

Gradient of a Scalar function:

In Cartesian coordinates:

 $\nabla = \frac{\partial}{\partial x}\hat{a}_x + \frac{\partial}{\partial y}\hat{a}_y + \frac{\partial}{\partial z}\hat{a}_z$

In cylindrical coordinates:

$$\nabla = \frac{\partial}{\partial \rho} \hat{a}_{\rho} + \frac{1}{\rho} \frac{\partial}{\partial \phi} \hat{a}_{\phi} + \frac{\partial}{\partial z} \hat{a}_{z}$$

and in spherical polar coordinates:

$$\nabla = \frac{\partial}{\partial r}\hat{a}_r + \frac{1}{r}\frac{\partial}{\partial \theta}\hat{a}_\theta + \frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\hat{a}_\phi$$

Let us consider a scalar field V(u,v,w), a function of space coordinates.

Gradient of the scalar field V is a vector that represents both the magnitude and direction of the maximum space rate of increase of this scalar field V.

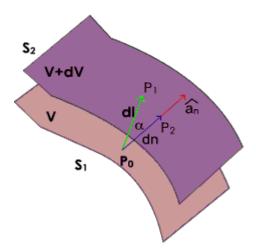


Fig 1.17 : Gradient of a scalar function

As shown in figure 1.17, let us consider two surfaces S_1 and S_2 where the function V has constant magnitude and the magnitude differs by a small amount dV. Now as one moves from S_1 to S_2 , the magnitude of spatial rate of change of V i.e. dV/dl depends on the direction of elementary path length dl, the maximum occurs when one traverses from S_1 to S_2 along a path normal to the surfaces as in this case the distance is minimum.

By our definition of gradient we can write:

 $\operatorname{grad} V = \frac{\mathrm{d} V}{\mathrm{d} n} \hat{a_n} = \nabla V$(1.47)

since $d\vec{r}_{w}$ which represents the distance along the normal is the shortest distance between the two surfaces.

For a general curvilinear coordinate system

$$\vec{dl} = \vec{a_u} dl_u + \vec{a_v} dl_v + \vec{a_w} dl_w = \left(h_1 du \,\vec{a_u} + h_2 dv \,\vec{a_v} + h_3 dw \,\vec{a_w}\right)$$

.....(1.48)

Further we can write

$$\frac{dV}{dl} = \frac{dV}{dn}\frac{dn}{dl} = \frac{dV}{dn}\cos\alpha = \nabla V \cdot \hat{a}_{l}$$
.....(1.49)

Hence,

$$dV = \nabla V dl = \nabla V (h_1 du \, \hat{a_u} + h_2 dv \, \hat{a_v} + h_3 dw \, \hat{a_w})$$
(1.50)

Also we can write,

$$dV = \frac{\partial V}{\partial l_{u}} dl_{u} + \frac{\partial V}{\partial l_{v}} dl_{v} + \frac{\partial V}{\partial l_{w}} dl_{w}$$

$$= \left(\frac{\partial V}{\partial l_{u}} \hat{a}_{u} + \frac{\partial V}{\partial l_{v}} \hat{a}_{v} + \frac{\partial V}{\partial l_{w}} \hat{a}_{w}\right) \cdot \left(dl_{u} \hat{a}_{u} + dl_{v} \hat{a}_{v} + dl_{w} \hat{a}_{w}\right)$$

$$= \left(\frac{\partial V}{h_{1} \partial u} \hat{a}_{u} + \frac{\partial V}{h_{2} \partial v} \hat{a}_{v} + \frac{\partial V}{h_{3} \partial w} \hat{a}_{w}\right) \cdot \left(h_{1} du \hat{a}_{u} + h_{2} dv \hat{a}_{v} + h_{3} dw \hat{a}_{w}\right)$$
.....(1.51)

By comparison we can write,

$$\nabla V = \frac{1}{h_1} \frac{\partial V}{\partial u} \hat{a}_u + \frac{1}{h_2} \frac{\partial V}{\partial v} \hat{a}_v + \frac{1}{h_3} \frac{\partial V}{\partial w} \hat{a}_w$$

5

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressions for gradient can be written as:

In Cartesian coordinates:

$$\nabla V = \frac{\partial V}{\partial x} \hat{a}_x + \frac{\partial V}{\partial y} \hat{a}_y + \frac{\partial V}{\partial z} \hat{a}_z$$
(1.53)

In cylindrical coordinates:

....

$$\nabla V = \frac{\partial V}{\partial \rho} \hat{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \hat{a}_{\phi} + \frac{\partial V}{\partial z} \hat{a}_{z}$$
(1.54)

and in spherical polar coordinates:

 $\nabla V = \frac{\partial V}{\partial r} \hat{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{a}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{a}_{\phi}$

The following relationships hold for gradient operator.

where U and V are scalar functions and n is an integer.

It may further be noted that since magnitude of $\frac{dV}{dl} = \Delta V \cdot \hat{a_1}$ depends on the direction of dl, it is called the **directional derivative**. If $A = \Delta V$, V_{is} called the scalar potential function of the vector function \vec{A}

Electric flux density:

As stated earlier electric field intensity or simply 'Electric field' gives the strength of the field at a particular point. The electric field depends on the material media in which the field is being considered. The flux density vector is defined to be independent of the material media (as we'll see that it relates to the charge that is producing it).For a linear isotropic medium under consideration; the flux density vector is defined as:

$$D = \varepsilon E_{\dots} (2.11)$$

We define the electric flux \square as

$$\psi = \int \vec{D} \cdot d\vec{s}$$