
1

INTRODUCTION NEURAL NETWORKS AND DEEP LEARNING

Neural Networks:

 Neural networks are artificial systems that were inspired by biological neural

networks. These systems learn to perform tasks by being exposed to various datasets

and examples without any task-specific rules.

 The idea is that the system generates identifying characteristics from the data they

have been passed without being programmed with a pre-programmed understanding

of these datasets. Neural networks are based on computational models for threshold

logic.

 Threshold logic is a combination of algorithms and mathematics.

 Neural networks are based either on the study of the brain or on the application of

neural networks to artificial intelligence.

 The work has led to improvements in finite automata theory. Components of a typical

neural network involve neurons, connections which are known as synapses, weights,

biases, propagation function, and a learning rule.

 Neurons will receive an input from predecessor neurons that have an activation ,

threshold , an activation function f, and an output function .

 Connections consist of connections, weights and biases which rules how neuron

transfers output to neuron .

 Propagation computes the input and outputs the output and sums the predecessor

neurons function with the weight.

 The learning of neural network basically refers to the adjustment in the free

parameters i.e. weights and bias.

 There are basically three sequence of events of learning process.

These includes:

1. The neural network is simulated by an new environment.

UNIT III

 DEEP LEARNING

2

2. Then the free parameters of the neural network is changed as a result of this simulation.

3. The neural network then responds in a new way to the environment because of the

changes in its free parameters.

Supervised vs Unsupervised Learning:

 Neural networks learn via supervised learning; Supervised machine learning involves

an input variable x and corresponding desired output variable y.

 Here we introduce the concept of teacher who has knowledge about the environment.

 Thus we can say that the teacher has both input-output set.

 The neural network is unaware of the environment. The input is exposed to both

teacher and neural network, the neural network generates an output based on the input.

 This output is then compared with the desired output that teacher has and

simultaneously an error signal is produced.

 The free parameters of the network is then step by step adjusted so that error is

minimum. The learning stops when the algorithm reaches an acceptable level of

performance. Unsupervised machine learning has input data X and no corresponding

output variables.

 The goal is to model the underlying structure of the data to understand more about the

data. The keywords for supervised machine learning are classification and regression.

 For unsupervised machine learning, the keywords are clustering and association.

Evolution of Neural Networks:

 Hebbian learning deals with neural plasticity.

 Hebbian learning is unsupervised and deals with long-term potentiation.

 Hebbian learning deals with pattern recognition and exclusive-or circuits deal with if-

then rules.

 Backpropagation solved the exclusive-or issue that Hebbian learning could not

handle.

 This also allowed for multi-layer networks to be feasible and efficient.

 If an error was found, the error was solved at each layer by modifying the weights at

each node.

3

 This led to the development of support vector machines, linear classifiers, and max-

pooling. The vanishing gradient problem affects feedforward networks that use back

propagation and recurrent neural network.

 This is known as deep-learning.

 Hardware-based designs are used for biophysical simulation and neurotrophic

computing. They have large scale component analysis and convolution creates new

class of neural computing with analog.

 This also solved back-propagation for many-layered feedforward neural networks.

Convolutional networks are used for alternating between convolutional layers and

max-pooling layers with connected layers (fully or sparsely connected) with a final

classification layer.

 The learning is done without unsupervised pre-training. Each filter is equivalent to a

weights vector that has to be trained.

 The shift variance has to be guaranteed to dealing with small and large neural

networks. This is being resolved in Development Networks.

 Some of the other learning techniques involve error-correction learning, memory-

based learning and competitive learning.

Types of Neural Networks

There are seven types of neural networks that can be used:

 Multilayer Perceptron (MLP): A type of feedforward neural network with three or more

layers, including an input layer, one or more hidden layers, and an output layer. It uses

nonlinear activation functions.

 Convolutional Neural Network (CNN): A neural network that is designed to process

input data that has a grid-like structure, such as an image. It uses convolutional layers and

pooling layers to extract features from the input data.

 Recursive Neural Network (RNN): A neural network that can operate on input

sequences of variable length, such as text. It uses weights to make structured predictions.

 Recurrent Neural Network (RNN): A type of neural network that makes connections

between the neurons in a directed cycle, allowing it to process sequential data.

4

 Long Short-Term Memory (LSTM): A type of RNN that is designed to overcome the

vanishing gradient problem in training RNNs. It uses memory cells and gates to

selectively read, write, and erase information.

 Sequence-to-Sequence (Seq2Seq): A type of neural network that uses two RNNs to map

input sequences to output sequences, such as translating one language to another.

 Shallow Neural Network: A neural network with only one hidden layer, often used for

simpler tasks or as a building block for larger networks.

These neural networks are applications of the basic neural network demonstrated below.

For the example, the neural network will work with three vectors: a vector of attributes X, a

vector of classes Y, and a vector of weights W. The code will use 100 iterations to fit the

attributes to the classes. The predictions are generated, weighed, and then outputted after

iterating through the vector of weights W. The neural network handles backpropagation.

What is neural network Representation?

 A neural network can be understood as a network of hidden layers, an input layer and

an output layer that tries to mimic the working of a human brain.

 The hidden layers can be visualized as an abstract representation of the input data itself.

 A neural network can be understood as a network of hidden layers, an input layer and

an output layer that tries to mimic the working of a human brain.

 The hidden layers can be visualized as an abstract representation of the input data itself.

 These layers help the neural network understand various features of the data with the

help of its own internal logic.

 These neural networks are non-interpretable models.

 Non-interpretable models are those which can’t be interpreted or understood even if

we observe the hidden layers.

 This is because the neural networks have an internal logic working on its own, that

can’t be comprehended by us.

5

 We can just see then as a vector of numerical values. Since the output of a neural

network is a numerical vector, we need to have an explicit output layer that bridges the

gap between the actual data and the representation of the data by the network.

 An output layer can be understood as a translator that helps us to understand the logic

of the network and convert the target values.

 A theorem named ‘Universal approximation theorem’ tells that a feedforward network

that contains one hidden layer can be used to represent any function.

 This means there is no limit on the functioning of a neural network that contains one

hidden layer. But in real life situations, a neural network with one hidden layer can’t

be used well.

 A neural network is a mathematical model that helps in processing information. It is

not a set of lines of code, but a model or a system that helps process the

inputs/information and gives result.

 The information is processed in the simplest form over basic elements known as

‘neurons’. Neurons are connected and help exchange signals/information between them

with the help of connection links.

 This connection links between neurons could be strong or weak, and this strength of

the connection links determines the method in which information is processed.

 Every neuron has an internal state which can be determined by the incoming

connections from other neurons.

 Every neuron has an activation function which is calculated on its state, and this helps

determine its output signal.

 A neural network can be understood as a computational graph of mathematical

operations.

Two main characteristics of a neural network −

 Architecture

 Learning

6

Architecture:

It tells about the connection type: whether it is feedforward, recurrent, multi-layered,

convolutional, or single layered. It also tells about the number of layers and the number of

neurons in every layer.

Learning:

It tells about the method in which the neural network is trained. A common way to train a

neural network is to use gradient descent and backpropagation.

Problems in neural networks:

4 Disadvantages of Neural Networks & Deep Learning:

 Black box.

 Duration of development.

 Amount of data.

 Computationally expensive.

1. BLACK BOX

7

2. DURATION OF DEVELOPMENT:

3. AMOUNT OF DATA:

 Neural networks usually require much more data than traditional machine learning

algorithms, as in at least thousands if not millions of labeled samples.

 This isn’t an easy problem to deal with and many machine learning problems can be

solved well with less data if you use other algorithms.

 Although there are some cases where neural networks do well with little data, most of

the time they don’t.

 In this case, a simple algorithm like naive Bayes, which deals much better with little

data, would be the appropriate choice.

8

4. COMPUTATIONALLY EXPENSIVE:

 Usually, neural networks are also more computationally expensive than traditional

algorithms.

 State of the art deep learning algorithms, which realize successful training of really

deep neural networks, can take several weeks to train completely from scratch.

 By contrast, most traditional machine learning algorithms take much less time to train,

ranging from a few minutes to a few hours or days.

 The amount of computational power needed for a neural network depends heavily on

the size of your data, but also on the depth and complexity of your network.

 For example, a neural network with one layer and 50 neurons will be much faster than

a random forest with 1,000 trees.

 By comparison, a neural network with 50 layers will be much slower than a random

forest with only 10 trees.

9

Perceptron in Machine Learning

 In Machine Learning and Artificial Intelligence, Perceptron is the most commonly used

term for all folks.

 It is the primary step to learn Machine Learning and Deep Learning technologies, which

consists of a set of weights, input values or scores, and a threshold.

 Perceptron is a building block of an Artificial Neural Network. Initially, in the mid of

19th century, Mr. Frank Rosenblatt invented the Perceptron for performing certain

calculations to detect input data capabilities or business intelligence.

 Perceptron is a linear Machine Learning algorithm used for supervised learning for

various binary classifiers.

 This algorithm enables neurons to learn elements and processes them one by one during

preparation.

 In this tutorial, "Perceptron in Machine Learning," we will discuss in-depth knowledge

of Perceptron and its basic functions in brief. Let's start with the basic introduction of

Perceptron.

 What is the Perceptron model in Machine Learning?

 Perceptron is Machine Learning algorithm for supervised learning of various binary

classification tasks.

 Further, Perceptron is also understood as an Artificial Neuron or neural network unit

that helps to detect certain input data computations in business intelligence.

 Perceptron model is also treated as one of the best and simplest types of Artificial

Neural networks.

 However, it is a supervised learning algorithm of binary classifiers.

 Hence, we can consider it as a single-layer neural network with four main parameters,

i.e., input values, weights and Bias, net sum, and an activation function.

10

What is Binary classifier in Machine Learning?

 In Machine Learning, binary classifiers are defined as the function that helps in

deciding whether input data can be represented as vectors of numbers and belongs to

some specific class.

 Binary classifiers can be considered as linear classifiers. In simple words, we can

understand it as a classification algorithm that can predict linear predictor function in

terms of weight and feature vectors.

Basic Components of Perceptron

Mr. Frank Rosenblatt invented the perceptron model as a binary classifier which contains three

main components. These are as follows:

o Input Nodes or Input Layer:

This is the primary component of Perceptron which accepts the initial data into the system for

further processing. Each input node contains a real numerical value.

o Wight and Bias:

Weight parameter represents the strength of the connection between units. This is another most

important parameter of Perceptron components. Weight is directly proportional to the strength

11

of the associated input neuron in deciding the output. Further, Bias can be considered as the

line of intercept in a linear equation.

o Activation Function:

These are the final and important components that help to determine whether the neuron will

fire or not. Activation Function can be considered primarily as a step function.

Types of Activation functions:

o Sign function

o Step function, and

o Sigmoid function

 The data scientist uses the activation function to take a subjective decision based on

various problem statements and forms the desired outputs.

 Activation function may differ (e.g., Sign, Step, and Sigmoid) in perceptron models by

checking whether the learning process is slow or has vanishing or exploding gradients.

How does Perceptron work?

 In Machine Learning, Perceptron is considered as a single-layer neural network that

consists of four main parameters named input values (Input nodes), weights and Bias,

net sum, and an activation function.

 The perceptron model begins with the multiplication of all input values and their

weights, then adds these values together to create the weighted sum.

12

 Then this weighted sum is applied to the activation function 'f' to obtain the desired

output. This activation function is also known as the step function and is represented

by 'f'.

 This step function or Activation function plays a vital role in ensuring that output is

mapped between required values (0,1) or (-1,1). It is important to note that the weight

of input is indicative of the strength of a node.

 Similarly, an input's bias value gives the ability to shift the activation function curve up

or down.

Perceptron model works in two important steps as follows:

Step-1

In the first step first, multiply all input values with corresponding weight values and then add

them to determine the weighted sum. Mathematically, we can calculate the weighted sum as

follows:

∑wi*xi = x1*w1 + x2*w2 +…wn*xn

Add a special term called bias 'b' to this weighted sum to improve the model's performance.

∑wi*xi + b

13

Step-2

In the second step, an activation function is applied with the above-mentioned weighted sum,

which gives us output either in binary form or a continuous value as follows:

Y = f(∑wi*xi + b)

Types of Perceptron Models

Based on the layers, Perceptron models are divided into two types. These are as follows:

1. Single-layer Perceptron Model

2. Multi-layer Perceptron model

Single Layer Perceptron Model:

 This is one of the easiest Artificial neural networks (ANN) types.

 A single-layered perceptron model consists feed-forward network and also includes a

threshold transfer function inside the model.

 The main objective of the single-layer perceptron model is to analyze the linearly

separable objects with binary outcomes.

 In a single layer perceptron model, its algorithms do not contain recorded data, so it

begins with inconstantly allocated input for weight parameters.

 Further, it sums up all inputs (weight). After adding all inputs, if the total sum of all

inputs is more than a pre-determined value, the model gets activated and shows the

output value as +1.

 If the outcome is same as pre-determined or threshold value, then the performance of

this model is stated as satisfied, and weight demand does not change.

 However, this model consists of a few discrepancies triggered when multiple weight

inputs values are fed into the model.

 Hence, to find desired output and minimize errors, some changes should be necessary

for the weights input.

 "Single-layer perceptron can learn only linearly separable patterns."

Multi-Layered Perceptron Model:

14

 Like a single-layer perceptron model, a multi-layer perceptron model also has the same

model structure but has a greater number of hidden layers.

The multi-layer perceptron model is also known as the Backpropagation algorithm,

which executes in two stages as follows:

o Forward Stage: Activation functions start from the input layer in the forward stage

and terminate on the output layer.

o Backward Stage: In the backward stage, weight and bias values are modified as per

the model's requirement. In this stage, the error between actual output and demanded

originated backward on the output layer and ended on the input layer.

o Hence, a multi-layered perceptron model has considered as multiple artificial neural

networks having various layers in which activation function does not remain linear,

similar to a single layer perceptron model. Instead of linear, activation function can be

executed as sigmoid, TanH, ReLU, etc., for deployment.

o A multi-layer perceptron model has greater processing power and can process linear

and non-linear patterns. Further, it can also implement logic gates such as AND, OR,

XOR, NAND, NOT, XNOR, NOR.

Advantages of Multi-Layer Perceptron:

o A multi-layered perceptron model can be used to solve complex non-linear problems.

o It works well with both small and large input data.

o It helps us to obtain quick predictions after the training.

o It helps to obtain the same accuracy ratio with large as well as small data.

Disadvantages of Multi-Layer Perceptron:

o In Multi-layer perceptron, computations are difficult and time-consuming.

o In multi-layer Perceptron, it is difficult to predict how much the dependent variable

affects each independent variable.

o The model functioning depends on the quality of the training.

15

Perceptron Function

Perceptron function ''f(x)'' can be achieved as output by multiplying the input 'x' with the

learned weight coefficient 'w'.

Mathematically, we can express it as follows:

f(x)=1; if w.x+b>0

otherwise, f(x)=0

o 'w' represents real-valued weights vector

o 'b' represents the bias

o 'x' represents a vector of input x values.

Characteristics of Perceptron

The perceptron model has the following characteristics.

1. Perceptron is a machine learning algorithm for supervised learning of binary classifiers.

2. In Perceptron, the weight coefficient is automatically learned.

3. Initially, weights are multiplied with input features, and the decision is made whether

the neuron is fired or not.

4. The activation function applies a step rule to check whether the weight function is

greater than zero.

5. The linear decision boundary is drawn, enabling the distinction between the two linearly

separable classes +1 and -1.

6. If the added sum of all input values is more than the threshold value, it must have an

output signal; otherwise, no output will be shown.

Limitations of Perceptron Model

A perceptron model has limitations as follows:

16

o The output of a perceptron can only be a binary number (0 or 1) due to the hard limit

transfer function.

o Perceptron can only be used to classify the linearly separable sets of input vectors. If

input vectors are non-linear, it is not easy to classify them properly.

Future of Perceptron

o The future of the Perceptron model is much bright and significant as it helps to interpret

data by building intuitive patterns and applying them in the future.

o Machine learning is a rapidly growing technology of Artificial Intelligence that is

continuously evolving and in the developing phase; hence the future of perceptron

technology will continue to support and facilitate analytical behavior in machines that

will, in turn, add to the efficiency of computers.

o The perceptron model is continuously becoming more advanced and working

efficiently on complex problems with the help of artificial neurons.

Back propagation Process in Deep Neural Network

 Back propagation is one of the important concepts of a neural network.

 Our task is to classify our data best.

 For this, we have to update the weights of parameter and bias, but how can we do that

in a deep neural network? In the linear regression model, we use gradient descent to

optimize the parameter.

 Similarly here we also use gradient descent algorithm using Back propagation.

 For a single training example, Back propagation algorithm calculates the gradient of

the error function.

 Back propagation can be written as a function of the neural network. back propagation

algorithms are a set of methods used to efficiently train artificial neural networks

following a gradient descent approach which exploits the chain rule.

 The main features of Backpropagation are the iterative, recursive and efficient method

through which it calculates the updated weight to improve the network until it is not

able to perform the task for which it is being trained.

 Derivatives of the activation function to be known at network design time is required

to Backpropagation.

17

 Now, how error function is used in Backpropagation and how Backpropagation works?

Let start with an example and do it mathematically to understand how exactly updates

the weight using Backpropagation.

Input values

X1=0.05

X2=0.10

Initial weight

W1=0.15 w5=0.40

W2=0.20 w6=0.45

W3=0.25 w7=0.50

W4=0.30 w8=0.55

Bias Values

b1=0.35 b2=0.60

18

Target Values

T1=0.01

T2=0.99

Now, we first calculate the values of H1 and H2 by a forward pass.

Forward Pass

To find the value of H1 we first multiply the input value from the weights as

 H1=x1×w1+x2×w2+b1

 H1=0.05×0.15+0.10×0.20+0.35

 H1=0.3775

To calculate the final result of H1, we performed the sigmoid function as

We will calculate the value of H2 in the same way as H1

 H2=x1×w3+x2×w4+b1

 H2=0.05×0.25+0.10×0.30+0.35

 H2=0.3925

To calculate the final result of H1, we performed the sigmoid function as

19

Now, we calculate the values of y1 and y2 in the same way as we calculate the H1 and H2.

To find the value of y1, we first multiply the input value i.e., the outcome of H1 and H2 from

the weights as

 y1=H1×w5+H2×w6+b2

 y1=0.593269992×0.40+0.596884378×0.45+0.60

 y1=1.10590597

To calculate the final result of y1 we performed the sigmoid function as

We will calculate the value of y2 in the same way as y1

 y2=H1×w7+H2×w8+b2

 y2=0.593269992×0.50+0.596884378×0.55+0.60

 y2=1.2249214

To calculate the final result of H1, we performed the sigmoid function as

20

Our target values are 0.01 and 0.99. Our y1 and y2 value is not matched with our target values

T1 and T2.

Now, we will find the total error, which is simply the difference between the outputs from the

target outputs. The total error is calculated as

So, the total error is

Now, we will backpropagate this error to update the weights using a backward pass.

Backward pass at the output layer

To update the weight, we calculate the error correspond to each weight with the help of a total

error. The error on weight w is calculated by differentiating total error with respect to w.

21

We perform backward process so first consider the last weight w5 as

From equation two, it is clear that we cannot partially differentiate it with respect to w5 because

there is no any w5. We split equation one into multiple terms so that we can easily differentiate

it with respect to w5 as

Now, we calculate each term one by one to differentiate Etotal with respect to w5 as

22

Putting the value of e-y in equation (5)

So, we put the values of in equation no (3) to find the final result.

Now, we will calculate the updated weight w5new with the help of the following formula

In the same way, we calculate w6new,w7new, and w8new and this will give us the following values

23

w5new=0.35891648

 w6new=408666186

 w7new=0.511301270

 w8new=0.561370121

Multilayer Networks:

 A multilayer perceptron (MLP) is a feed forward artificial neural network that generates

a set of outputs from a set of inputs.

 An MLP is characterized by several layers of input nodes connected as a directed graph

between the input nodes connected as a directed graph between the input and output

layers.

Backward pass at Hidden layer

 Now, we will backpropagate to our hidden layer and update the weight w1, w2, w3,

and w4 as we have done with w5, w6, w7, and w8 weights.

 We will calculate the error at w1 as

From equation (2), it is clear that we cannot partially differentiate it with respect to w1 because

there is no any w1. We split equation (1) into multiple terms so that we can easily differentiate

it with respect to w1 as

Now, we calculate each term one by one to differentiate Etotal with respect to w1 as

24

We again split this because there is no any H1final term in Etoatal as

 will again split because in E1 and E2 there is no H1 term. Splitting is done

as

We again Split both because there is no any y1 and y2 term in E1 and E2. We

split it as

Now, we find the value of by putting values in equation (18) and (19) as

From equation (18)

25

From equation (8)

From equation (19)

Putting the value of e-y2 in equation (23)

26

From equation (21)

Now from equation (16) and (17)

27

Put the value of in equation (15) as

We have we need to figure out as

28

Putting the value of e-H1 in equation (30)

We calculate the partial derivative of the total net input to H1 with respect to w1 the same as

we did for the output neuron:

So, we put the values of in equation (13) to find the final result.

29

Now, we will calculate the updated weight w1new with the help of the following formula

In the same way, we calculate w2new,w3new, and w4 and this will give us the following values

 w1new=0.149780716

 w2new=0.19956143

 w3new=0.24975114

 w4new=0.29950229

We have updated all the weights. We found the error 0.298371109 on the network when we

fed forward the 0.05 and 0.1 inputs.

In the first round of back propagation, the total error is down to 0.291027924. After repeating

this process 10,000, the total error is down to 0.0000351085.

At this point, the outputs neurons generate 0.159121960 and 0.984065734 i.e., nearby our

target value when we feed forward the 0.05 and 0.1.

30

Convolutional Neural Network

 Convolutional Neural Networks are a special type of feed-forward artificial neural

network in which the connectivity pattern between its neuron is inspired by the visual

cortex.

 The visual cortex encompasses a small region of cells that are region sensitive to visual

fields. In case some certain orientation edges are present then only some individual

neuronal cells get fired inside the brain such as some neurons responds as and when

they get exposed to the vertical edges, however some responds when they are shown to

horizontal or diagonal edges, which is nothing but the motivation behind Convolutional

Neural Networks.

 The Convolutional Neural Networks, which are also called as covnets, are nothing but

neural networks, sharing their parameters.

 Suppose that there is an image, which is embodied as a cuboid, such that it encompasses

length, width, and height.

 Here the dimensions of the image are represented by the Red, Green, and Blue channels,

as shown in the image given below.

31

 Now assume that we have taken a small patch of the same image, followed by running

a small neural network on it, having k number of outputs, which is represented in a

vertical manner.

 Now when we slide our small neural network all over the image, it will result in another

image constituting different width, height as well as depth.

 We will notice that rather than having R, G, B channels, we have come across some

more channels that, too, with less width and height, which is actually the concept of

Convolution.

 In case, if we accomplished in having similar patch size as that of the image, then it

would have been a regular neural network. We have some wights due to this small

patch.

Mathematically it could be understood as follows;

32

o The Convolutional layers encompass a set of learnable filters, such that each filter

embraces small width, height as well as depth as that of the provided input volume (if

the image is the input layer then probably it would be 3).

o Suppose that we want to run the convolution over the image that comprises of 34x34x3

dimension, such that the size of a filter can be axax3. Here a can be any of the above 3,

5, 7, etc. It must be small in comparison to the dimension of the image.

o Each filter gets slide all over the input volume during the forward pass. It slides step by

step, calling each individual step as a stride that encompasses a value of 2 or 3 or 4 for

higher-dimensional images, followed by calculating a dot product in between filter's

weights and patch from input volume.

o It will result in 2-Dimensional output for each filter as and when we slide our filters

followed by stacking them together so as to achieve an output volume to have a similar

depth value as that of the number of filters. And then, the network will learn all the

filters.

Working of CNN

Generally, a Convolutional Neural Network has three layers, which are as follows;

o Input: If the image consists of 32 widths, 32 height encompassing three R, G, B

channels, then it will hold the raw pixel([32x32x3]) values of an image.

o Convolution: It computes the output of those neurons, which are associated with input's

local regions, such that each neuron will calculate a dot product in between weights and

a small region to which they are actually linked to in the input volume. For example, if

we choose to incorporate 12 filters, then it will result in a volume of [32x32x12].

o ReLU Layer: It is specially used to apply an activation function elementwise, like as

max (0, x) thresholding at zero. It results in ([32x32x12]), which relates to an

unchanged size of the volume.

33

o Pooling: This layer is used to perform a downsampling operation along the spatial

dimensions (width, height) that results in [16x16x12] volume.

o Locally Connected: It can be defined as a regular neural network layer that receives an

input from the preceding layer followed by computing the class scores and results in a

1-Dimensional array that has the equal size to that of the number of classes.

o We will start with an input image to which we will be applying multiple feature

detectors, which are also called as filters to create the feature maps that comprises of a

Convolution layer.

o Then on the top of that layer, we will be applying the ReLU or Rectified Linear Unit to

remove any linearity or increase non-linearity in our images.

o Next, we will apply a Pooling layer to our Convolutional layer, so that from every

feature map we create a Pooled feature map as the main purpose of the pooling layer is

to make sure that we have spatial invariance in our images.

o It also helps to reduce the size of our images as well as avoid any kind of overfitting of

our data.

34

o After that, we will flatten all of our pooled images into one long vector or column of

all of these values, followed by inputting these values into our artificial neural network.

o Lastly, we will feed it into the locally connected layer to achieve the final output.

Building a CNN

o Basically, a Convolutional Neural Network consists of adding an extra layer, which is

called convolutional that gives an eye to the Artificial Intelligence or Deep Learning

model because with the help of it we can easily take a 3D frame or image as an input

as opposed to our previous artificial neural network that could only take an input vector

containing some features as information.

o But here we are going to add at the front a convolutional layer which will be able to

visualize images just like humans do.

o In our dataset, we have all the images of cats and dogs in training as well as in the test

set folders.

o We are going to train our CNN model on 4000 images of cats as well as 4000 images

of dogs, each respectively that are present in the training set followed by evaluating our

model with the new 1000 images of cats and 1000 images of dogs, each respectively in

the test set on which our model was not trained.

o So, we are actually going to build and train a Convolutional Neural network to

recognize if there is a dog or cat in the image.

o For the implementation of CNN, we are going to use the Jupyter notebook.

o So, we will start with importing the libraries, data preprocessing followed by building

a CNN, training the CNN and lastly, we will make a single prediction.

https://www.javatpoint.com/jupyter-notebook

35

o All the steps will be carried out in the same way as we did in ANN, the only difference

is that now we are not pre-processing the classic dataset, but some images, which is

why the data preprocessing is different and will consist of doing two steps, i.e., in the

first, we will pre-process the training set and then will pre-process the test set.

o In the second part, we will build the whole architecture of CNN. We will initialize the

CNN as a sequence of layers, and then we will add the convolution layer followed by

adding the max-pooling layer.

o Then we will add the second convolutional layer to make it a deep neural network as

opposed to a shallow neural network.

o Next, we will proceed to the flattening layer to flatten the result of all the convolutions

and pooling into a one-dimensional vector, which will become the input of a fully

connected neural network. Finally, we will connect all this to the output layer.

o In the third part, we will first compile the CNN, and then we will train the CNN on the

training set.

o And then, finally, we will make a single prediction to test our model in a prediction that

is when we will deploy our CNN on to different images, one that has a dog and the

other that has a cat.

o So, this was just a brief description of how we will build our CNN model, let's get

started with its practical implementation.

o We will start by importing the TensorFlow library and actually the preprocessing

module by Keras library. And then, we will import the image sub-module of the

preprocessing module of the Keras library, which will allow us to do image pre-

processing in part 1.

Recurrent Neural Networks

Why not Feedforward Networks?

o Feedforward networks are used to classify images.

o Let us understand the concept of a feedforward network with an example given below

in which we trained our network for classifying various images of animals.

o If we feed an image of a cat, it will identify that image and provide a relevant label to

that particular image.

https://www.javatpoint.com/convolutional-neural-network-in-tensorflow
https://www.javatpoint.com/tensorflow

36

o Similarly, if you feed an image of a dog, it will provide a relevant label to that image a

particular image as well.

Consider the following diagram:

o And if you notice the new output that we have got is classifying, a dog has no relation

to the previous output that is of a cat, or you can say that the output at the time 't' is

independent of output at a time 't-1'.

o It can be clearly seen that there is no relation between the new output and the previous

output. So, we can say that in feedforward networks, the outputs are independent of

each other.

o There are a few scenarios where we will actually need the previous output to get the

new output. Let us discuss one such scenario where we will necessitate using the output

that has been previously obtained.

Now, what happens when you read a book.

37

You will understand that book only on the understanding of the previous words. So, if we use

a feedforward network and try to predict the next word in the sentence, then in such a case, we

will not be able to do that because our output will actually depend on previous outputs. But in

the feedforward network, the new output is independent of the previous outputs, i.e., output at

't+1' has no relation with the output at 't-2', 't-1', and 't.' Therefore, it can be concluded that we

cannot use feedforward networks for predicting the next word in the sentence. Similarly, many

other examples can also be taken where we need the previous output or some information from

the previous output, so as to infer the new output.

How to overcome this challenge?

Consider the following diagram:

We have input at 't-1', which we will feed to the network, and then we will get the output at 't-

1'. Then at the next timestamp that is at a time 't', we have an input at a time 't', which will be

again given to the network along with the information from the previous timestamp, i.e., 't-1'

and that will further help us to get the output at 't'. Similarly, at the output for 't+1', we have

two inputs; one is the new input that we give, and the other is the information coming from the

previous timestamps, i.e., 't' in order to get the output at a time 't+1'. In the same way, it will

go on further like this. Here we have embodied in a more generalized way to represent it. There

is a loop where the information from the previous timestamp is flowing, and this is how we can

solve a particular challenge.

38

What are Recurrent Neural Networks?

"Recurrent Networks are one such kind of artificial neural network that are mainly intended to

identify patterns in data sequences, such as text, genomes, handwriting, the spoken word,

numerical times series data emanating from sensors, stock markets, and government agencies".

In order to understand the concept of Recurrent Neural Networks, let's consider the following

analogy.

Suppose that your gym trainer has made a schedule for you. The exercises are repeated every

third day. The above image includes the order of your exercises; on your very first day, you

will be doing shoulders, the second day you will be doing biceps, the third day you will be

doing cardio, and all these exercises are repeated in proper order.

Let's see what happens if we use a feedforward network for predicting the exercises today.

39

We have provided in the input such as day of the week, the month of the year, and health status.

Also, we need to train our model or the network on the basis of the exercises that we have done

in the past. After that, there will be a complex voting procedure involved, which will predict

the exercises for us, and that procedure won't be that accurate. In that case, whatever output we

will get would be as accurate as we want it to be. Now, what if the inputs get changed, and we

make the inputs as the exercises that we have done the previous day.

Therefore, if shoulders were done yesterday, then definitely today will be biceps day. Similarly,

if biceps were done yesterday, then today will be the cardio day, and if yesterday was the cardio

day, then today, we will need to undergo shoulder.

40

Now there can be one such scenario, where you are unable to go to the gym for one day due to

some personal reasons, then it that case, we will go one timestamp back and will feed in what

exercise happened day before yesterday as shown below.

So, if the exercise that happened the day before yesterday was the shoulder, then yesterday

there were biceps exercises. Similarly, if biceps happened the day before yesterday, then

yesterday would have been cardio exercises, and if cardio would have happened the day before

yesterday, then yesterday would have been shoulder exercises. And this prediction for the

exercises that happened yesterday will be fed back to our network so that these predictions can

be used as inputs in order to predict what exercise will happen today. Similarly, if you have

missed your gym say for two days, three days or even one week, you will actually need to roll

back, which means that you will need to go to the last day when you went to the gym, you need

to figure out what exercises you did on that day and then only you will be getting the relevant

output as to what exercises will happen today.

Next, we will convert all these things into a vector, which is nothing but a list of numbers.

41

So, there is new information along with the information which we got from the prediction at

the previous timestamp because we need all of these in order to get the prediction at a time 't'.

Imagine that you did shoulder exercises yesterday, then, in that case, the prediction will be

biceps exercise because if the shoulder was done yesterday, then today it will definitely be

biceps and output will be 0, 1, and 0, which is actually the work of our vectors.

Let's understand the math behind the Recurrent Neural Network by simply having a look at the

image given below.

Assume that 'w' is the weight matrix, and 'b' is the bias. Consider at time t=0, our input is 'xo',

and we need to figure out what exactly is the 'ho'. We will substitute t=0 in the equation, as

shown in the image, so as to procure the function ht value.

After that, we will find out the value of 'yo' by using values that were previously calculated

when we applied it to the new formula.

https://www.javatpoint.com/recurrent-neural-network-in-tensorflow

42

The same process is repeated again and again through all the timestamps within the model so

as to train it. So, this how a Recurrent Neural Networks works.

Training a Recurrent Neural Network

A recurrent neural network uses a backpropagation algorithm for training, but backpropagation

happens for every timestamp, which is why it is commonly called as backpropagation through

time. With backpropagations, there are certain issues, namely vanishing and exploding

gradients, that we will see one by one.

Vanishing Gradient

Consider the following diagram:

In vanishing gradient when we use backpropagation, we tend to calculate the error which is

nothing but the actual output that we already know subtracted by the model output that we got

through the model and the square of that, so we can figure out the error, and with the help of

that error, we tend to find out the change in error with respect to change in weight or any

variable, which is here called as weight.

So, the change of error with respect to change in weight multiplied by learning rate will give

us the change in rate. And then we will add this change in weight to the old weight to get a new

43

weight. Basically, here we are trying to reduce the error, and for that, we need to figure out

what will be the change in error if variables get changed, by which we can get the change in

the variable and add it to our old variable to get the new variable.

Now over here what can happen if the value de⁄dw, i.e., gradient or simply we can say the rate

of change of error with respect to weight variable becomes very smaller than 1 and if we

multiply that with the learning rate, which is the definitely smaller than 1, then, in that case,

we will get the change in weight, which is negligible.

Consider a scenario where you need to predict the next word in the sentence, and your sentence

is something like "I have been to USA". Then are a lot of words after that few people speak,

and then you need to predict what comes after speak. Now, if you need to do that, then you will

have to go back and understand the context of what it is talking about, which is nothing but our

long-term dependencies. During the long-term dependencies, de⁄dw becomes very small, and

then when you multiply it with n, which is again smaller than 1, you get Δw, which will be

very small or simply negligible. So, the new weight that you will get here will be almost equal

to your old weight, such that the weight will not get updated further. Also, there will be no

learning here, which is nothing but the problem of vanishing gradient.

Similarly, if we talk about the exploding gradient, it is actually opposite to that of the vanishing

gradient. Consider the below diagram to have a better understanding of it.

44

If de⁄dw becomes very large or greater than 1 and we have some long-term dependencies, then,

in that case, de⁄dw will keep on increasing, and Δw will become very large that will make the

new weight different than that of the old weights. So, these were the two problems with

backpropagation, and now we will see how to solve these problems.

Tensor Flow Tutorial

o TensorFlow tutorial is designed for both beginners and professionals.

o Our tutorial provides all the basic and advanced concept of machine learning and deep

learning concept such as deep neural network, image processing and sentiment analysis.

o ensorFlow is one of the famous deep learning framework, developed by Google Team.

o It is a free and open source software library and designed in Python programming

language, this tutorial is designed in such a way that we can easily implement deep

learning project on TensorFlow in an easy and efficient way.

Prerequisite

TensorFlow is completely based on Python. So, it is essential to have basic knowledge of

Python. Good understanding of basic mathematics and artificial intelligence concept is allow

us to understand TensorFlow easily.

45

Audience

This tutorial is helpful for the students who are interested in python and focused on research

and development with many machine learning and deep learning algorithms. The aim of the

tutorial is to describe all TensorFlow objects and methods.

Problems

We assure that we will not find any problem with this TensorFlow tutorial. But if there is any

mistake, please post the problem in the contact form.

TensorFlow can train and run the deep neural networks for image recognition, handwritten

digit classification, recurrent neural network, word embedding, natural language processing,

video detection, and many more. TensorFlow is run on multiple CPUs or GPUs and also mobile

operating systems.

The word TensorFlow is made by two words, i.e., Tensor and Flow

1. Tensor is a multidimensional array

2. Flow is used to define the flow of data in operation.

TensorFlow is used to define the flow of data in operation on a multidimensional array or

Tensor.

46

History of TensorFlow

Many years ago, deep learning started to exceed all other machine learning algorithms when

giving extensive data. Google has seen it could use these deep neural networks to upgrade its

services:

o Google search engine

o Gmail

o Photo

They build a framework called TensorFlow to permit researchers and developers to work

together in an AI model. Once it approved and scaled, it allows lots of people to use it.

It was first released in 2015, while the first stable version was coming in 2017. It is an open-

source platform under Apache Open Source License. We can use it, modify it, and reorganize

the revised version for free without paying anything to Google.

Components of TensorFlow

Tensor

 The name TensorFlow is derived from its core framework, "Tensor."

 A tensor is a vector or a matrix of n-dimensional that represents all type of data.

 All values in a tensor hold similar data type with a known shape. The shape of the data

is the dimension of the matrix or an array.

 A tensor can be generated from the input data or the result of a computation. In

TensorFlow, all operations are conducted inside a graph.

 The group is a set of calculation that takes place successively. Each transaction is called

an op node are connected.

47

Graphs

TensorFlow makes use of a graph framework. The chart gathers and describes all the

computations done during the training.

Advantages

o It was fixed to run on multiple CPUs or GPUs and mobile operating systems.

o The portability of the graph allows to conserve the computations for current or later

use. The graph can be saved because it can be executed in the future.

o All the computation in the graph is done by connecting tensors together.

Consider the following expression a= (b+c)*(c+2)

d=b+c

e=c+2

a=d*e

Now, we can represent these operations graphically below:

48

Session

A session can execute the operation from the graph. To feed the graph with the value of a

tensor, we need to open a session. Inside a session, we must run an operator to create an output.

Why is TensorFlow popular?

 TensorFlow is the better library for all because it is accessible to everyone. TensorFlow

library integrates different API to create a scale deep learning architecture like CNN

(Convolutional Neural Network) or RNN (Recurrent Neural Network).

 TensorFlow is based on graph computation; it can allow the developer to create the

construction of the neural network with Tensorboard. This tool helps debug our

program. It runs on CPU (Central Processing Unit) and GPU (Graphical Processing

Unit).

49

Keras Tutorial

 Keras is an open-source high-level Neural Network library, which is written in Python

is capable enough to run on Theano, TensorFlow, or CNTK.

 It was developed by one of the Google engineers, Francois Chollet.

 It is made user-friendly, extensible, and modular for facilitating faster experimentation

with deep neural networks.

 It not only supports Convolutional Networks and Recurrent Networks individually but

also their combination.

 It cannot handle low-level computations, so it makes use of the Backend library to

resolve it.

 The backend library act as a high-level API wrapper for the low-level API, which lets

it run on TensorFlow, CNTK, or Theano.

 Initially, it had over 4800 contributors during its launch, which now has gone up to

250,000 developers.

 It has a 2X growth ever since every year it has grown.

 Big companies like Microsoft, Google, NVIDIA, and Amazon have actively

contributed to the development of Keras.

 It has an amazing industry interaction, and it is used in the development of popular

firms likes Netflix, Uber, Google, Expedia, etc.

What makes Keras special?

o Focus on user experience has always been a major part of Keras.

50

o Large adoption in the industry.

o It is a multi backend and supports multi-platform, which helps all the encoders come

together for coding.

o Research community present for Keras works amazingly with the production

community.

o Easy to grasp all concepts.

o It supports fast prototyping.

o It seamlessly runs on CPU as well as GPU.

o It provides the freedom to design any architecture, which then later is utilized as an API

for the project.

o It is really very simple to get started with.

o Easy production of models actually makes Keras special.

Keras user experience

1. Keras is an API designed for humans

Best practices are followed by Keras to decrease cognitive load, ensures that the

models are consistent, and the corresponding APIs are simple.

2. Not designed for machines

Keras provides clear feedback upon the occurrence of any error that minimizes the

number of user actions for the majority of the common use cases.

3. Easy to learn and use.

4. Highly Flexible

Keras provide high flexibility to all of its developers by integrating low-level deep

learning languages such as TensorFlow or Theano, which ensures that anything

written in the base language can be implemented in Keras.

How Keras support the claim of being multi-backend and multi-platform:

Keras can be developed in R as well as Python, such that the code can be run with TensorFlow,

Theano, CNTK, or MXNet as per the requirement. Keras can be run on CPU, NVIDIA GPU,

AMD GPU, TPU, etc. It ensures that producing models with Keras is really simple as it totally

51

supports to run with TensorFlow serving, GPU acceleration (WebKeras, Keras.js), Android

(TF, TF Lite), iOS (Native CoreML) and Raspberry Pi.

Keras Backend:

 Keras being a model-level library helps in developing deep learning models by offering

high-level building blocks.

 ll the low-level computations such as products of Tensor, convolutions, etc. are not

handled by Keras itself, rather they depend on a specialized tensor manipulation library

that is well optimized to serve as a backend engine.

 Keras has managed it so perfectly that instead of incorporating one single library of

tensor and performing operations related to that particular library, it offers plugging of

different backend engines into Keras.

Keras consist of three backend engines, which are as follows:

o TensorFlow:

TensorFlow is a Google product, which is one of the most famous deep learning tools

widely used in the research area of machine learning and deep neural network. It came

into the market on 9th November 2015 under the Apache License 2.0. It is built in such

a way that it can easily run on multiple CPUs and GPUs as well as on mobile operating

systems. It consists of various wrappers in distinct languages such as Java, C++, or

Python.

o Theano:

Theano was developed at the University of Montreal, Quebec, Canada, by the MILA

group. It is an open-source python library that is widely used for performing

mathematical operations on multi-dimensional arrays by incorporating scipy and

numpy. It utilizes GPUs for faster computation and efficiently computes the gradients

52

by building symbolic graphs automatically. It has come out to be very suitable for

unstable expressions, as it first observes them numerically and then computes them with

more stable algorithms.

o CNTK

Microsoft Cognitive Toolkit is deep learning's open-source framework. It consists of

all the basic building blocks, which are required to form a neural network. The models

are trained using C++ or Python, but it incorporates C# or Java to load the model for

making predictions.

Advantages of Keras

Keras encompasses the following advantages, which are as follows:

53

o It is very easy to understand and incorporate the faster deployment of network models.

o It has huge community support in the market as most of the AI companies are keen on

using it.

o It supports multi backend, which means you can use any one of them among

TensorFlow, CNTK, and Theano with Keras as a backend according to your

requirement.

o Since it has an easy deployment, it also holds support for cross-platform. Following are

the devices on which Keras can be deployed:

1. iOS with CoreML

2. Android with TensorFlow Android

3. Web browser with .js support

4. Cloud engine

5. Raspberry pi

o It supports Data parallelism, which means Keras can be trained on multiple GPU's at

an instance for speeding up the training time and processing a huge amount of data.

Disadvantages of Keras

o The only disadvantage is that Keras has its own pre-configured layers, and if you want

to create an abstract layer, it won't let you because it cannot handle low-level APIs. It

only supports high-level API running on the top of the backend engine (TensorFlow,

Theano, and CNTK).

Prerequisite

This Keras tutorial is made for both beginners and professionals, to help them understand the

fundamental concept of Keras. After the completion of this tutorial, you will find yourself at a

moderate level of expertise from where you can take yourself to the next level.

Audience

Since Keras is a deep learning's high-level library, so you are required to have hands-on Python

language as well as basic knowledge of the neural network.

54

Problem

We assure you that you will not find any difficulty in this tutorial. In case you come up with a

query, or you find any mistake in this tutorial, do let us know by posting it in the contact form

so that we can further improve it.

