Electricity and circuits

- I Word focus
- 1. Electricity
- 2. Circuit
- 3. Conductor
- 4. Insulator
- 5. Battery
- 6. Switch
- 7. Current
- 8. Bulb
- 9. Cell
- 10. Resistance

II KWL

III Concept map IV Q and A

1. Differentiate between a conductor and an insulator. (5 Marks)

Feature	Conductor	Insulator
Definition	A material that allows electric current to pass through it.	A material that does not allow electric current to pass through it.
Flow of Current	Electric current flows easily .	Electric current does not flow.
Examples	Copper, Aluminium, Iron	Plastic, Wood, Rubber
Use in Circuits	Used to carry current (e.g., wires).	Used to prevent electric shocks (e.g., wire coverings).

2. Why does a torch light up only when the switch is turned on? Explain using the concept of an electric circuit.

A torch lights up only when the **switch is turned on** because that action **completes the electric circuit**. When the circuit is complete:

- Electric current flows from the dry cells (batteries) through the wires.
- The **bulb receives current** and lights up.

- A dry cell contains chemicals like zinc (Zn) as the negative terminal and carbon (C) surrounded by manganese dioxide (MnO₂) as the positive terminal. A paste of ammonium chloride (NH₄Cl) or zinc chloride (ZnCl₂) is used as the electrolyte.
- These chemicals produce electricity through a **chemical reaction**.
- When the switch is OFF, the circuit is broken, no current flows, and the bulb does not glow.

This shows that for any electrical device to work, the **circuit must be complete**, and the **chemical energy in the dry cell is converted into electrical energy to light** the torch.

What is an electric circuit? Draw a basic electric circuit diagram and prepare a table showing standard symbols used in an electric circuit.

An **electric circuit** is a closed path through which **electric current** flows. It usually includes a **cell**, **wires**, **a switch**, and an **electrical component** like a **bulb**. When the circuit is **complete**, the current flows and the device works. If the circuit is **open**, the current does not flow.

Diagram Table

4. Compare dry cells and secondary cells using a Venn diagram. What are their similarities and differences?

Electric cells are devices that convert chemical energy into electrical energy. They are mainly of two types:

- **Primary Cells** (e.g., Dry Cell)
- Secondary Cells (e.g., Rechargeable Batteries like Lead-acid cell, Li-ion cell)

[DRY CELLS]

- Used once only
- Non-rechargeable
- Common in
torches, remotes

[SECONDARY CELLS]

- Can be recharged
- Reusable
- Used in cars, mobiles
laptops, etc.

COMMON /
FEATURES /
- Produce electricity |
- Contain chemicals |
- Have two terminals