

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

UNIT-7
Boundary value problems in ordinary and
partial differential equations
Finite difference of 2nd order one
Consider a second order o.n. given by
of x=a & x=b.
Divide the interval [a,b] into'n' sub-interval,
each of length h= b-a, ret ni=xo+ch, c=0,1,2n
Where No=a & Mn=b.
We use the notations ye=y(n;), y'(x, >=y, '
The finite difference approximations to the
derivatives are given by y: = yi+1-y:-1 and
4:" - 4:41 - 24: +4:-1
substituting the above approximations for y'm
By (an) and setting =1,2,3. n-1 we get a system
At egus. for the (n-1) unknown. Solving the
System, the values you are known troops
the boundary conditions, yo=yca) & yn=yco) are known.

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

	Elininating y from 60 80, we get
	256 45 - 8334, = 65 (6)
	Eliminaling yo from (5) O(5) We get
	J1= -0.03H88
	43 = (8 334 , 4 67/4) / 856
	(18) yo = -0.05002 - = 2 yo = 334 + /40.05652 11
	Taloulating, we have,
	NO 025 8.5 0.75 1
	y 0 -0.03488 -0.05632 -0.05002 0
2)	solve y"-xy=0, given yoor =-1, you a by finite
-5.11	difference method taking n=2.
	bolu:
	It n=2, then h= b-a = 1-0 = 1/2 since range to
	The nodal ptg- are x0 =0, 2,=0.5, 2=1
	Given y"- my=0 - 1
	Using central difference approximation, we have
	y" = 4:+1 - 24: +4:-1
	0 => 1/41 - 24; +4:-1 - 2; 4; =0
	Geo yot - la + h2 Ni) y: 7 y 1 - 0
	10 90+1 - Ca +h 10/30 1 50-1
	Where c=1, h=1/2, ni=0.5, yo=-1, y==2.
	:. 4, - (2+ to) 4,+ 40 =0
	2-174,-1=0=7 41= 8/7=0.4706

		, we ge		
X 1	0	0.5		
u	-1	0.4706	2	