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INTRODUCTION NEURAL NETWORKS AND DEEP LEARNING 

Neural Networks: 

 Neural networks are artificial systems that were inspired by biological neural 

networks. These systems learn to perform tasks by being exposed to various datasets 

and examples without any task-specific rules.  

 The idea is that the system generates identifying characteristics from the data they 

have been passed without being programmed with a pre-programmed understanding 

of these datasets. Neural networks are based on computational models for threshold 

logic.  

 Threshold logic is a combination of algorithms and mathematics.  

 Neural networks are based either on the study of the brain or on the application of 

neural networks to artificial intelligence.  

 The work has led to improvements in finite automata theory. Components of a typical 

neural network involve neurons, connections which are known as synapses, weights, 

biases, propagation function, and a learning rule.  

 Neurons will receive an input from predecessor neurons that have an activation , 

threshold , an activation function f, and an output function .  

 Connections consist of connections, weights and biases which rules how neuron 

transfers output to neuron .  

 Propagation computes the input and outputs the output and sums the predecessor 

neurons function with the weight.  

 The learning of neural network basically refers to the adjustment in the free 

parameters i.e. weights and bias.  

 There are basically three sequence of events of learning process. 

 

These includes: 

1. The neural network is simulated by an new environment. 
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2. Then the free parameters of the neural network is changed as a result of this simulation. 

3. The neural network then responds in a new way to the environment because of the 

changes in its free parameters. 

 

Supervised vs Unsupervised Learning:  

 Neural networks learn via supervised learning; Supervised machine learning involves 

an input variable x and corresponding desired output variable y.  

 Here we introduce the concept of teacher who has knowledge about the environment.  

 Thus we can say that the teacher has both input-output set.  

 The neural network is unaware of the environment. The input is exposed to both 

teacher and neural network, the neural network generates an output based on the input.  

 This output is then compared with the desired output that teacher has and 

simultaneously an error signal is produced.  

 The free parameters of the network is then step by step adjusted so that error is 

minimum. The learning stops when the algorithm reaches an acceptable level of 

performance. Unsupervised machine learning has input data X and no corresponding 

output variables.  

 The goal is to model the underlying structure of the data to understand more about the 

data. The keywords for supervised machine learning are classification and regression.  

 For unsupervised machine learning, the keywords are clustering and association.  

 

Evolution of Neural Networks:  

 Hebbian learning deals with neural plasticity.  

 Hebbian learning is unsupervised and deals with long-term potentiation.  

 Hebbian learning deals with pattern recognition and exclusive-or circuits deal with if-

then rules.  

 Backpropagation solved the exclusive-or issue that Hebbian learning could not 

handle.  

 This also allowed for multi-layer networks to be feasible and efficient. 

 If an error was found, the error was solved at each layer by modifying the weights at 

each node.  
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 This led to the development of support vector machines, linear classifiers, and max-

pooling. The vanishing gradient problem affects feedforward networks that use back 

propagation and recurrent neural network.  

 This is known as deep-learning.  

 Hardware-based designs are used for biophysical simulation and neurotrophic 

computing. They have large scale component analysis and convolution creates new 

class of neural computing with analog.  

 This also solved back-propagation for many-layered feedforward neural networks. 

Convolutional networks are used for alternating between convolutional layers and 

max-pooling layers with connected layers (fully or sparsely connected) with a final 

classification layer.  

 The learning is done without unsupervised pre-training. Each filter is equivalent to a 

weights vector that has to be trained.  

 The shift variance has to be guaranteed to dealing with small and large neural 

networks. This is being resolved in Development Networks.  

 Some of the other learning techniques involve error-correction learning, memory-

based learning and competitive learning. 

Types of Neural Networks 

There are seven types of neural networks that can be used: 

 

 Multilayer Perceptron (MLP): A type of feedforward neural network with three or more 

layers, including an input layer, one or more hidden layers, and an output layer. It uses 

nonlinear activation functions. 

 Convolutional Neural Network (CNN): A neural network that is designed to process 

input data that has a grid-like structure, such as an image. It uses convolutional layers and 

pooling layers to extract features from the input data. 

 Recursive Neural Network (RNN): A neural network that can operate on input 

sequences of variable length, such as text. It uses weights to make structured predictions. 

 Recurrent Neural Network (RNN): A type of neural network that makes connections 

between the neurons in a directed cycle, allowing it to process sequential data.  
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 Long Short-Term Memory (LSTM): A type of RNN that is designed to overcome the 

vanishing gradient problem in training RNNs. It uses memory cells and gates to 

selectively read, write, and erase information. 

 Sequence-to-Sequence (Seq2Seq): A type of neural network that uses two RNNs to map 

input sequences to output sequences, such as translating one language to another. 

 Shallow Neural Network: A neural network with only one hidden layer, often used for 

simpler tasks or as a building block for larger networks. 

These neural networks are applications of the basic neural network demonstrated below. 

For the example, the neural network will work with three vectors: a vector of attributes X, a 

vector of classes Y, and a vector of weights W. The code will use 100 iterations to fit the 

attributes to the classes. The predictions are generated, weighed, and then outputted after 

iterating through the vector of weights W. The neural network handles backpropagation.   

 

What is neural network Representation? 

 A neural network can be understood as a network of hidden layers, an input layer and 

an output layer that tries to mimic the working of a human brain.  

 The hidden layers can be visualized as an abstract representation of the input data itself. 

 A neural network can be understood as a network of hidden layers, an input layer and 

an output layer that tries to mimic the working of a human brain. 

 The hidden layers can be visualized as an abstract representation of the input data itself.  

 These layers help the neural network understand various features of the data with the 

help of its own internal logic. 

 These neural networks are non-interpretable models.  

 Non-interpretable models are those which can’t be interpreted or understood even if 

we observe the hidden layers.  

 This is because the neural networks have an internal logic working on its own, that 

can’t be comprehended by us. 
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 We can just see then as a vector of numerical values. Since the output of a neural 

network is a numerical vector, we need to have an explicit output layer that bridges the 

gap between the actual data and the representation of the data by the network. 

 An output layer can be understood as a translator that helps us to understand the logic 

of the network and convert the target values. 

 A theorem named ‘Universal approximation theorem’ tells that a feedforward network 

that contains one hidden layer can be used to represent any function. 

 This means there is no limit on the functioning of a neural network that contains one 

hidden layer. But in real life situations, a neural network with one hidden layer can’t 

be used well. 

 A neural network is a mathematical model that helps in processing information. It is 

not a set of lines of code, but a model or a system that helps process the 

inputs/information and gives result. 

 The information is processed in the simplest form over basic elements known as 

‘neurons’. Neurons are connected and help exchange signals/information between them 

with the help of connection links. 

 This connection links between neurons could be strong or weak, and this strength of 

the connection links determines the method in which information is processed. 

 Every neuron has an internal state which can be determined by the incoming 

connections from other neurons. 

 Every neuron has an activation function which is calculated on its state, and this helps 

determine its output signal. 

 A neural network can be understood as a computational graph of mathematical 

operations. 

Two main characteristics of a neural network − 

 Architecture 

 Learning 
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Architecture: 

It tells about the connection type: whether it is feedforward, recurrent, multi-layered, 

convolutional, or single layered. It also tells about the number of layers and the number of 

neurons in every layer. 

Learning: 

It tells about the method in which the neural network is trained. A common way to train a 

neural network is to use gradient descent and backpropagation. 

 

Problems in neural networks: 

4 Disadvantages of Neural Networks & Deep Learning: 

 Black box. 

 Duration of development. 

 Amount of data. 

 Computationally expensive. 

 

1. BLACK BOX 
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2. DURATION OF DEVELOPMENT: 

 

3. AMOUNT OF DATA: 

 Neural networks usually require much more data than traditional machine learning 

algorithms, as in at least thousands if not millions of labeled samples.  

 This isn’t an easy problem to deal with and many machine learning problems can be 

solved well with less data if you use other algorithms. 

 Although there are some cases where neural networks do well with little data, most of 

the time they don’t.  

 In this case, a simple algorithm like naive Bayes, which deals much better with little 

data, would be the appropriate choice. 
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4. COMPUTATIONALLY EXPENSIVE: 

 Usually, neural networks are also more computationally expensive than traditional 

algorithms.  

 State of the art deep learning algorithms, which realize successful training of really 

deep neural networks, can take several weeks to train completely from scratch.  

 By contrast, most traditional machine learning algorithms take much less time to train, 

ranging from a few minutes to a few hours or days. 

 The amount of computational power needed for a neural network depends heavily on 

the size of your data, but also on the depth and complexity of your network.  

 For example, a neural network with one layer and 50 neurons will be much faster than 

a random forest with 1,000 trees.  

 By comparison, a neural network with 50 layers will be much slower than a random 

forest with only 10 trees. 
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Perceptron in Machine Learning 

 In Machine Learning and Artificial Intelligence, Perceptron is the most commonly used 

term for all folks.  

 It is the primary step to learn Machine Learning and Deep Learning technologies, which 

consists of a set of weights, input values or scores, and a threshold.  

 Perceptron is a building block of an Artificial Neural Network. Initially, in the mid of 

19th century, Mr. Frank Rosenblatt invented the Perceptron for performing certain 

calculations to detect input data capabilities or business intelligence.  

 Perceptron is a linear Machine Learning algorithm used for supervised learning for 

various binary classifiers.  

 This algorithm enables neurons to learn elements and processes them one by one during 

preparation.  

 In this tutorial, "Perceptron in Machine Learning," we will discuss in-depth knowledge 

of Perceptron and its basic functions in brief. Let's start with the basic introduction of 

Perceptron. 

 What is the Perceptron model in Machine Learning? 

 Perceptron is Machine Learning algorithm for supervised learning of various binary 

classification tasks.  

 Further, Perceptron is also understood as an Artificial Neuron or neural network unit 

that helps to detect certain input data computations in business intelligence. 

 Perceptron model is also treated as one of the best and simplest types of Artificial 

Neural networks.  

 However, it is a supervised learning algorithm of binary classifiers.  

 Hence, we can consider it as a single-layer neural network with four main parameters, 

i.e., input values, weights and Bias, net sum, and an activation function. 
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What is Binary classifier in Machine Learning? 

 In Machine Learning, binary classifiers are defined as the function that helps in 

deciding whether input data can be represented as vectors of numbers and belongs to 

some specific class. 

 Binary classifiers can be considered as linear classifiers. In simple words, we can 

understand it as a classification algorithm that can predict linear predictor function in 

terms of weight and feature vectors. 

Basic Components of Perceptron 

Mr. Frank Rosenblatt invented the perceptron model as a binary classifier which contains three 

main components. These are as follows: 

 

o Input Nodes or Input Layer: 

This is the primary component of Perceptron which accepts the initial data into the system for 

further processing. Each input node contains a real numerical value. 

o Wight and Bias: 

Weight parameter represents the strength of the connection between units. This is another most 

important parameter of Perceptron components. Weight is directly proportional to the strength 
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of the associated input neuron in deciding the output. Further, Bias can be considered as the 

line of intercept in a linear equation. 

o Activation Function: 

These are the final and important components that help to determine whether the neuron will 

fire or not. Activation Function can be considered primarily as a step function. 

Types of Activation functions: 

o Sign function 

o Step function, and 

o Sigmoid function 

 

 The data scientist uses the activation function to take a subjective decision based on 

various problem statements and forms the desired outputs.  

 Activation function may differ (e.g., Sign, Step, and Sigmoid) in perceptron models by 

checking whether the learning process is slow or has vanishing or exploding gradients. 

How does Perceptron work? 

 In Machine Learning, Perceptron is considered as a single-layer neural network that 

consists of four main parameters named input values (Input nodes), weights and Bias, 

net sum, and an activation function.  

 The perceptron model begins with the multiplication of all input values and their 

weights, then adds these values together to create the weighted sum.  
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 Then this weighted sum is applied to the activation function 'f' to obtain the desired 

output. This activation function is also known as the step function and is represented 

by 'f'. 

 

 This step function or Activation function plays a vital role in ensuring that output is 

mapped between required values (0,1) or (-1,1). It is important to note that the weight 

of input is indicative of the strength of a node.  

 Similarly, an input's bias value gives the ability to shift the activation function curve up 

or down. 

Perceptron model works in two important steps as follows: 

Step-1 

In the first step first, multiply all input values with corresponding weight values and then add 

them to determine the weighted sum. Mathematically, we can calculate the weighted sum as 

follows: 

∑wi*xi = x1*w1 + x2*w2 +…wn*xn 

Add a special term called bias 'b' to this weighted sum to improve the model's performance. 

∑wi*xi + b 
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Step-2 

In the second step, an activation function is applied with the above-mentioned weighted sum, 

which gives us output either in binary form or a continuous value as follows: 

Y = f(∑wi*xi + b) 

Types of Perceptron Models 

Based on the layers, Perceptron models are divided into two types. These are as follows: 

1. Single-layer Perceptron Model 

2. Multi-layer Perceptron model 

Single Layer Perceptron Model: 

 This is one of the easiest Artificial neural networks (ANN) types.  

 A single-layered perceptron model consists feed-forward network and also includes a 

threshold transfer function inside the model.  

 The main objective of the single-layer perceptron model is to analyze the linearly 

separable objects with binary outcomes. 

 In a single layer perceptron model, its algorithms do not contain recorded data, so it 

begins with inconstantly allocated input for weight parameters.  

 Further, it sums up all inputs (weight). After adding all inputs, if the total sum of all 

inputs is more than a pre-determined value, the model gets activated and shows the 

output value as +1. 

 If the outcome is same as pre-determined or threshold value, then the performance of 

this model is stated as satisfied, and weight demand does not change.  

 However, this model consists of a few discrepancies triggered when multiple weight 

inputs values are fed into the model.  

 Hence, to find desired output and minimize errors, some changes should be necessary 

for the weights input. 

 "Single-layer perceptron can learn only linearly separable patterns." 

Multi-Layered Perceptron Model: 
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 Like a single-layer perceptron model, a multi-layer perceptron model also has the same 

model structure but has a greater number of hidden layers. 

The multi-layer perceptron model is also known as the Backpropagation algorithm, 

which executes in two stages as follows: 

o Forward Stage: Activation functions start from the input layer in the forward stage 

and terminate on the output layer. 

o Backward Stage: In the backward stage, weight and bias values are modified as per 

the model's requirement. In this stage, the error between actual output and demanded 

originated backward on the output layer and ended on the input layer. 

o Hence, a multi-layered perceptron model has considered as multiple artificial neural 

networks having various layers in which activation function does not remain linear, 

similar to a single layer perceptron model. Instead of linear, activation function can be 

executed as sigmoid, TanH, ReLU, etc., for deployment. 

o A multi-layer perceptron model has greater processing power and can process linear 

and non-linear patterns. Further, it can also implement logic gates such as AND, OR, 

XOR, NAND, NOT, XNOR, NOR. 

Advantages of Multi-Layer Perceptron: 

o A multi-layered perceptron model can be used to solve complex non-linear problems. 

o It works well with both small and large input data. 

o It helps us to obtain quick predictions after the training. 

o It helps to obtain the same accuracy ratio with large as well as small data. 

Disadvantages of Multi-Layer Perceptron: 

o In Multi-layer perceptron, computations are difficult and time-consuming. 

o In multi-layer Perceptron, it is difficult to predict how much the dependent variable 

affects each independent variable. 

o The model functioning depends on the quality of the training. 
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Perceptron Function 

Perceptron function ''f(x)'' can be achieved as output by multiplying the input 'x' with the 

learned weight coefficient 'w'. 

Mathematically, we can express it as follows: 

f(x)=1; if w.x+b>0 

otherwise, f(x)=0 

o 'w' represents real-valued weights vector 

o 'b' represents the bias 

o 'x' represents a vector of input x values. 

Characteristics of Perceptron 

The perceptron model has the following characteristics. 

1. Perceptron is a machine learning algorithm for supervised learning of binary classifiers. 

2. In Perceptron, the weight coefficient is automatically learned. 

3. Initially, weights are multiplied with input features, and the decision is made whether 

the neuron is fired or not. 

4. The activation function applies a step rule to check whether the weight function is 

greater than zero. 

5. The linear decision boundary is drawn, enabling the distinction between the two linearly 

separable classes +1 and -1. 

6. If the added sum of all input values is more than the threshold value, it must have an 

output signal; otherwise, no output will be shown. 

Limitations of Perceptron Model 

A perceptron model has limitations as follows: 
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o The output of a perceptron can only be a binary number (0 or 1) due to the hard limit 

transfer function. 

o Perceptron can only be used to classify the linearly separable sets of input vectors. If 

input vectors are non-linear, it is not easy to classify them properly. 

Future of Perceptron 

o The future of the Perceptron model is much bright and significant as it helps to interpret 

data by building intuitive patterns and applying them in the future.  

o Machine learning is a rapidly growing technology of Artificial Intelligence that is 

continuously evolving and in the developing phase; hence the future of perceptron 

technology will continue to support and facilitate analytical behavior in machines that 

will, in turn, add to the efficiency of computers. 

o The perceptron model is continuously becoming more advanced and working 

efficiently on complex problems with the help of artificial neurons. 

Back propagation Process in Deep Neural Network 

 Back propagation is one of the important concepts of a neural network.  

 Our task is to classify our data best.  

 For this, we have to update the weights of parameter and bias, but how can we do that 

in a deep neural network? In the linear regression model, we use gradient descent to 

optimize the parameter. 

 Similarly here we also use gradient descent algorithm using Back propagation. 

 For a single training example, Back propagation algorithm calculates the gradient of 

the error function.  

 Back propagation can be written as a function of the neural network. back propagation 

algorithms are a set of methods used to efficiently train artificial neural networks 

following a gradient descent approach which exploits the chain rule. 

 The main features of Backpropagation are the iterative, recursive and efficient method 

through which it calculates the updated weight to improve the network until it is not 

able to perform the task for which it is being trained.  

 Derivatives of the activation function to be known at network design time is required 

to Backpropagation. 
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 Now, how error function is used in Backpropagation and how Backpropagation works? 

Let start with an example and do it mathematically to understand how exactly updates 

the weight using Backpropagation. 

 

Input values 

X1=0.05 

X2=0.10 

Initial weight 

W1=0.15     w5=0.40 

W2=0.20     w6=0.45 

W3=0.25     w7=0.50 

W4=0.30     w8=0.55 

 

Bias Values 

b1=0.35     b2=0.60 
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Target Values 

T1=0.01 

T2=0.99 

Now, we first calculate the values of H1 and H2 by a forward pass. 

Forward Pass 

To find the value of H1 we first multiply the input value from the weights as 

                              H1=x1×w1+x2×w2+b1 

                        H1=0.05×0.15+0.10×0.20+0.35 

                                    H1=0.3775 

To calculate the final result of H1, we performed the sigmoid function as 

 

 

We will calculate the value of H2 in the same way as H1 

                              H2=x1×w3+x2×w4+b1 

                        H2=0.05×0.25+0.10×0.30+0.35 

                                    H2=0.3925 

To calculate the final result of H1, we performed the sigmoid function as 
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Now, we calculate the values of y1 and y2 in the same way as we calculate the H1 and H2. 

To find the value of y1, we first multiply the input value i.e., the outcome of H1 and H2 from 

the weights as 

                              y1=H1×w5+H2×w6+b2 

                        y1=0.593269992×0.40+0.596884378×0.45+0.60 

                                    y1=1.10590597 

To calculate the final result of y1 we performed the sigmoid function as 

 

We will calculate the value of y2 in the same way as y1 

                              y2=H1×w7+H2×w8+b2 

                        y2=0.593269992×0.50+0.596884378×0.55+0.60 

                                    y2=1.2249214 

To calculate the final result of H1, we performed the sigmoid function as 
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Our target values are 0.01 and 0.99. Our y1 and y2 value is not matched with our target values 

T1 and T2. 

Now, we will find the total error, which is simply the difference between the outputs from the 

target outputs. The total error is calculated as 

 

So, the total error is 

 

Now, we will backpropagate this error to update the weights using a backward pass. 

Backward pass at the output layer 

To update the weight, we calculate the error correspond to each weight with the help of a total 

error. The error on weight w is calculated by differentiating total error with respect to w. 
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We perform backward process so first consider the last weight w5 as 

 

From equation two, it is clear that we cannot partially differentiate it with respect to w5 because 

there is no any w5. We split equation one into multiple terms so that we can easily differentiate 

it with respect to w5 as 

 

Now, we calculate each term one by one to differentiate Etotal with respect to w5 as 
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Putting the value of e-y in equation (5) 

 

So, we put the values of  in equation no (3) to find the final result. 

 

Now, we will calculate the updated weight w5new with the help of the following formula 

 

In the same way, we calculate w6new,w7new, and w8new and this will give us the following values 
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w5new=0.35891648 

                        w6new=408666186 

                        w7new=0.511301270 

                        w8new=0.561370121 

Multilayer Networks: 

 A multilayer perceptron (MLP) is a feed forward artificial neural network that generates 

a set of outputs from a set of inputs.  

 An MLP is characterized by several layers of input nodes connected as a directed graph 

between the input nodes connected as a directed graph between the input and output 

layers.  

Backward pass at Hidden layer 

 Now, we will backpropagate to our hidden layer and update the weight w1, w2, w3, 

and w4 as we have done with w5, w6, w7, and w8 weights. 

 We will calculate the error at w1 as 

 

From equation (2), it is clear that we cannot partially differentiate it with respect to w1 because 

there is no any w1. We split equation (1) into multiple terms so that we can easily differentiate 

it with respect to w1 as 

 

Now, we calculate each term one by one to differentiate Etotal with respect to w1 as 
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We again split this because there is no any H1final term in Etoatal as 

 

 will again split because in E1 and E2 there is no H1 term. Splitting is done 

as 

 

We again Split both  because there is no any y1 and y2 term in E1 and E2. We 

split it as 

 

Now, we find the value of  by putting values in equation (18) and (19) as 

From equation (18) 
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From equation (8) 

 

From equation (19) 

 

Putting the value of e-y2 in equation (23) 
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From equation (21) 

 

Now from equation (16) and (17) 
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Put the value of  in equation (15) as 

 

We have we need to figure out as 
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Putting the value of e-H1 in equation (30) 

 

We calculate the partial derivative of the total net input to H1 with respect to w1 the same as 

we did for the output neuron: 

 

So, we put the values of  in equation (13) to find the final result. 
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Now, we will calculate the updated weight w1new with the help of the following formula 

 

In the same way, we calculate w2new,w3new, and w4 and this will give us the following values 

                        w1new=0.149780716 

                        w2new=0.19956143 

                        w3new=0.24975114 

                        w4new=0.29950229 

We have updated all the weights. We found the error 0.298371109 on the network when we 

fed forward the 0.05 and 0.1 inputs.  

In the first round of back propagation, the total error is down to 0.291027924. After repeating 

this process 10,000, the total error is down to 0.0000351085.  

At this point, the outputs neurons generate 0.159121960 and 0.984065734 i.e., nearby our 

target value when we feed forward the 0.05 and 0.1. 
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Convolutional Neural Network 

 Convolutional Neural Networks are a special type of feed-forward artificial neural 

network in which the connectivity pattern between its neuron is inspired by the visual 

cortex. 

 

 The visual cortex encompasses a small region of cells that are region sensitive to visual 

fields. In case some certain orientation edges are present then only some individual 

neuronal cells get fired inside the brain such as some neurons responds as and when 

they get exposed to the vertical edges, however some responds when they are shown to 

horizontal or diagonal edges, which is nothing but the motivation behind Convolutional 

Neural Networks. 

 The Convolutional Neural Networks, which are also called as covnets, are nothing but 

neural networks, sharing their parameters.  

 Suppose that there is an image, which is embodied as a cuboid, such that it encompasses 

length, width, and height.  

 Here the dimensions of the image are represented by the Red, Green, and Blue channels, 

as shown in the image given below. 



31 
 

 

 Now assume that we have taken a small patch of the same image, followed by running 

a small neural network on it, having k number of outputs, which is represented in a 

vertical manner.  

 Now when we slide our small neural network all over the image, it will result in another 

image constituting different width, height as well as depth.  

 We will notice that rather than having R, G, B channels, we have come across some 

more channels that, too, with less width and height, which is actually the concept of 

Convolution.  

 In case, if we accomplished in having similar patch size as that of the image, then it 

would have been a regular neural network. We have some wights due to this small 

patch. 

 

Mathematically it could be understood as follows; 
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o The Convolutional layers encompass a set of learnable filters, such that each filter 

embraces small width, height as well as depth as that of the provided input volume (if 

the image is the input layer then probably it would be 3). 

o Suppose that we want to run the convolution over the image that comprises of 34x34x3 

dimension, such that the size of a filter can be axax3. Here a can be any of the above 3, 

5, 7, etc. It must be small in comparison to the dimension of the image. 

o Each filter gets slide all over the input volume during the forward pass. It slides step by 

step, calling each individual step as a stride that encompasses a value of 2 or 3 or 4 for 

higher-dimensional images, followed by calculating a dot product in between filter's 

weights and patch from input volume. 

o It will result in 2-Dimensional output for each filter as and when we slide our filters 

followed by stacking them together so as to achieve an output volume to have a similar 

depth value as that of the number of filters. And then, the network will learn all the 

filters. 

Working of CNN 

Generally, a Convolutional Neural Network has three layers, which are as follows; 

o Input: If the image consists of 32 widths, 32 height encompassing three R, G, B 

channels, then it will hold the raw pixel([32x32x3]) values of an image. 

o Convolution: It computes the output of those neurons, which are associated with input's 

local regions, such that each neuron will calculate a dot product in between weights and 

a small region to which they are actually linked to in the input volume. For example, if 

we choose to incorporate 12 filters, then it will result in a volume of [32x32x12]. 

o ReLU Layer: It is specially used to apply an activation function elementwise, like as 

max (0, x) thresholding at zero. It results in ([32x32x12]), which relates to an 

unchanged size of the volume. 
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o Pooling: This layer is used to perform a downsampling operation along the spatial 

dimensions (width, height) that results in [16x16x12] volume. 

 

o Locally Connected: It can be defined as a regular neural network layer that receives an 

input from the preceding layer followed by computing the class scores and results in a 

1-Dimensional array that has the equal size to that of the number of classes. 

 

o We will start with an input image to which we will be applying multiple feature 

detectors, which are also called as filters to create the feature maps that comprises of a 

Convolution layer.  

o Then on the top of that layer, we will be applying the ReLU or Rectified Linear Unit to 

remove any linearity or increase non-linearity in our images. 

o Next, we will apply a Pooling layer to our Convolutional layer, so that from every 

feature map we create a Pooled feature map as the main purpose of the pooling layer is 

to make sure that we have spatial invariance in our images.  

o It also helps to reduce the size of our images as well as avoid any kind of overfitting of 

our data.  
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o After that, we will flatten all of our pooled images into one long vector or column of 

all of these values, followed by inputting these values into our artificial neural network.  

o Lastly, we will feed it into the locally connected layer to achieve the final output. 

 

Building a CNN 

o Basically, a Convolutional Neural Network consists of adding an extra layer, which is 

called convolutional that gives an eye to the Artificial Intelligence or Deep Learning 

model because with the help of it we can easily take a 3D frame or image as an input 

as opposed to our previous artificial neural network that could only take an input vector 

containing some features as information. 

o But here we are going to add at the front a convolutional layer which will be able to 

visualize images just like humans do. 

o In our dataset, we have all the images of cats and dogs in training as well as in the test 

set folders.  

o We are going to train our CNN model on 4000 images of cats as well as 4000 images 

of dogs, each respectively that are present in the training set followed by evaluating our 

model with the new 1000 images of cats and 1000 images of dogs, each respectively in 

the test set on which our model was not trained.  

o So, we are actually going to build and train a Convolutional Neural network to 

recognize if there is a dog or cat in the image. 

o For the implementation of CNN, we are going to use the Jupyter notebook.  

o So, we will start with importing the libraries, data preprocessing followed by building 

a CNN, training the CNN and lastly, we will make a single prediction.  

https://www.javatpoint.com/jupyter-notebook
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o All the steps will be carried out in the same way as we did in ANN, the only difference 

is that now we are not pre-processing the classic dataset, but some images, which is 

why the data preprocessing is different and will consist of doing two steps, i.e., in the 

first, we will pre-process the training set and then will pre-process the test set. 

o In the second part, we will build the whole architecture of CNN. We will initialize the 

CNN as a sequence of layers, and then we will add the convolution layer followed by 

adding the max-pooling layer.  

o Then we will add the second convolutional layer to make it a deep neural network as 

opposed to a shallow neural network.  

o Next, we will proceed to the flattening layer to flatten the result of all the convolutions 

and pooling into a one-dimensional vector, which will become the input of a fully 

connected neural network. Finally, we will connect all this to the output layer. 

o In the third part, we will first compile the CNN, and then we will train the CNN on the 

training set.  

o And then, finally, we will make a single prediction to test our model in a prediction that 

is when we will deploy our CNN on to different images, one that has a dog and the 

other that has a cat. 

o So, this was just a brief description of how we will build our CNN model, let's get 

started with its practical implementation. 

o We will start by importing the TensorFlow library and actually the preprocessing 

module by Keras library. And then, we will import the image sub-module of the 

preprocessing module of the Keras library, which will allow us to do image pre-

processing in part 1. 

Recurrent Neural Networks 

Why not Feedforward Networks? 

o Feedforward networks are used to classify images.  

o Let us understand the concept of a feedforward network with an example given below 

in which we trained our network for classifying various images of animals.  

o If we feed an image of a cat, it will identify that image and provide a relevant label to 

that particular image.  

https://www.javatpoint.com/convolutional-neural-network-in-tensorflow
https://www.javatpoint.com/tensorflow
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o Similarly, if you feed an image of a dog, it will provide a relevant label to that image a 

particular image as well. 

Consider the following diagram: 

 

o And if you notice the new output that we have got is classifying, a dog has no relation 

to the previous output that is of a cat, or you can say that the output at the time 't' is 

independent of output at a time 't-1'.  

o It can be clearly seen that there is no relation between the new output and the previous 

output. So, we can say that in feedforward networks, the outputs are independent of 

each other. 

o There are a few scenarios where we will actually need the previous output to get the 

new output. Let us discuss one such scenario where we will necessitate using the output 

that has been previously obtained. 

 

Now, what happens when you read a book.  
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You will understand that book only on the understanding of the previous words. So, if we use 

a feedforward network and try to predict the next word in the sentence, then in such a case, we 

will not be able to do that because our output will actually depend on previous outputs. But in 

the feedforward network, the new output is independent of the previous outputs, i.e., output at 

't+1' has no relation with the output at 't-2', 't-1', and 't.' Therefore, it can be concluded that we 

cannot use feedforward networks for predicting the next word in the sentence. Similarly, many 

other examples can also be taken where we need the previous output or some information from 

the previous output, so as to infer the new output. 

How to overcome this challenge? 

Consider the following diagram: 

 

We have input at 't-1', which we will feed to the network, and then we will get the output at 't-

1'. Then at the next timestamp that is at a time 't', we have an input at a time 't', which will be 

again given to the network along with the information from the previous timestamp, i.e., 't-1' 

and that will further help us to get the output at 't'. Similarly, at the output for 't+1', we have 

two inputs; one is the new input that we give, and the other is the information coming from the 

previous timestamps, i.e., 't' in order to get the output at a time 't+1'. In the same way, it will 

go on further like this. Here we have embodied in a more generalized way to represent it. There 

is a loop where the information from the previous timestamp is flowing, and this is how we can 

solve a particular challenge. 
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What are Recurrent Neural Networks? 

"Recurrent Networks are one such kind of artificial neural network that are mainly intended to 

identify patterns in data sequences, such as text, genomes, handwriting, the spoken word, 

numerical times series data emanating from sensors, stock markets, and government agencies". 

In order to understand the concept of Recurrent Neural Networks, let's consider the following 

analogy. 

 

Suppose that your gym trainer has made a schedule for you. The exercises are repeated every 

third day. The above image includes the order of your exercises; on your very first day, you 

will be doing shoulders, the second day you will be doing biceps, the third day you will be 

doing cardio, and all these exercises are repeated in proper order. 

Let's see what happens if we use a feedforward network for predicting the exercises today. 
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We have provided in the input such as day of the week, the month of the year, and health status. 

Also, we need to train our model or the network on the basis of the exercises that we have done 

in the past. After that, there will be a complex voting procedure involved, which will predict 

the exercises for us, and that procedure won't be that accurate. In that case, whatever output we 

will get would be as accurate as we want it to be. Now, what if the inputs get changed, and we 

make the inputs as the exercises that we have done the previous day. 

 

Therefore, if shoulders were done yesterday, then definitely today will be biceps day. Similarly, 

if biceps were done yesterday, then today will be the cardio day, and if yesterday was the cardio 

day, then today, we will need to undergo shoulder. 
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Now there can be one such scenario, where you are unable to go to the gym for one day due to 

some personal reasons, then it that case, we will go one timestamp back and will feed in what 

exercise happened day before yesterday as shown below. 

 

So, if the exercise that happened the day before yesterday was the shoulder, then yesterday 

there were biceps exercises. Similarly, if biceps happened the day before yesterday, then 

yesterday would have been cardio exercises, and if cardio would have happened the day before 

yesterday, then yesterday would have been shoulder exercises. And this prediction for the 

exercises that happened yesterday will be fed back to our network so that these predictions can 

be used as inputs in order to predict what exercise will happen today. Similarly, if you have 

missed your gym say for two days, three days or even one week, you will actually need to roll 

back, which means that you will need to go to the last day when you went to the gym, you need 

to figure out what exercises you did on that day and then only you will be getting the relevant 

output as to what exercises will happen today. 

Next, we will convert all these things into a vector, which is nothing but a list of numbers. 
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So, there is new information along with the information which we got from the prediction at 

the previous timestamp because we need all of these in order to get the prediction at a time 't'. 

Imagine that you did shoulder exercises yesterday, then, in that case, the prediction will be 

biceps exercise because if the shoulder was done yesterday, then today it will definitely be 

biceps and output will be 0, 1, and 0, which is actually the work of our vectors. 

Let's understand the math behind the Recurrent Neural Network by simply having a look at the 

image given below. 

 

Assume that 'w' is the weight matrix, and 'b' is the bias. Consider at time t=0, our input is 'xo', 

and we need to figure out what exactly is the 'ho'. We will substitute t=0 in the equation, as 

shown in the image, so as to procure the function ht value. 

After that, we will find out the value of 'yo' by using values that were previously calculated 

when we applied it to the new formula. 

https://www.javatpoint.com/recurrent-neural-network-in-tensorflow
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The same process is repeated again and again through all the timestamps within the model so 

as to train it. So, this how a Recurrent Neural Networks works. 

Training a Recurrent Neural Network 

A recurrent neural network uses a backpropagation algorithm for training, but backpropagation 

happens for every timestamp, which is why it is commonly called as backpropagation through 

time. With backpropagations, there are certain issues, namely vanishing and exploding 

gradients, that we will see one by one. 

Vanishing Gradient 

Consider the following diagram: 

 

In vanishing gradient when we use backpropagation, we tend to calculate the error which is 

nothing but the actual output that we already know subtracted by the model output that we got 

through the model and the square of that, so we can figure out the error, and with the help of 

that error, we tend to find out the change in error with respect to change in weight or any 

variable, which is here called as weight. 

So, the change of error with respect to change in weight multiplied by learning rate will give 

us the change in rate. And then we will add this change in weight to the old weight to get a new 
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weight. Basically, here we are trying to reduce the error, and for that, we need to figure out 

what will be the change in error if variables get changed, by which we can get the change in 

the variable and add it to our old variable to get the new variable. 

Now over here what can happen if the value de⁄dw, i.e., gradient or simply we can say the rate 

of change of error with respect to weight variable becomes very smaller than 1 and if we 

multiply that with the learning rate, which is the definitely smaller than 1, then, in that case, 

we will get the change in weight, which is negligible. 

Consider a scenario where you need to predict the next word in the sentence, and your sentence 

is something like "I have been to USA". Then are a lot of words after that few people speak, 

and then you need to predict what comes after speak. Now, if you need to do that, then you will 

have to go back and understand the context of what it is talking about, which is nothing but our 

long-term dependencies. During the long-term dependencies, de⁄dw becomes very small, and 

then when you multiply it with n, which is again smaller than 1, you get Δw, which will be 

very small or simply negligible. So, the new weight that you will get here will be almost equal 

to your old weight, such that the weight will not get updated further. Also, there will be no 

learning here, which is nothing but the problem of vanishing gradient. 

Similarly, if we talk about the exploding gradient, it is actually opposite to that of the vanishing 

gradient. Consider the below diagram to have a better understanding of it. 
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If de⁄dw becomes very large or greater than 1 and we have some long-term dependencies, then, 

in that case, de⁄dw will keep on increasing, and Δw will become very large that will make the 

new weight different than that of the old weights. So, these were the two problems with 

backpropagation, and now we will see how to solve these problems. 

 

Tensor Flow Tutorial 

 

o TensorFlow tutorial is designed for both beginners and professionals.  

o Our tutorial provides all the basic and advanced concept of machine learning and deep 

learning concept such as deep neural network, image processing and sentiment analysis. 

o ensorFlow is one of the famous deep learning framework, developed by Google Team.  

o It is a free and open source software library and designed in Python programming 

language, this tutorial is designed in such a way that we can easily implement deep 

learning project on TensorFlow in an easy and efficient way. 

Prerequisite 

TensorFlow is completely based on Python. So, it is essential to have basic knowledge of 

Python. Good understanding of basic mathematics and artificial intelligence concept is allow 

us to understand TensorFlow easily. 
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Audience 

This tutorial is helpful for the students who are interested in python and focused on research 

and development with many machine learning and deep learning algorithms. The aim of the 

tutorial is to describe all TensorFlow objects and methods. 

Problems 

We assure that we will not find any problem with this TensorFlow tutorial. But if there is any 

mistake, please post the problem in the contact form. 

TensorFlow can train and run the deep neural networks for image recognition, handwritten 

digit classification, recurrent neural network, word embedding, natural language processing, 

video detection, and many more. TensorFlow is run on multiple CPUs or GPUs and also mobile 

operating systems. 

The word TensorFlow is made by two words, i.e., Tensor and Flow 

1. Tensor is a multidimensional array 

2. Flow is used to define the flow of data in operation. 

TensorFlow is used to define the flow of data in operation on a multidimensional array or 

Tensor. 
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History of TensorFlow 

Many years ago, deep learning started to exceed all other machine learning algorithms when 

giving extensive data. Google has seen it could use these deep neural networks to upgrade its 

services: 

o Google search engine 

o Gmail 

o Photo 

They build a framework called TensorFlow to permit researchers and developers to work 

together in an AI model. Once it approved and scaled, it allows lots of people to use it. 

It was first released in 2015, while the first stable version was coming in 2017. It is an open- 

source platform under Apache Open Source License. We can use it, modify it, and reorganize 

the revised version for free without paying anything to Google. 

Components of TensorFlow 

Tensor 

 The name TensorFlow is derived from its core framework, "Tensor."  

 A tensor is a vector or a matrix of n-dimensional that represents all type of data.  

 All values in a tensor hold similar data type with a known shape. The shape of the data 

is the dimension of the matrix or an array. 

 A tensor can be generated from the input data or the result of a computation. In 

TensorFlow, all operations are conducted inside a graph.  

 The group is a set of calculation that takes place successively. Each transaction is called 

an op node are connected. 
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Graphs 

TensorFlow makes use of a graph framework. The chart gathers and describes all the 

computations done during the training. 

Advantages 

o It was fixed to run on multiple CPUs or GPUs and mobile operating systems. 

o The portability of the graph allows to conserve the computations for current or later 

use. The graph can be saved because it can be executed in the future. 

o All the computation in the graph is done by connecting tensors together. 

Consider the following expression a= (b+c)*(c+2) 

d=b+c 

e=c+2 

a=d*e 

Now, we can represent these operations graphically below: 
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Session 

A session can execute the operation from the graph. To feed the graph with the value of a 

tensor, we need to open a session. Inside a session, we must run an operator to create an output. 

Why is TensorFlow popular? 

 TensorFlow is the better library for all because it is accessible to everyone. TensorFlow 

library integrates different API to create a scale deep learning architecture like CNN 

(Convolutional Neural Network) or RNN (Recurrent Neural Network). 

 TensorFlow is based on graph computation; it can allow the developer to create the 

construction of the neural network with Tensorboard. This tool helps debug our 

program. It runs on CPU (Central Processing Unit) and GPU (Graphical Processing 

Unit). 
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Keras Tutorial 

 

 

 Keras is an open-source high-level Neural Network library, which is written in Python 

is capable enough to run on Theano, TensorFlow, or CNTK.  

 It was developed by one of the Google engineers, Francois Chollet.  

 It is made user-friendly, extensible, and modular for facilitating faster experimentation 

with deep neural networks.  

 It not only supports Convolutional Networks and Recurrent Networks individually but 

also their combination. 

 It cannot handle low-level computations, so it makes use of the Backend library to 

resolve it.  

 The backend library act as a high-level API wrapper for the low-level API, which lets 

it run on TensorFlow, CNTK, or Theano. 

 Initially, it had over 4800 contributors during its launch, which now has gone up to 

250,000 developers.  

 It has a 2X growth ever since every year it has grown.  

 Big companies like Microsoft, Google, NVIDIA, and Amazon have actively 

contributed to the development of Keras.  

 It has an amazing industry interaction, and it is used in the development of popular 

firms likes Netflix, Uber, Google, Expedia, etc. 

What makes Keras special? 

o Focus on user experience has always been a major part of Keras. 
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o Large adoption in the industry. 

o It is a multi backend and supports multi-platform, which helps all the encoders come 

together for coding. 

o Research community present for Keras works amazingly with the production 

community. 

o Easy to grasp all concepts. 

o It supports fast prototyping. 

o It seamlessly runs on CPU as well as GPU. 

o It provides the freedom to design any architecture, which then later is utilized as an API 

for the project. 

o It is really very simple to get started with. 

o Easy production of models actually makes Keras special. 

Keras user experience 

1. Keras is an API designed for humans 

Best practices are followed by Keras to decrease cognitive load, ensures that the 

models are consistent, and the corresponding APIs are simple. 

2. Not designed for machines 

Keras provides clear feedback upon the occurrence of any error that minimizes the 

number of user actions for the majority of the common use cases. 

3. Easy to learn and use. 

4. Highly Flexible 

Keras provide high flexibility to all of its developers by integrating low-level deep 

learning languages such as TensorFlow or Theano, which ensures that anything 

written in the base language can be implemented in Keras. 

How Keras support the claim of being multi-backend and multi-platform: 

Keras can be developed in R as well as Python, such that the code can be run with TensorFlow, 

Theano, CNTK, or MXNet as per the requirement. Keras can be run on CPU, NVIDIA GPU, 

AMD GPU, TPU, etc. It ensures that producing models with Keras is really simple as it totally 
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supports to run with TensorFlow serving, GPU acceleration (WebKeras, Keras.js), Android 

(TF, TF Lite), iOS (Native CoreML) and Raspberry Pi. 

Keras Backend: 

 Keras being a model-level library helps in developing deep learning models by offering 

high-level building blocks.  

 ll the low-level computations such as products of Tensor, convolutions, etc. are not 

handled by Keras itself, rather they depend on a specialized tensor manipulation library 

that is well optimized to serve as a backend engine.  

 Keras has managed it so perfectly that instead of incorporating one single library of 

tensor and performing operations related to that particular library, it offers plugging of 

different backend engines into Keras. 

Keras consist of three backend engines, which are as follows: 

o TensorFlow: 

TensorFlow is a Google product, which is one of the most famous deep learning tools 

widely used in the research area of machine learning and deep neural network. It came 

into the market on 9th November 2015 under the Apache License 2.0. It is built in such 

a way that it can easily run on multiple CPUs and GPUs as well as on mobile operating 

systems. It consists of various wrappers in distinct languages such as Java, C++, or 

Python. 

 

 

o Theano: 

Theano was developed at the University of Montreal, Quebec, Canada, by the MILA 

group. It is an open-source python library that is widely used for performing 

mathematical operations on multi-dimensional arrays by incorporating scipy and 

numpy. It utilizes GPUs for faster computation and efficiently computes the gradients 
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by building symbolic graphs automatically. It has come out to be very suitable for 

unstable expressions, as it first observes them numerically and then computes them with 

more stable algorithms. 

 

 

 

o CNTK 

Microsoft Cognitive Toolkit is deep learning's open-source framework. It consists of 

all the basic building blocks, which are required to form a neural network. The models 

are trained using C++ or Python, but it incorporates C# or Java to load the model for 

making predictions. 

 

 

 

Advantages of Keras 

Keras encompasses the following advantages, which are as follows: 
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o It is very easy to understand and incorporate the faster deployment of network models. 

o It has huge community support in the market as most of the AI companies are keen on 

using it. 

o It supports multi backend, which means you can use any one of them among 

TensorFlow, CNTK, and Theano with Keras as a backend according to your 

requirement. 

o Since it has an easy deployment, it also holds support for cross-platform. Following are 

the devices on which Keras can be deployed: 

1. iOS with CoreML 

2. Android with TensorFlow Android 

3. Web browser with .js support 

4. Cloud engine 

5. Raspberry pi 

o It supports Data parallelism, which means Keras can be trained on multiple GPU's at 

an instance for speeding up the training time and processing a huge amount of data. 

Disadvantages of Keras 

o The only disadvantage is that Keras has its own pre-configured layers, and if you want 

to create an abstract layer, it won't let you because it cannot handle low-level APIs. It 

only supports high-level API running on the top of the backend engine (TensorFlow, 

Theano, and CNTK). 

Prerequisite 

This Keras tutorial is made for both beginners and professionals, to help them understand the 

fundamental concept of Keras. After the completion of this tutorial, you will find yourself at a 

moderate level of expertise from where you can take yourself to the next level. 

Audience 

Since Keras is a deep learning's high-level library, so you are required to have hands-on Python 

language as well as basic knowledge of the neural network. 
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Problem 

We assure you that you will not find any difficulty in this tutorial. In case you come up with a 

query, or you find any mistake in this tutorial, do let us know by posting it in the contact form 

so that we can further improve it. 

 


