

SNS COLLEGE OF ALLIED HEALTH SCIENCES

SNS Kalvi Nagar, Coimbatore - 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT : PHYSICIAN ASSISTANT

COURSE NAME : NEPHROLOGY

UNIT : CLINICAL EXAMINATION OF KIDNEY

TOPIC : DRUGS AND KIDNEY

NSAIDs (Non-Steroidal Anti-Inflammatory Drugs)

Mechanisms:

 Inhibition of cyclooxygenase (COX) enzymes reduces prostaglandin synthesis, leading to decreased renal blood flow and glomerular filtration.

Renal Effects:

• Acute kidney injury, chronic kidney disease, acute interstitial nephritis, papillary necrosis.

• Pre-existing kidney disease, heart failure, volume depletion, concurrent use of other nephrotoxic drugs.

Management:

• Avoidance in high-risk patients, using the lowest effective dose for the shortest duration, ensuring adequate hydration.

ACE Inhibitors and ARBs

Mechanisms:

 Block the renin-angiotensin-aldosterone system (RAAS), causing efferent arteriole vasodilation and reduced glomerular filtration pressure.

Renal Effects:

• Initial reduction in GFR, hyperkalemia, potential for acute kidney injury.

• Bilateral renal artery stenosis, severe heart failure, volume depletion, concomitant use with NSAIDs or diuretics.

Management:

• Monitoring renal function and potassium levels, adjusting doses, educating patients on symptoms of hyperkalemia.

Aminoglycosides

Mechanisms:

• Accumulation in proximal tubular cells leading to oxidative stress, mitochondrial dysfunction, and cell death.

Renal Effects:

• Acute tubular necrosis (ATN), non-oliguric renal failure, electrolyte imbalances.

 High cumulative doses, prolonged therapy, pre-existing renal impairment, concomitant use of other nephrotoxic drugs.

Management:

• Therapeutic drug monitoring, once-daily dosing, ensuring adequate hydration, avoiding concomitant nephrotoxins.

Amyloidosis

Mechanisms:

 Induces renal vasoconstriction and direct tubular toxicity, leading to contrast-induced nephropathy (CIN).

Renal Effects:

• AKI, typically occurring within 48-72 hours post-exposure.

• Pre-existing kidney disease, diabetes, heart failure, high doses of contrast, dehydration.

Management:

 Pre-procedure hydration, using low-osmolar or isoosmolar contrast agents, minimizing contrast volume, avoiding nephrotoxic drugs around the time of contrast administration.

Calcineurin Inhibitors (Cyclosporine, Tacrolimus)

Vasoconstriction of afferent arterioles, chronic interstitial fibrosis, and tubular atrophy.

Renal Effects:

• Acute nephrotoxicity (reversible), chronic nephrotoxicity (irreversible), hypertension.

• High drug levels, prolonged therapy, concurrent use of other nephrotoxic drugs.

Management:

 Monitoring blood drug levels, dose adjustment, managing hypertension and electrolyte imbalances.

Chemotherapeutic Agents (Cisplatin, Methotrexate)

• Direct tubular toxicity (cisplatin), crystal nephropathy (methotrexate).

Renal Effects:

• AKI, chronic kidney disease, electrolyte disturbances.

 High doses, cumulative exposure, inadequate hydration, concurrent nephrotoxic drugs.

Management:

Hydration, urine alkalinization (for methotrexate), dose adjustments, monitoring renal function.

Lithium

Mechanisms:

• Interferes with renal tubular function and concentrating ability.

Renal Effects:

• Nephrogenic diabetes insipidus, chronic interstitial nephritis, potential progression to chronic kidney disease.

• Long-term therapy, high serum lithium levels, concurrent nephrotoxic drugs.

Management:

 Regular monitoring of renal function and lithium levels, dose adjustments, discontinuation if significant renal impairment develops.

Proton Pump Inhibitors (PPIs)

Mechanisms:

Induce acute interstitial nephritis (AIN) through an immune-mediated mechanism.

Renal Effects:

• AIN, which can progress to chronic kidney disease if not promptly recognized and managed.

• Prolonged use, older age, concurrent nephrotoxic drugs.

Management:

• Discontinuation of the PPI, corticosteroids in severe cases, close monitoring of renal function.

ASSESSMENT

- What all are the Renal Effects of NSIAD ?
- What all are the Risk factors of PPI?