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CAPACITANCE: 
 

ELECTROSTATIC ENERGY 

and CAPACITANCE 

 

• Capacitance and capacitors 

• Storage of electrical energy 
 

• Energy density of an electric field 

 

• Combinations of capacitors 
• In parallel 

• In series 
 

In the previous chapter, we saw that 

an object with charge Q, will have a 

potential V. Conversely, if an object has a potential V it 

will have a charge Q. The 

capacitance (C) of the object is the ratio 
Q

V. 

Example: A charged spherical 

conductor with a charge Q. The 

potential of the sphere is 

Q 
k . 

R 

Therefore, the capacitance of the charged sphere is 

 

• Dielectrics 

• Effects of dielectrics 

C  
Q 


V 
 

R 
 4 R 

k 

 

• Examples of capacitors 
UNITS: Capacitance  Coulombs/Volts 

 Farad (F). 

Example: A sphere with R  5.0 cm ( 0.05m) 

C  5.55  10
12 

F ( 5.55pF). 
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  

Capacitance is a measure of the “capacity” that an 

object has for “holding” charge, i.e., given two objects at 

the same potential, the one with the greater capacitance 

will have more charge. As we have seen, a charged 

object has potential energy (U); a device that is 

specifically designed to hold or store charge is called a 

capacitor. 

 

From before, the capacitance of a sphere is 

C  4∘R  4  8.85  10
12 

 6400 10
3
 

 7.1  10
4 

F. 

 
Earlier, question 22.4, we found the charge on the 

Earth was 

Q  9.11 105C. 

So, what is the corresponding potential? By definition 

 

Question 24.1: The Earth is a conductor of radius 

V  
Q

 
C 

9.11  105 
9 

7.1 10
4 1.28 10 V 

6400 km. If it were an isolated sphere what would be its 

capacitance? 

which is what we found in chapter 23 (question 23.7). 



∘ 
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Capacitance of two parallel plates: 

 
Q Q 

 
Area  A 

d 

We can use a battery or a 

generator to move an amount 

of charge Q from one plate to 

the other. The electric field between the plates is: 

Two parallel plates (Practical considerations): 

 
Example: A  5.0 cm  5.0 cm with d  0.5 cm. 

C   
A 
 4.4  10

12 
F  4.4pF. 

d 

The maximum possible value of E in air (from earlier) 

 3  10
6 

V/m. Therefore, the maximum potential 

difference (voltage) we can get between this pair of 

plates (in air) is: 

Vmax  Emax .d  3  10
6 
 0.005  15,000 V. 

E 
 

∘ 
 

Q 

∘A 
. (From ch. 22) Note: Vmax depends only on the spacing. 

Also, the maximum charge we can achieve is 

Also, the potential difference (voltage) between the two 

plates is: 

V  E.d 
  

d. (From ch. 23) 

Qmax  CVmax  4.4  10
12 

 15 10
3 
 66 nC. 

A pair of parallel plates is a useful capacitor. Later, we 

will find an expression for the amount of energy stored. 

∘    

So the capacitance of this pair of plates is 

C  
Q 
 
A 

  
A

. 
V V d 

To have a 1F capacitance the area would have to be ~ 5.6  10
8 

m
2
, 

i.e., the length of each side of the plates would be ~ 23.8 km (i.e., 

about 14 miles!) with a spacing of 0.50 cm. 



2∘L 

ln  r b 
r a 
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Two parallel plates:  
C   

A
 

d 

 

 

 
A cylindrical (coaxial) capacitor: 

How can we increase the capacitance, i.e, get more 

charge per unit of potential difference? Q 

• increase A 

• decrease d 

Metal foil 

 

Insulating spacer 

(dielectric) 

 

 

 
 

The capacitor is rolled up into a cylindrical shape. 

 
• increase ∘ 

by changing the medium between the plates, i.e., 

∘    ∘ (later). 

 
 

L 

 

The capacitance of an air-filled coaxial capacitor of 

length L is: 

C 

- - - 

- - - 

- - - 
+ + 
+ + 

ra 

+ + 
- - - Q rb 

- - - 



ln r b 
r a 




A cylindrical (coaxial) capacitor (continued): 

Example: coaxial (antenna) wire. 

 

 

 

 

copper 

braid 

copper 

wire 

insulation 

(dielectric) 

 

Assume an outer conductor (braid) radius rb  2.5mm, 

and an inner conductor (wire) radius ra  0.5mm, with 

neoprene insulation (dielectric) (∘   ∘  6.9∘). 

The capacitance per meter is: 

C 
   

2∘ 

L 

 
2    6.9  8.85  1012

 

 
 

Question 24.2: What is the relationship between the 

charge density on the inner and outer plates of a 

cylindrical capacitor?  Is it 

A: larger on the outer plate? 

B: larger on the inner plate? 

C: the same on both plates. 


1.609 

 2.384  10
10 

F/m 

 238.4 pF/m 



 

Storing energy in a capacitor 
 
 

 

When an uncharged capacitor is connected to a source 

of potential difference (like a battery), charges move 

from one plate to the other. Therefore, the magnitude of 

the charge ( Q) on each plate is always the same. But 

the charge density depends on area (   
Q

A); because 

the inner plate has a smaller area than the outer plate, 

the charge density on the inner plate is greater than the 

charge density on the outer plate. 

 
Therefore, the answer is B (larger on the inner plate). 

 
EFM10VD2.MOV 

 

 

 

Because work is done to move charges onto the plates of 

a capacitor, the capacitor stores energy, electrostatic 

potential energy. The energy is released when the 

capacitor is discharged. 

 
Where is the energy stored? 

 

... in the electric field (between the plates), which 

has been produced during the charging process! 

Q 

Q 



- -   -   -   -   -   - 

+ + + + + + + 

 

 

Storing energy in a parallel plate capacitor:  
So, in charging a capacitor from 0  Q the total increase 

q B To store energy in a 

capacitor we “charge” it, 

in potential energy is: Q q 





1 2 Q 

 
 

 
1 Q2

 

 
dq 

q A 
producing an electric field 

U   dU   
 C


 
dq  

2C
q 

 


0 2 C 

between the plates. We do 

work moving charges from plate A to plate B. If the 

plates already have charge q and dq is then moved from 

A to B, the incremental work done is 

dW  dq(VA  VB), 

where VA and VB are the potentials of plates A and B, 

respectively. This, then is the incremental increase in 

potential energy, dU, of the capacitor system. 

If V  VB  VA ( VB  VA), then dU  Vdq . 

 
 

 

Potential 

difference 

V 
 

V  
q 

C 


  

1 
QV  

1 
CV

2 
 . 

2 2 

 

Slope  VQ  1C 

Area  dU  Vdq 

 

dq Charge 

q Q 

But, by definition: V  
q 

, 
C 

so the incremental increase in energy when dq of charge 

is taken from A  B is: 

Note, U is the area under the V  Q plot. This potential 

energy can be recovered when the capacitor is 

discharged, i.e., when the stored charge is released. 

(Note also, this is the same expression we obtained earlier 

dU 
 q 

 
 C


 
dq. 

for a charged conducting sphere.) 

0 

+ 



+ + 

Q Q Q Q 

d D 

2 

 

 

 

 

 

 

 

 
 

d 

[1] Algebraically:  Put  C1  ∘ 
A

 

D 

and  C2  ∘ 
A

 

 

d D 

Question 24.3: A parallel plate capacitor, with a plate 

Since D  d, then C2  C1. The charge must be the same 

in each case (where can it go or come from?) 

separation of d, is charged by a battery. After the battery 

is disconnected, the capacitor is discharged through two 

1 Q2
 

U1  
2 C

 
1 Q2

 

and U2  
2 C 

, 

wires producing a spark. The capacitor is re-charged 

exactly as before. After the battery is disconnected, the 

plates are pulled apart slightly, to a new distance D 

(where D  d). When discharged again, is the energy of 

the spark it was before the plates were 

pulled apart? 

 
A: greater than 

B: the same as 

C: less than 

i.e., U2  U1. 

Therefore, the stored energy increases when the plates 

are pulled apart so the spark has more energy. 

Answer A. 

 

[2] Conceptually: You do (positive) work to separate the 

plates (because there is an attractive force between 

them). The work goes into the capacitor system so the 

stored energy increases. 

Answer A. 

 

 

 

 

 

 

 

 

1 
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Energy density of an electric field ... Combining capacitors (parallel): 
 

VB 

Assume we have a parallel plate capacitor, then the 

stored energy is: 

U  
1 

CV
2
. 

2 

But C   
A 

and V  E.d, 
d 

C1 C2 

VBA  VB  VA 

 
VA 

 

 

 

 
Equivalent 
capacitor 

 

 

 
 

 

 
 

 

 
Area 

U  
1 
 

A 
(E.d)

2 
 

1 
 (A.d)E

2
. 

2 d 2 

 

But A.d  volume of 

the electric field 

between the plates. 

So the energy density 

is: 

ue  U 
volume  

1 
∘E

2
. 

The potential difference is the same on each capacitor. 

The charges on the two capacitors are: 

Q1  C1VBA and Q2  C2VBA 

and the total charge stored is: 

Q  Q1  Q2  (C1  C2 )VBA  Ceq VBA 

where Ceq  C1  C2. 

So, this combination is equivalent to a single capacitor 

with capacitance 

Ceq  C1  C2. 

When more than two capacitors are connected in 

parallel: 

This result is true for all electric fields. Ceq  i Ci . 

 A 

d 

VBA 

Ceq 



Q 

 

 

 

 

Combining capacitors (series): 
 

VB C1 
Q 

VBA  VB  VA  Vm 
Q 

C 

C1  4.0 F 

C2  15.0 F 

C3  12.0 F 

VA 
2 Q 

Equivalent 

capacitor 
Question 24.4: In the circuit shown above, the 

capacitors were completely discharged before being 
The charge on the two capacitors is the same: Q. 

If VB  VA, the individual potential differences are: 
connected to the voltage source. Find 

V1  (VB  Vm)  
Q

 
C1 

and V2  (Vm  VA )  
Q 

. 
C2 

(a) the equivalent capacitance of the combination, 

Therefore, the total potential difference is: 
 

(b) the charge on the positive plate of each 
V  V  V  

Q 
 

Q 



 

 1 
 

1  
 

Q 
,
 

 
   

capacitor, 
BA 1 2 

C C
 

Q 
C C 

 
C 

1 2 

providing 
1 

 
1 
 

1 
. 

   1 2  eq  

(c) the potential difference (voltage) across each 

Ceq C1 C2 capacitor, and 

With more than two capacitors: 
1 

  
1 

. 
 

  

(d) the energy stored in each capacitor. 

Ceq 
i 
Ci

 

V 
Ceq 

BA 

C1 

200 V C3 

C2 







 

 

 

 

 

   

 
(a) Note that C1 and C2 are in series: 

(c) By definition Vi  
Qi . 
Ci 

 
1 

C12 

 
1 
 

1 

C1 C2 
 

1 

4 F 
 

1 

15 F 
 0.3167 10

6
.  V1  

Q1
 

C1 

0.632  103
 

 
4  106 158 V, 

 
But C12 

 
and C3 

C12  3.16 F. 

are in parallel: 
V2 

 Q2 
C2 

0.632  103
 

15  10
6 42 V,

 

200 V 

Ceq  C12  C3  3.16 F  12 F  15.16 F. 

(b) We have: Q1  Q2 ( Q) 
and V3  200 V. 

and V  V  V  
Q 

 
Q 




 

 1 
 

1  1
 

 

 
 1 2 

C C
 

Q 
C C 

 (d) By definition Ui  QiVi, 
1 2    1 2  2 

200  Q  0.3167  10
6
, U1  0.05 J: U2  0.013 J: U3  0.24 J. 

i.e., Q  
200

  0.632  10
3

C ( Q  Q ) Check total stored energy using the equivalent ... 

0.3167  10
6

 

1 2 

U  
1 

C 
 

 

V
2 
 

1 
 15 16 10

6 
 200

2 
 0 303 J, 

 
 

Also Q3  C3V  12  10
6

  200  2.4  10
3

C. 2 
eq 

2 
. . 

i.e., the same. 

Ceq C12 C3 
C1 

200 V C3 

C2 

C12 C3 C1 

200 V C3 

C2 

Ceq 



3 

 
C 

 

 

 

 

 

 
 

 

d 
d 

d 
d 

3 

 

 

Question 24.5: Two capacitors each have a plate 

separation d. A slab of metal is placed between the 

plates as shown. In case (a) the slab is not connected to 

either plate; in case (b) it is connected to the upper plate. 

Which arrangement produces the higher capacitance, or 

do they have the same capacitance? 

Case (a) is equivalent to two capacitors in series each 

with capacitance C and spacing d 
3: 

1 
 

1 
 

1 
 

2 

Ceq C C C 

C 

Ceq  
2 

. 

Case (b) is a single capacitor: Ceq  C. 

Therefore, (b) has the higher capacitance. 

(b) (a) 

(b) (a) 

d 
3
 

d 
3
 

C 



∘ 



 d 

 

 

Dielectrics: 

Q 

d 

 
 
Q Dielectric 

 

Dielectrics (continued): 

C∘  
Q 

V 
Q 

(a) 

C  
Q 

V 
Q 

(b) 

Three advantages: 

 

• maintains plate separation when small, 
(a) The electric field in an isolated charged parallel plate 

capacitor (in vacuum) is: E 
  

. 

∘ 

 V∘  E∘d  
  

d. 

∘ 

(b) When a dielectric is inserted, ∘  ∘, where is 

the dielectric constant, then E 
  

. 
∘ 

V  Ed  
     

d  
V∘ , 

 

 

• increased capacitance for a given size. 

 

• dielectric increases the max. electric field possible, 

and hence potential difference (voltage), between 

plates before breakdown (dielectric strength). 

 
Material Dielectric 

Strength (V/m) 

∘ 

i.e., the potential difference is reduced, but the charge 

remains the same. 

C  
Q 
 
Q

 

V V∘ 
 C∘ 


  ∘ 

A
 . 

Neoprene 6.9 12  10
6

 

Polystyrene 2.55 24  10
6
 

Thus, the capacitance increases by a factor of . 

∘ 

Air 1.00059 3  10
6

 

Paper 3.7 16  10
6

 

 



 

 

 

   

 

 

 

   

 

 

 

 

 

How does a dielectric work? ...  in in 

 in in 

+ - 
 

+ - 

 + - 

+ - - + + - 

+ - - + + - 

+ - - + + -  


 

d no dielectric 
 

d E∘ 
∘ Ein  

in 

∘ 
E∘  Ein 

E∘ 
∘ 

Hence, the induced electric field is: 

Ein   E∘  
E∘  

  1 
E∘. 

 
 

   


dielectric becomes polarized Substituting for Ein and E∘, we obtain 

in  
   1 

. 

Because the dielectric is polarized, the electric field in 

the presence of a dielectric is reduced to: 

    

Hence in  . Note: in  0 if   1 (free space, i.e., 

E  E∘  Ein   
 
  

in   
  in   

E∘ .
 

   

no dielectric). 

 ∘ ∘ ∘ 

Therefore, the potential difference V ( Ed) is reduced 

by a factor of also. Since C  1V 

C  C∘. 

For a conducting slab and in  . 

E  E∘  Ein   0, 

i.e., there is no electric field inside a conductor. 

- + + - 

- + + - 

- + + - 

E in 

- 

- 

- 

 
in 

E∘  Ein 

∘ 

+ 

+ 

+ 

- +    - +    - +    - + 

- +    - +    - +    - + 







 

 

 

X 

 

 

 
Question 24.7: Two, identical capacitors, X and Y, are 

connected across a battery as shown. A slab of dielectric 

is then inserted between the plates of Y. 

 
(a) Which capacitor has the greater charge or do the 

charges remain the same? 

 
(b) What difference (if any) would it make if the 

battery was disconnected before the dielectric was 

inserted? 

 

 

 

 

 

X 

 
(a) When the dielectric is inserted, the capacitance of Y 

increases from C to C, where is the dielectric 

constant. But the capacitance of X is unchanged. The 

potential difference across both capacitors remains the 

same ( V) and since the charge on a capacitor is given 

by Q  CV, if C increases to C, then Q increases to Q. 

 
Where does the extra charge come from? ... 

... from the battery! 

 

(b) If the battery was disconnected before the dielectric 

was inserted, the charge on each capacitor is unchanged. 

But, since the capacitance of Y increases to C, the 

potential difference across Y changes from 

Q
C to 

Q
C, i.e., it gets smaller. 

+ + 

Y 

+ + 

Y 



2 
∘ 

Two ways to answer part (a) ... 
 

 

 

 

 

Question 24.8: A dielectric is placed between the plates 

of a capacitor. The capacitor is then charged by a 

battery. After the battery is disconnected, the dielectric 

[1] Algebraically:  Let C  C∘ and V  V∘ 

With the dielectric: U  
1 

CV
2
. 

2 

Without the dielectric:  U∘  
1 

C∘V 2. 

But C  C∘, i.e., C∘  
C

, and V  
V∘ , i.e., V∘  V. 

  

is removed. 
 



U∘  
1  C 

V2   
 1 

CV
2  

 U. 

(a) Does the energy stored by the capacitor increase, 

decrease or remain the same after the dielectric is 

removed? 

 
(b) If the battery remains connected when the 

dielectric is removed, does the energy increase, decrease 

or remain the same? 

2     2 

Therefore, the energy increases. 

 

[2] Conceptually: You must do work to remove the 

dielectric. Therefore, the 

stored (potential) energy 

increases! 

 

 
+ + + + + + 

 

- - - - - - 

-  -  -  -  - 
+ + + + + 



 
(b) If the battery remains connected, the potential difference remains constant (  V). But the capacitance changes from C  C∘, 

with C  C∘, i.e., C  C∘. 

The energy changes from  

 

U  
1 

CV
2 

to U  
1 

C V
2
. 

2 
∘ 

2 
∘ 

Since C  C∘, then U  U∘, i.e., the energy decreases. 

Question 24.10: A parallel plate capacitor is charged by a generator. The generator is then disconnected (a). If the spacing between the plates is 
decreased (b), what happens to: 

(i) the charge on the plates, 

(ii) the potential across the plates, and 

(iii) the energy stored by the capacitor.      of banks of capacitors. A “charged” capacitor represents the binary digit “1” and “uncharged” capacitor 

represents the binary digit “0”. 

 

    
 

A parallel plate capacitor is charged by a generator. The generator is then disconnected (a). If the spacing between the plate is 

decreased (b), what happens to: 

 

(i) the charge on the plates remains the same, where could it go or where could charge come from? 

 
(ii) the potential across the plates decreases, because the electric field remains constant - it’s independent of d (chapter 22) - but as 

spacing decreases, the potential (V= E.d) decreases. 

 
(iii) the energy stored by the capacitor decreases, because the system does work to reduce spacing. Conversely, you would have 

do work in order increase the spacing. 

 

(b) 

 

(a) 



 

Question 24.11: A parallel plate capacitor is charged by a battery (a). When fully charged, and while the battery is still connected, 

the spacing between the plate is decreased (b), what happens to: 

 
(i) the potential across the plates, 

(ii) the charge on the plates, and 

(iii) the energy stored by the capacitor. 
 

 

  
(a) (b) 

A parallel plate capacitor is charged by a generator (a). 

When fully charged, and while the generator is still 

connected, the spacing between the plate is decreased (b). 

 
(i) the potential across the plates remains the same since 

the source of potential difference is still connected! 

 
(ii) the charge on the plates increases, because the 

capacitance increases and so, if V is unchanged, Q 

increases. 

(iii) the energy stored by the capacitor increases, 

because Q and C increase ( U  
1 

QV  
1 

CV
2
). 

2 2 


	+ -
	+ - (1)
	+ - - + + -

