1)*	--	2(1)*	--	--	4(3)
Three-Dimensional Geometry	3(3)	--	--	2(1)	--	6(1)	11(5)
Linear Programming	--	--	--	--	4(1)	--	4(1)
Probability	2(2)	--	--	2(1)	4(1)*	--	8(4)
Total	10(10)	5(5)	5(5)	12(6)	24(6)	24(4)	80(36)

Note: * - Internal Choice Questions

$\mathcal{S U B I} \mathcal{E C T}: \mathcal{M A T \mathcal { H E M A }} \operatorname{ICS}$
CLASS : XII

General Instruction:

(i) All the questions are compulsory.
(ii) The question paper consists of $\mathbf{3 6}$ questions divided into 4 sections A, B, C, and D.
(iii) Section A comprises of $\mathbf{2 0}$ questions of 1 mark each. Section \mathbf{B} comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each. Section C comprises of $\mathbf{6}$ questions of $\mathbf{4}$ marks each. Section D comprises of $\mathbf{4}$ questions of $\mathbf{6}$ marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION - A

Questions 1 to 20 carry 1 mark each.

1. The value of $\sin ^{-1}\left(\cos \left(\frac{43 \pi}{5}\right)\right)$
(a) $\frac{3 \pi}{5}$
(b) $\frac{-7 \pi}{5}$
(c) $\frac{\pi}{10}$
(d) $-\frac{\pi}{10}$
2. If $A=\left[\begin{array}{rrr}2 & -1 & 3 \\ -4 & 5 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}2 & 3 \\ 4 & -2 \\ 1 & 5\end{array}\right]$, then
(a) only $A B$ is defined (b) only $B A$ is defined
(c) AB and BA both are defined (d) AB and BA both are not defined.
3. The matrix $\mathrm{A}=\left[\begin{array}{lll}0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0\end{array}\right]$ is a
(a) scalar matrix (b) diagonal matrix (c) unit matrix (d) square matrix
4. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when
(a) $0<\theta<\frac{\pi}{2}$
(b) $0 \leq \theta \leq \frac{\pi}{2}$
(c) $0<\theta<\pi$
(d) $0 \leq \theta \leq \pi$
5. P is a point on the line segment joining the points $(3,2,-1)$ and $(6,2,-2)$. If x co-ordinate of P is 5 , then its y co-ordinate is
(a) 2
(b) 1
(c) -1
(d) -2
6. If α, β, γ are the angles that a line makes with the positive direction of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis, respectively, then the direction cosines of the line are.
(a) $\sin \alpha, \sin \beta, \sin \gamma$
(b) $\cos \alpha, \cos \beta, \cos \gamma$
(c) $\tan \alpha, \tan \beta, \tan \gamma$
(d) $\cos ^{2} \alpha, \cos ^{2} \beta, \cos ^{2} \gamma$
7. The distance of a point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from x -axis is
(a) $\sqrt{a^{2}+c^{2}}$
(b) $\sqrt{a^{2}+b^{2}}$
(c) $\sqrt{b^{2}+c^{2}}$
(d) $b^{2}+c^{2}$
8. Let A and B be two events. If $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{B})=0.4, \mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.6$, then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is equal to
(a) 0.8
(b) 0.5
(c) 0.3
(d) 0
9. If A and B are any two events such that $P(A)+P(B)-P(A$ and $B)=P(A)$, then
(a) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=1$
(b) $P(A \mid B)=1$
(c) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0$
(d) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=0$
10. $\int e^{x}(\cos x-\sin x) d x$ is equal to
(a) $e^{x} \cos x+C$
(b) $e^{x} \sin \mathrm{x}+\mathrm{C}$
(c) $-\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}+\mathrm{C}$
(d) $-\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}+\mathrm{C}$
11. If $f: R \rightarrow R$ be defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then fof $(x)=$ \qquad
12. If $f(x)=\left\{\begin{array}{l}a x+1, \text { if } x \geq 1 \\ x+2, \text { if } x<1\end{array}\right.$ is continuous, then ' a ' should be equal to \qquad .
13. In applying one or more row operations while finding A^{-1} by elementary row operations, we obtain all zeros in one or more, then A^{-1} \qquad .
14. The point on the curve $y=x^{2}$ does the tangent make an angle of 45° with the x-axis is \qquad

OR

The slope of the tangent to the curve $\mathrm{x}=3 \mathrm{t}^{2}+1, \mathrm{y}=\mathrm{t}^{3}-1$ at $\mathrm{x}=1$ is \qquad
15. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}-5 \hat{k}$, then a unit vector in the direction of $\vec{a}-\vec{b}$ is \qquad

OR

The angle between the vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$ is \qquad
16. Find the value of $\left|\begin{array}{ccc}0 & x y z & x-z \\ y-x & 0 & y-z \\ z-x & z-y & 0\end{array}\right|$
17. Find: $\int(a x+b)^{3} d x$
18. Find $\int \frac{2 \cos x}{3 \sin ^{2} x} d x$
19. Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos x . e^{\sin x} d x$

OR

If $\int_{0}^{a} \frac{1}{1+4 x^{2}} d x=\frac{\pi}{8}$, then find the value of ' a '.
20. Find the general solution of the differential equation $\frac{y d x-x d y}{y}=0$.

SECTION - B

Questions 21 to 26 carry 2 marks each.

21. Form the differential equation of the family of parabolas having vertex at the origin and axis along positive y -axis.
22. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$

OR

If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$ show that $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular to each other.
23. Find the equation of the tangent to the curve $x^{2}+3 y-3=0$, which is parallel to the line $y=4 x-$ 5.
24. Find the foot of the perpendicular drawn from the point $\mathrm{A}(1,0,3)$ to the join of the points $\mathrm{B}(4,7$, $1)$ and $C(3,5,3)$.
25. Find the value of $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$

OR

Let R be the relation in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$.Show that the relation R transitive? Write the equivalence class [0].
26. A die is thrown three times, if the first throw results in 4, then find the probability of getting 15 as a sum.

SECTION - C

Questions 27 to 32 carry 4 marks each.

27. Show that the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\frac{x}{x^{2}+1}, \forall \mathrm{x} \in \mathrm{R}$ is neither one-one nor onto.
28. If $y=\left(\tan ^{-1} x\right)^{2}$, show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$

> OR

Differentiate the given function with respect to $\mathrm{x}: y=\tan ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)$
29. A diet for a sick person must contain at least 4,000 units of vitamins, 50 units of minerals and 1,400 calories. Two foods X and Y are available at a cost of 4 and 3 per unit respectively. 1 unit of the food X contains 200 units of vitamins, 1 unit of minerals and 40 calories, whereas 1 unit of food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of X and Y should be used to have least cost, satisfying the requirements?
30. Two numbers are selected at random (without replacement) from first 7 natural numbers. If X denotes the smaller of the two numbers obtained, find the probability distribution of X. Also, find mean of the distribution.

OR

In a factory which manufactures bolts, machines A, B and C manufacture respectively $30 \%, 50 \%$ and 20% of the bolts. Of their outputs 3,4 and 1 per cent respectively are defective bolts. A bolt is drawn at random from the product and is found to be defective. Find the probability that this is not manufactured by machine B.
31. Evaluate $\int \frac{d x}{\sqrt{5-4 x-2 x^{2}}}$
32. Solve the following differential equation $\left(1+e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$.

SECTION - D

Questions 33 to $\mathbf{3 6}$ carry 6 marks each.

33. Draw the rough sketch of the region $\left\{(x, y): y^{2} \leq 3 x, 3 x^{2}+3 y^{2} \leq 16\right\}$ and find the area of the region enclosed by using the method of integration.
34. Using properties of of determinants, prove that $\left|\begin{array}{ccc}a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+c y & 0\end{array}\right|=\left(b^{2}-a c\right)\left(a x^{2}+2 b x y+c y^{2}\right)$

OR

If $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$, find $(A B)^{-1}$.
35. A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.

OR

Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface area is $\cot ^{-1} \sqrt{2}$.

36. Find the equation of the plane passing through the intersection of planes $4 x-y+z=10$ and $x+$ $y-z=4$ and parallel to the line with direction ratios, 2, 1, 1. Find the perpendicular distance of the point $(1,1,1)$ from this plane.

