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Capacitors and Capacitance: Parallel Plate; Cylindrical and Spherical capacitors; Capacitors in 

Series and Parallel; Energy Stored in an Electric Field; Dielectrics and Gauss’ Law 

 

 
Capacitor: 

 

A capacitor is a passive electronic component that stores energy in the form of an electrostatic 

field. In its simplest form, a capacitor consists of two conducting plates separated by an 

insulating material called the dielectric. 

 

The capacitance is directly proportional to the surface areas of the plates, and is inversely 

proportional to the separation between the plates. Capacitance also depends on the dielectric 

constant of the substance separating the plates. 

 

 

 
 

 

This conventional arrangement, called a parallel-plate capacitor, consisting of two parallel 

conducting plates of area A separated by a distance d. 

The symbol we use to represent a capacitor is based on the structure of a parallel-plate 

capacitor but is used for capacitors of all geometries. 

We assume for the time being that no material medium (such as glass or plastic) is present in the 

region between the plates. 

https://whatis.techtarget.com/definition/dielectric-material
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When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: +q 

and -q. However, we refer to the charge of a capacitor as being q, the absolute value of these 

charges on the plates. (Note that q is not the net charge on the capacitor, which is zero.) 

Because the plates are conductors, they are equipotential surfaces; all points on a plate are at the 

same electric potential. Moreover, there is a potential difference between the two plates. For 

historical reasons, we represent the absolute value of this potential difference with V rather than 

with the ΔV we used in previous notation. 

The charge q and the potential difference V for a capacitor are proportional to each other; that is, 

 
q = CV. 

The proportionality constant C is called the capacitance of the capacitor. Its value depends only 

on the geometry of the plates and not on their charge or potential difference. The capacitance is a 

measure of how much charge must be put on the plates to produce a certain potential difference 

between them: The greater the capacitance, the more charge is required. 

The SI unit, capacitance is the coulomb per volt. This unit occurs so often that it is given a 

special name, the farad (F): 

 

1 farad = 1 F = 1 coulomb per volt = 1 C/V. 
 

As you will see, the farad is a very large unit. Submultiples of the farad, such as the microfarad 

(1 μF = 10-6 F) and the picofarad (1 pF = 10-12 F), are more convenient units in practice 

 

Charging a Capacitor 

 

One way to charge a capacitor is to place it in an electric circuit with a battery. An electric circuit 

is a path through which charge can flow. A battery is a device that maintains a certain potential 

difference between its terminals. 
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In Fig.a, a battery B, a switch S, an uncharged capacitor C, and interconnecting wires form a 

circuit. 

The same circuit is shown in the schematic diagram of Fig. b, in which the symbols for a battery, 

a switch, and a capacitor represent those devices. The battery maintains potential difference V 

between its terminals. The terminal of higher potential is labeled + and is often called the 

positive terminal; the terminal of lower potential is labeled - and is often called the negative 

terminal. 

The circuit shown in Figs. a and b is said to be incomplete because switch S is open; that is, the 

switch does not electrically connect the wires attached to it. When the switch is closed, 

electrically connecting those wires, the circuit is complete and charge can then flow through the 

switch and the wires. 

As we discussed, the charge that can flow through a conductor, such as a wire, is that of 

electrons. 

When the circuit of Fig. (a,b) is completed, electrons are driven through the wires by an electric 

field that the battery sets up in the wires. The field drives electrons from capacitor plate h to the 

positive terminal of the battery; thus, plate h, losing electrons, becomes positively charged. 

The field drives just as many electrons from the negative terminal of the battery to capacitor 

plate l; thus, plate l, gaining electrons, becomes negatively charged. 

 

Initially, when the plates are uncharged, the potential difference between them is zero. As the 

plates become oppositely charged, that potential difference increases until it equals the potential 

difference V between the terminals of the battery. 

Then plate h and the positive terminal of the battery are at the same potential, and there is no 

longer an electric field in the wire between them. 

Similarly, plate l and the negative terminal reach the same potential, and there is then no electric 

field in the wire between them. 

Thus, with the field zero, there is no further drive of electrons. The capacitor is then said to be 

fully charged, with a potential difference V and charge q that are related by Eq. 
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Q = C V 

 

 

Calculating the Capacitance 

To calculate the capacitance of a capacitor once we know its geometry. Because we shall 

consider a number of different geometries, it seems wise to develop a general plan to simplify 

the work. 

In brief our plan is as follows: 

(1) Assume a charge q on the plates 

(2) Calculate the electric field between the plates in terms of this charge, using Gauss’ law 
 

(3) Calculate the potential difference V between the plates from Eq. ( ) 

(4) Calculate C from Eq.( q = CV). 

 

 
Calculating the Electric Field 

To relate the electric field between the plates of a capacitor to the charge q on either plate, we 

shall use Gauss’ law: 

 
 

(1) 

 

 
Here q is the charge enclosed by a Gaussian surface and is the net electric 

flux through that surface. In all cases that we shall consider, the Gaussian surface will be such 

that whenever there is an electric flux through it, will have a uniform magnitude E and the 

vectors and will be parallel. The above equation, then reduces to 

 

(2) 
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Calculating the Potential Difference 
 

The potential difference between the plates of a capacitor is related to the field by 

 

 

  (3) 

in which the integral is to be evaluated along any path that starts on one plate and ends on the 

other. 

We shall always choose a path that follows an electric field line, from the negative plate to the 

positive plate. 

For this path, the vectors      and       will have opposite directions; so the dot product will be 

equal to .Thus, the right side of above Eq. will then be positive. Letting V represent the 

difference Vf-Vi, we can then recast Eq. as 

 

  (4) 

in which the - and + remind us that our path of integration starts on the negative plate and ends 

on the positive plate. 

 

A Parallel-Plate Capacitor 
 

We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are so large and 

so close together that we can neglect the fringing of the electric field at the edges of the plates, 

taking to be constant throughout the region between the plates. 
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We draw a Gaussian surface that encloses just the charge q on the positive plate, as in above 

Fig.. From Eq. 2 we can then write 

(5)  

 

 

 

 
Equation 4 yield (6) 

 

In Eq. 6, E can be placed outside the integral because it is a constant; the second integral then is 

simply the plate separation d. 

put q and V into the relation q = CV , we get 

 

 

 

 
(7) 
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