Constraint Satisfaction Problems
Constraint satisfaction problems (CSPs)

- Standard search problem: state is a "black box" – any data structure that supports successor function and goal test
- CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map-Coloring

- **Variables** WA, NT, Q, NSW, V, SA, T
- **Domains** $D_i = \{\text{red, green, blue}\}$
- **Constraints**: adjacent regions must have different colors
- e.g., WA \neq NT, or (WA,NT) in \{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)\}
Example: Map-Coloring

- Solutions are **complete** and **consistent** assignments
- e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

CS8601-ARTIFICIAL INTELLIGENCE
Constraint graph

- **Binary CSP**: each constraint relates two variables
- **Constraint graph**: nodes are variables, arcs are constraints
Varieties of CSPs

- **Discrete variables**
 - finite domains:
 - n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_3$

- **Continuous variables**
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by LP
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., \(SA \neq \text{green} \)

- **Binary** constraints involve pairs of variables,
 - e.g., \(SA \neq WA \)

- **Higher-order** constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints
Example: Cryptarithmetic

Variables: $F \ T \ U \ W$
$R \ O \ X_1 \ X_2 \ X_3$

Domains: $\{0,1,2,3,4,5,6,7,8,9\}$

Constraints: $\text{Alldiff} \ (F,T,U,W,R,O)$

- $O + O = R + 10 \cdot X_1$
- $X_1 + W + W = U + 10 \cdot X_2$
- $X_2 + T + T = O + 10 \cdot X_3$
- $X_3 = F, T \neq 0, F \neq 0$
Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems involve real-valued variables
Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

- **Initial state:** the empty assignment \{ \}
- **Successor function:** assign a value to an unassigned variable that does not conflict with current assignment
 → fail if no legal assignments

- **Goal test:** the current assignment is complete
 1. This is the same for all CSPs
 2. Every solution appears at depth n with n variables
 → use depth-first search
 3. Path is irrelevant, so can also use complete-state formulation
 4. $b = (n - l)d$ at depth l, hence $n! \cdot d^n$ leaves
Backtracking search

- Variable assignments are commutative, i.e.,

 \[\text{WA = red then NT = green} \] same as \[\text{NT = green then WA = red} \]

- \(\Rightarrow \) Only need to consider assignments to a single variable at each node

- Depth-first search for CSPs with single-variable assignments is called backtracking search

- Can solve \(n \)-queens for \(n \approx 25 \)
Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING(\{\}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to Constraints[csp] then
 add \{ var = value \} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove \{ var = value \} from assignment
 return failure
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

• **General-purpose** methods can give huge gains in speed:
 – Which variable should be assigned next?
 – In what order should its values be tried?
 – Can we detect inevitable failure early?
Most constrained variable

- Most constrained variable: choose the variable with the fewest legal values

- a.k.a. minimum remaining values (MRV) heuristic
Most constraining variable

- A good idea is to use it as a tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables
Least constraining value

• Given a variable to assign, choose the least constraining value:
 – the one that rules out the fewest values in the remaining variables

• Combining these heuristics makes 1000 queens feasible
Forward checking

• **Idea:**
 – Keep track of remaining legal values for unassigned variables
 – Terminate search when any variable has no legal values

![Map of Australia showing states with different colors.](image-url)
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

![Diagram showing Forward checking process]
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Constraint propagation

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
 • NT and SA cannot both be blue!
 • Constraint propagation algorithms repeatedly enforce constraints locally…
Arc consistency

- Simplest form of propagation makes each arc consistent
- \(X \rightarrow Y \) is consistent iff
 - for every value \(x \) of \(X \) there is some allowed \(y \)
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
-
 for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc consistent
- \(X \rightarrow Y \) is consistent iff
 - for every value \(x \) of \(X \) there is some allowed \(y \)

- If \(X \) loses a value, neighbors of \(X \) need to be rechecked
Arc consistency

• Simplest form of propagation makes each arc consistent
• $X \rightarrow Y$ is consistent iff

 for every value x of X there is some allowed y

• If X loses a value, neighbors of X need to be rechecked
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 (X_i, X_j) ← REMOVE-FIRST(queue)
 if RM-INCONSISTENT-VALUES(X_i, X_j) then
 for each X_k in NEIGHBORS[X_i] do
 add (X_k, X_i) to queue

function RM-INCONSISTENT-VALUES(X_i, X_j) returns true iff remove a value
removed ← false
for each x in DOMAIN[X_i] do
 if no value y in DOMAIN[X_j] allows (x, y) to satisfy constraint(X_i, X_j)
 then delete x from DOMAIN[X_i]; removed ← true
return removed

• Time complexity: \(O(\#\text{constraints} \mid \text{domain}\mid^3)\)

Checking consistency of arc of 4: \(O(\mid \text{domain} \mid^2)\)
k-consistency

• A CSP is \textit{k}-consistent if, for any set of k-1 variables, and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable
• 1-consistency is node consistency
• 2-consistency is arc consistency
• For binary constraint networks, 3-consistency is the same as path consistency
• Getting k-consistency requires time and space exponential in k
• \textit{Strong k-consistency} means k’-consistency for all k’ from 1 to k
 – Once strong k-consistency for k=\#variables has been obtained, solution can be constructed trivially
• Tradeoff between propagation and branching
• Practitioners usually use 2-consistency and less commonly 3-consistency
Other techniques for CSPs

• Global constraints
 – E.g., Alldiff
 – E.g., Atmost(10,P1,P2,P3), i.e., sum of the 3 vars ≤ 10
 – Special propagation algorithms
 • Bounds propagation
 – E.g., number of people on two flight D1 = [0, 165] and D2 = [0, 385]
 – Constraint that the total number of people has to be at least 420
 – Propagating bounds constraints yields D1 = [35, 165] and D2 = [255, 385]
 • ...

• Symmetry breaking
Structured CSPs
Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^m)$

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.
Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

2. For j from n down to 2, apply $\text{REMOVEINCONSISTENT}(\text{Parent}(X_j), X_j)$

3. For j from 1 to n, assign X_j consistently with $\text{Parent}(X_j)$
Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree. (Finding the minimum cutset is NP-complete.)

Cutset size $c \Rightarrow$ runtime $O(d^c \cdot (n - c)d^2)$, very fast for small c
Tree decomposition

- Every variable in original problem must appear in at least one subproblem
- If two variables are connected in the original problem, they must appear together (along with the constraint) in at least one subproblem
- If a variable occurs in two subproblems in the tree, it must appear in every subproblem on the path that connects the two

Algorithm: solve for all solutions of each subproblem. Then, use the tree-structured algorithm, treating the subproblem solutions as variables for those subproblems.

$O(nd^{w+1})$ where w is the treewidth (= one less than size of largest subproblem)

Finding a tree decomposition of smallest treewidth is NP-complete, but good heuristic methods exist.
Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
 - Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

- **States:** 4 queens in 4 columns \((4^4 = 256\) states)
- **Actions:** move queen in column
- **Goal test:** no attacks
- **Evaluation:** \(h(n) = \) number of attacks

- Given random initial state, can solve \(n\)-queens in almost constant time for arbitrary \(n\) with high probability (e.g., \(n = 10,000,000\))
Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values

- Backtracking = depth-first search with one variable assigned per node

- Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

- Iterative min-conflicts is usually effective in practice