KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD - 32 SAMPLE PAPER - 01 (2019-20)

SUBJECT: MATHEMATICS(041)

BLUE PRINT : CLASS XII

Chapter	MCQ (1 mark)	FIB (1 mark)	VSA (1 mark)	SA (2 marks)	LA - I (4 marks)	LA- II (6 marks)	Total
Relations and Functions		1(1)		2(1)*	4(1)		5(2)
Inverse Trigonometric Functions	1(1)						3(2)
Matrices	2(2)	1(1)					3(3)
Determinants			1(1)			6(1)*	7(2)
Continuity & Differentiability		1(1)			4(1)*		5(2)
Applications of Derivatives		1(1)*		2(1)		6(1)*	9(3)
Integrals	1(1)		2(2) 1(1)*		4(1)		8(5)
Applications of the Integrals						6(1)	6(1)
Differential Equations			1(1)	2(1)	4(1)		7(3)
Vector Algebra	1(1)	1(1)*		2(1)*			4(3)
Three-Dimensional Geometry	3(3)			2(1)		6(1)	11(5)
Linear Programming					4(1)		4(1)
Probability	2(2)			2(1)	4(1)*		8(4)
Total	10(10)	5(5)	5(5)	12(6)	24(6)	24(4)	80(36)

Note: * - Internal Choice Questions

KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD - 32 SAMPLE PAPER - 01 (2019-20)

SUBJECT: MATHEMATICS CLASS : XII

MAX. MARKS : 80 DURATION : 3 HRS

General Instruction:

(i) All the questions are compulsory.

(ii) The question paper consists of **36** questions divided into 4 sections A, B, C, and D.

(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.

(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(iv) Use of selevistence is not negative.

(v) Use of calculators is not permitted.

<u>SECTION – A</u> Questions 1 to 20 carry 1 mark each.

1. The value of $\sin^{-1} \left(\cos \left(\frac{43\pi}{5} \right) \right)$ (a) $\frac{3\pi}{5}$ (b) $\frac{-7\pi}{5}$ (c) $\frac{\pi}{10}$ (d) $-\frac{\pi}{10}$

2. If
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 5 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \end{bmatrix}$, then

(a) only AB is defined (b) only BA is defined

- (c) AB and BA both are defined (d) AB and BA both are not defined.
- **3.** The matrix $A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix}$ is a

(a) scalar matrix (b) diagonal matrix (c) unit matrix (d) square matrix

4. If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a}.\vec{b} \ge 0$ only when

(a)
$$0 < \theta < \frac{\pi}{2}$$
 (b) $0 \le \theta \le \frac{\pi}{2}$ (c) $0 < \theta < \pi$ (d) $0 \le \theta \le \pi$

5. P is a point on the line segment joining the points (3, 2, -1) and (6, 2, -2). If x co-ordinate of P is 5, then its y co-ordinate is
(a) 2
(b) 1
(c) -1
(d) -2

6. If α , β , γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are.

(a) $\sin \alpha$, $\sin \beta$, $\sin \gamma$ (b) $\cos \alpha$, $\cos \beta$, $\cos \gamma$ (c) $\tan \alpha$, $\tan \beta$, $\tan \gamma$ (d) $\cos^2 \alpha$, $\cos^2 \beta$, $\cos^2 \gamma$

- 7. The distance of a point P (a, b, c) from x-axis is (a) $\sqrt{a^2 + c^2}$ (b) $\sqrt{a^2 + b^2}$ (c) $\sqrt{b^2 + c^2}$ (d) $b^2 + c^2$
- 8. Let A and B be two events. If P (A) = 0.2, P (B) = 0.4, P (A \cup B) = 0.6, then P (A | B) is equal to (a) 0.8 (b) 0.5 (c) 0.3 (d) 0
- 9. If A and B are any two events such that P(A) + P(B) P(A and B) = P(A), then
 (a) P(B|A) = 1
 (b) P(A|B) = 1
 (c) P(B|A) = 0
 (d) P(A|B) = 0
- 10. $\int e^{x} (\cos x \sin x) dx$ is equal to (a) $e^{x} \cos x + C$ (b) $e^{x} \sin x + C$ (c) $-e^{x} \cos x + C$ (d) $-e^{x} \sin x + C$
- **11.** If $f: R \rightarrow R$ be defined by $f(x) = (3 x^3)^{1/3}$, then for (x) =_____
- 12. If $f(x) = \begin{cases} ax+1, & \text{if } x \ge 1 \\ x+2, & \text{if } x < 1 \end{cases}$ is continuous, then 'a' should be equal to _____.
- **13.** In applying one or more row operations while finding A^{-1} by elementary row operations, we obtain all zeros in one or more, then A^{-1} _____.
- 14. The point on the curve $y = x^2$ does the tangent make an angle of 45° with the x-axis is ______

The slope of the tangent to the curve $x = 3t^2 + 1$, $y = t^3 - 1$ at x = 1 is _____

15. If $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 5\hat{k}$, then a unit vector in the direction of $\vec{a} - \vec{b}$ is _____

The angle between the vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} - \hat{k}$ is _____

16. Find the value of
$$\begin{vmatrix} 0 & xyz & x-z \\ y-x & 0 & y-z \\ z-x & z-y & 0 \end{vmatrix}$$

17. Find:
$$\int (ax+b)^3 dx$$

18. Find
$$\int \frac{2\cos x}{3\sin^2 x} dx$$

19. Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos x \cdot e^{\sin x} dx$

OR

If
$$\int_{0}^{a} \frac{1}{1+4x^2} dx = \frac{\pi}{8}$$
, then find the value of 'a'.

20. Find the general solution of the differential equation $\frac{ydx - xdy}{y} = 0$.

<u>SECTION – B</u> Questions 21 to 26 carry 2 marks each.

- **21.** Form the differential equation of the family of parabolas having vertex at the origin and axis along positive y-axis.
- **22.** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$

OR

If $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$ show that $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ are perpendicular to each other.

- **23.** Find the equation of the tangent to the curve $x^2 + 3y 3 = 0$, which is parallel to the line y = 4x 5.
- **24.** Find the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3).
- **25.** Find the value of $\tan\left(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}\right)$

OR

Let R be the relation in the set Z of integers given by $R = \{(a, b) : 2 \text{ divides } a - b\}$. Show that the relation R transitive? Write the equivalence class [0].

26. A die is thrown three times, if the first throw results in 4, then find the probability of getting 15 as a sum.

<u>SECTION – C</u> Questions 27 to 32 carry 4 marks each.

- **27.** Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in \mathbb{R}$ is neither one-one nor onto.
- **28.** If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$ OR

Differentiate the given function with respect to x : $y = \tan^{-1} \left(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right)$

- **29.** A diet for a sick person must contain at least 4,000 units of vitamins, 50 units of minerals and 1,400 calories. Two foods X and Y are available at a cost of 4 and 3 per unit respectively. 1 unit of the food X contains 200 units of vitamins, 1 unit of minerals and 40 calories, whereas 1 unit of food Y contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of X and Y should be used to have least cost, satisfying the requirements?
- **30.** Two numbers are selected at random (without replacement) from first 7 natural numbers. If X denotes the smaller of the two numbers obtained, find the probability distribution of X. Also, find mean of the distribution.

OR

In a factory which manufactures bolts, machines A, B and C manufacture respectively 30%, 50% and 20% of the bolts. Of their outputs 3, 4 and 1 per cent respectively are defective bolts. A bolt is drawn at random from the product and is found to be defective. Find the probability that this is not manufactured by machine B.

31. Evaluate $\int \frac{dx}{\sqrt{5-4x-2x^2}}$

32. Solve the following differential equation $(1 + e^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$.

<u>SECTION – D</u> Questions 33 to 36 carry 6 marks each.

33. Draw the rough sketch of the region $\{(x, y) : y^2 \le 3x, 3x^2 + 3y^2 \le 16\}$ and find the area of the region enclosed by using the method of integration.

34. Using properties of determinants, prove that $\begin{vmatrix} a & b & ax+by \\ b & c & bx+cy \\ ax+by & bx+cy & 0 \end{vmatrix} = (b^2 - ac)(ax^2 + 2bxy + cy^2)$

OR

If
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(AB)^{-1}$.

35. A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.

OR

Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface area is $\cot^{-1}\sqrt{2}$.

36. Find the equation of the plane passing through the intersection of planes 4x - y + z = 10 and x + y - z = 4 and parallel to the line with direction ratios, 2, 1, 1. Find the perpendicular distance of the point (1, 1, 1) from this plane.

.....