SnS academy
 a fingerprint school

Ratios and Proportions

Outline:

- Ratios!

What is a Ratio?
How to Use Ratios?
How to Simplify?
Proportions!
What is a proportion?
Properties of proportions?
How to use proportions?

- Mysterious Problems...

What is a Ratio?

- A ratio is a comparison of two numbers.
- Ratios can be written in three different ways:

$$
\begin{aligned}
& \text { a to b } \\
& \text { a:b }
\end{aligned}
$$

$$
\frac{a}{b}
$$

Because a ratio is a fraction, b can not be zero

Ratios are expressed in simplest form

How to Use Ratios?

- The ratio of boys and girls in the class is 12 to11.
- The ratio of $\mid e^{y y}$ How many dogs and cats do। have? We don't know, all we
s rectangle is 4 to 1 .

What is the ratio if the toflange is 8 mm lopg and and dogs at my home is 2 to 1 Still 4 to 1, because for every 4 cm , you can find 1 cm to match

How to simplify ratios?

- The ratios we saw on last slide were all simplified. How was it done?

Ratios can be expressed in fraction form... $\frac{a}{b}$
This allows us to do math on them.

The ratio of boys and girls in the class is
$\frac{12}{11}$

The ratio of the rectangle is $\frac{4}{1}$

The ratio of cats and dogs in my house is $\frac{2}{1}$

How to simplify ratios?

- Now I tell you I have 12 cats and 6 dogs. Can you simplify the ratio of cats and dogs to 2 to 1 ?

$$
\frac{12}{6}=\frac{12 / 6}{6 / 6}=\frac{2}{1}
$$

How to simplify ratios?

A person's arm is 80 cm , he is 2 m tall.
Find the ratio of the length of his arm to his total height
To compare them, we need to convert both numbers into the same unit ...either cm or m .

- Let's try cm first!

$$
\begin{aligned}
\frac{\text { arm }}{\text { height }} & =\frac{80 \mathrm{~cm}}{2 m}=\frac{80 \mathrm{~cm}}{200 \mathrm{~cm}} \begin{array}{l}
\text { once we have the } \\
\text { same units, we can } \\
\text { simplify them. }
\end{array} \\
& =\frac{80}{200}=\frac{2}{5}
\end{aligned}
$$

How to simplify ratios?

- Let's try mow!

How to simplify ratios?

- If the numerator and denominator do not have the same units it may be easier to convert to the smaller unit so we don't have to work with decimals...
$3 \mathrm{~cm} / 12 \mathrm{~m}=3 \mathrm{~cm} / 1200 \mathrm{~cm}=1 / 400$
$2 \mathrm{~kg} / 15 \mathrm{~g}=2000 \mathrm{~g} / 15 \mathrm{~g}=400 / 3$
5ft/70in $=\left(5^{*} 12\right)$ in $/ 70 \mathrm{in}=60 \mathrm{in} / 70 \mathrm{in}=6 / 7$
$2 \mathrm{~g} / 8 \mathrm{~g}=1 / 4$
Of course, if they are already in the same units, we don't have to worry about converting. Good deal-)

More examples...

$$
\begin{aligned}
\frac{8}{24} & =\frac{1}{3} & \frac{12}{50}=\frac{6}{25} \\
\frac{40}{200} & =\frac{1}{5} & \frac{27}{18}=\frac{3}{2} \\
\frac{27}{9} & =\frac{3}{1} &
\end{aligned}
$$

Now, on to proportions!

What is a proportion?

$$
\frac{a}{b}=\frac{c}{d} \longleftarrow \quad \begin{aligned}
& \text { A proportion is an equation } \\
& \text { that equates two ratios }
\end{aligned}
$$

The ratio of dogs and cats was $3 / 2$
The ratio of dogs and cats now is $6 / 4=3 / 2$
So we have a proportion : $\frac{3}{2}=\frac{6}{4}$

Properties of a proportion?

Properties of a proportion?

- Cross Product Property

extremes

Properties of a proportion?

Let's make sense of the Cross Product Property...

For any numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$:

$$
\begin{gathered}
\frac{a}{b}=\frac{c}{d} \longleftrightarrow \frac{a}{b} \times d=\frac{c}{d} \times d \\
\frac{a}{b} \times d=c \Longleftrightarrow \frac{a}{b} \times d \times b=b \times c \\
a d=b c
\end{gathered}
$$

How about an example?

$$
\begin{aligned}
& \frac{7}{2}=\frac{x}{6} \quad \text { Solve for } \mathrm{x}: \\
& 7(6)=2 x \leftarrow \text { Cross Product Property } \\
& 42=2 x \\
& 21=x
\end{aligned}
$$

How about another example?

$$
\begin{aligned}
& \frac{7}{2}=\frac{12}{x} \text { Solve for } \mathrm{x}: \\
& 7 \mathrm{x}=2(12)
\end{aligned}
$$

$$
7 x=24
$$

$$
x=\frac{24}{7}
$$

Can you solve it using Reciprocal Property? If yes, would it be easier?

