
S K Mondal’s 

Strength of Materials 
 

Contents 
Chapter – 1: Stress and Strain 

Chapter - 2 : Principal Stress and Strain 

Chapter - 3 : Moment of Inertia and Centroid 

Chapter - 4 : Bending Moment and Shear Force Diagram 

Chapter - 5 : Deflection of Beam 

Chapter - 6 : Bending Stress in Beam 

Chapter - 7 : Shear Stress in Beam 

Chapter - 8 : Fixed and Continuous Beam 

Chapter - 9 : Torsion 

Chapter-10 : Thin Cylinder 

Chapter-11 : Thick Cylinder 

Chapter-12 : Spring 

Chapter-13 : Theories of Column 

Chapter-14 : Strain Energy Method 

Chapter-15 : Theories of Failure 

Chapter-16 : Riveted and Welded Joint 

Er. S K Mondal 
IES Officer (Railway), GATE topper, NTPC ET-2003 batch, 12 years teaching 
experienced, Author of Hydro Power Familiarization (NTPC Ltd) 

 

Page 1 of 429



 

Note 
“Asked Objective Questions” is the total collection of questions from:- 

20 yrs IES (2010-1992) [Engineering Service Examination] 

21 yrs. GATE (2011-1992) 

and 14 yrs. IAS (Prelim.) [Civil Service Preliminary] 

 

 

 

 

 

Copyright © 2007 S K Mondal 

 

 

 

 

Every effort has been made to see that there are no errors (typographical or otherwise) in the 

material presented. However, it is still possible that there are a few errors (serious or 

otherwise). I would be thankful to the readers if they are brought to my attention at the 

following e-mail address: swapan_mondal_01@yahoo.co.in 

S K Mondal 

 

Page 2 of 429



1.   Stress and Strain

Theory at a Glance (for IES, GATE, PSU)
1.1 Stress ( )
When a material is subjected to an external force, a resisting force is set up within the component. 
The internal resistance force per unit area acting on a material or intensity of the forces distributed 
over a given section is called the stress at a point.  

It uses original cross section area of the specimen and also known as engineering stress or 
conventional stress.

           Therefore, P
A

P is expressed in Newton (N) and A, original area, in square meters (m2), the stress  will be 
expresses in N/ m2. This unit is called Pascal (Pa). 

As Pascal is a small quantity, in practice, multiples of this unit is used. 
  1 kPa = 103 Pa = 103 N/ m2       (kPa = Kilo Pascal) 
  1 MPa = 106 Pa = 106 N/ m2 = 1 N/mm2  (MPa = Mega Pascal) 
  1 GPa = 109 Pa = 109 N/ m2    (GPa = Giga Pascal) 

Let us take an example: A rod 10 mm 10 mm cross-section is carrying an axial tensile load 10 
kN. In this rod the tensile stress developed is given by 

3
2

2
10 10 10 100N/mm 100MPa

10 10 100t
P kN N
A mm mm mm

The resultant of the internal forces for an axially loaded member is 
normal to a section cut perpendicular to the member axis. 

The force intensity on the shown section is defined as the normal stress.  

0
lim and avgA

F P
A A

Tensile stress ( t)
If  > 0 the stress is tensile. i.e. The fibres of the component 
tend to elongate due to the external force. A member 
subjected to an external force tensile P and tensile stress 
distribution due to the force is shown in the given figure. 
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Compressive stress ( c)
If  < 0 the stress is compressive. i.e. The fibres of the 
component tend to shorten due to the external force. A 
member subjected to an external compressive force P and 
compressive stress distribution due to the force is shown in 
the given figure. 

Shear stress ( )
When forces are transmitted from one part of a body to other, the stresses 
developed in a plane parallel to the applied force are the shear stress. Shear
stress acts parallel to plane of interest. Forces P is applied 
transversely to the member AB as shown. The corresponding 
internal forces act in the plane of section C and are called shearing 

forces. The corresponding average shear stress P
Area

1.2 Strain ( )
The displacement per unit length (dimensionless) is 
known as strain. 

Tensile strain ( t)
The elongation per unit length as shown in the 
figure is known as tensile strain.  

t = L/ Lo

It is engineering strain or conventional strain. 
Here we divide the elongation to original length 

not actual length (Lo + L)

Let us take an example: A rod 100 mm in original length. When we apply an axial tensile load 10 
kN the final length of the rod after application of the load is 100.1 mm. So in this rod tensile strain is 
developed and is given by 

100.1 100 0.1 0.001 (Dimensionless)Tensile
100 100

o
t

o o

L LL mm mm mm
L L mm mm

Compressive strain ( c)
If the applied force is compressive then the reduction of length per unit length is known 

as compressive strain.  It is negative. Then c = (- L)/ Lo

Let us take an example: A rod 100 mm in original length. When we apply an axial compressive 
load 10 kN the final length of the rod after application of the load is 99 mm. So in this rod a 
compressive strain is developed and is given by 
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99 100 1 0.01 (Dimensionless)compressive

100 100
o

c
o o

L LL mm mm mm
L L mm mm

Shear Strain ( ): When a 

force P is applied tangentially to 
the element shown. Its edge 
displaced to dotted line. Where 

is the lateral displacement of 
the upper face 

of the element relative to the lower face and L is the distance between these faces.  

Then the shear strain is ( )
L

Let us take an example: A block 100 mm × 100 mm base and 10 mm height. When we apply a 
tangential force 10 kN to the upper edge it is displaced 1 mm relative to lower face.   
Then the direct shear stress in the element 

                ( )
3

210 10 10 1 N/mm 1 MPa
100 100 100 100

kN N
mm mm mm mm

And shear strain in the element ( ) = 1 0.1
10

mm
mm

Dimensionless

1.3 True stress and True Strain 
The true stress is defined as the ratio of the load to the cross section area at any instant. 

load
Instantaneous areaT

1

Where  and  is the engineering stress and engineering strain respectively.  

True strain 

ln ln 1 ln 2ln
o

L
o o

T
oL

A ddl L
l L A d

or engineering strain ( ) = Te -1

The volume of the specimen is assumed to be constant during plastic deformation. 

[ o oA L AL ] It is valid till the neck formation.

Comparison of engineering and the true stress-strain curves shown below 
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The true stress-strain curve is also known as 
the flow curve.
True stress-strain curve gives a true indication 
of deformation characteristics because it is 
based on the instantaneous dimension of 
the specimen. 
In engineering stress-strain curve, stress drops 
down after necking since it is based on the 
original area. 

In true stress-strain curve, the stress however increases after necking since the cross-
sectional area of the specimen decreases rapidly after necking.  
The flow curve of many metals in the region of uniform plastic deformation can be 
expressed by the simple power law.

T = K( T)n   Where K is the strength coefficient 
n is the strain hardening exponent 
n = 0 perfectly plastic solid 
n = 1 elastic solid 
For most metals, 0.1< n < 0.5 

Relation between the ultimate tensile strength and true stress at maximum 
load

The ultimate tensile strength max
u

o

P
A

The true stress at maximum load max
u T

P
A

And true strain at maximum load ln o
T

A
A

      or ToA e
A

Eliminating Pmax we get , max max To
u uT

o

P P A
e

A A A

Where Pmax = maximum force and Ao = Original cross section area
           A = Instantaneous cross section area

Let us take two examples:  
(I.) Only elongation no neck formation  
In the tension test of a rod shown initially it was Ao

= 50 mm2 and Lo = 100 mm. After the application of 
load it’s A = 40 mm2 and L = 125 mm. 
Determine the true strain using changes in both 
length and area. 

Answer: First of all we have to check that does the 
member forms neck or not? For that check o oA L AL

or not?
Here 50 × 100 = 40 × 125 so no neck formation is 
there. Therefore true strain 

(If no neck formation
occurs both area and 
gauge length can be used 
for a strain calculation.)
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               125ln 0.223
100

o

L

T
L

dl
l

               50ln ln 0.223
40

o
T

A
A

(II.) Elongation with neck formation  
A ductile material is tested such and necking occurs 
then the final gauge length is L=140 mm and the 
final minimum cross sectional area is A = 35 mm2.
Though the rod shown initially it was Ao = 50 mm2

and Lo = 100 mm. Determine the true strain using 
changes in both length and area. 

Answer: First of all we have to check that does the 
member forms neck or not? For that check o oA L AL

or not?
Here AoLo = 50 × 100 = 5000 mm3 and AL=35 × 140 
= 4200 mm3. So neck formation is there. Note here 
AoLo > AL. 
Therefore true strain 

              50ln ln 0.357
35

o
T

A
A

But not 140ln 0.336
100

o

L

T
L

dl
l

(it is wrong)      

(After necking, gauge 
length gives error but 
area and diameter can 
be used for the 
calculation of true strain 
at fracture and before 
fracture also.)

1.4 Hook’s law
According to Hook’s law the stress is directly proportional to strain i.e. normal stress ( )   normal 
strain ( ) and shearing stress ( ) shearing strain ( ).

    = E   and G

The co-efficient E is called the modulus of elasticity i.e. its resistance to elastic strain. The co-
efficient G is called the shear modulus of elasticity or modulus of rigidity.

1.5 Volumetric strain v

A relationship similar to that for length changes holds for three-dimensional (volume) change. For 

volumetric strain, v , the relationship is v  = (V-V0)/V0 or v  = V/V0
P
K

Where V is the final volume, V0 is the original volume, and V is the volume change. 

Volumetric strain is a ratio of values with the same units, so it also is a dimensionless 
quantity.  
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V/V= volumetric strain = x + y + z = 1 + 2 + 3

Dilation: The hydrostatic component of the total stress contributes to deformation by 
changing the area (or volume, in three dimensions) of an object. Area or volume change is 
called dilation and is positive or negative, as the volume increases or decreases, 

respectively. pe
K

 Where p is pressure.  

1.6 Young’s modulus or Modulus of elasticity (E) = PL =
A

1.7 Modulus of rigidity or Shear modulus of elasticity (G) = = PL
A

1.8 Bulk Modulus or Volume modulus of elasticity (K) = p p
v R
v R

1.10 Relationship between the elastic constants E, G, K, μ 

9KGE 2G 1 3K 1 2
3K G              [VIMP]

Where K = Bulk Modulus, = Poisson’s Ratio, E= Young’s modulus, G= Modulus of rigidity 

For a linearly elastic, isotropic and homogeneous material, the number of elastic 
constants required to relate stress and strain is two.  i.e.  any two of the four must be 
known.

If the material is non-isotropic (i.e. anisotropic), then the elastic modulii will vary with 
additional stresses appearing since there is a coupling between shear stresses and 
normal stresses for an anisotropic material. 

Let us take an example: The modulus of elasticity and rigidity of a material are 200 GPa and 80 
GPa, respectively. Find all other elastic modulus.  

Answer: Using the relation 9KGE 2G 1 3K 1 2
3K G

 we may find all other elastic modulus 

easily  

Poisson’s Ratio E E 200( ) : 1 1 1 0.25
2G 2G 2 80

Bulk Modulus (K) :     E E 2003K K 133.33GPa
1 2 3 1 2 3 1 2 0.25

1.11 Poisson’s Ratio (μ) 

=
Transverse strain or lateral strain

Longitudinal strain
= y

x

(Under unidirectional stress in x-direction)  

The theory of isotropic elasticity allows Poisson's ratios in the range from -1 to 1/2.  

Poisson's ratio in various materials Page 8 of 429



Chapter-1 Stress and Strain S K Mondal’s 
Material Poisson's ratio Material Poisson's ratio 
Steel 0.25 – 0.33 Rubber 0.48 – 0.5 
C.I 0.23 – 0.27 Cork Nearly zero 
Concrete 0.2 Novel foam negative 

We use cork in a bottle as the cork easily inserted and removed, yet it also withstand the 
pressure from within the bottle. Cork with a Poisson's ratio of nearly zero, is ideal in this 
application. 

1.12 For bi-axial stretching of sheet 

1
1 o

1

2
2

2

ln         L  length

ln         L -Final length 

f

o

f
f

o

L
Original

L

L
L

Final thickness (tf) = 
1 2

thickness(t )oInitial
e e

1.13 Elongation 
A  prismatic bar loaded in tension by an axial force P  
For a prismatic bar loaded in tension by 
an axial force P. The elongation of the bar 
can be determined as  

                     
PL
AE

Let us take an example: A Mild Steel wire 5 mm in diameter and 1 m long. If the wire is subjected 
to an axial tensile load 10 kN find its extension of the rod. (E = 200 GPa) 

Answer: We know that PL
AE

22
2 5 2

Here given, Force (P) 10 10 1000N
Length(L) 1 m

0.005
Area(A) m 1.963 10 m

4 4

kN

d

9 2

5 9

3

Modulous of Elasticity ( ) 200 200 10 N/m
10 1000 1

Therefore Elongation( ) m
1.963 10 200 10

2.55 10 m 2.55 mm

E GPa
PL
AE

Elongation of composite body 
Elongation of a bar of varying cross section A1, A2,----------,An of  lengths l1, l2,--------ln respectively. 

   31 2 n

1 2 3 n

ll l lP
E A A A A
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Let us take an example: A composite rod is 1000 mm long, its two ends are 40 mm2 and 30 mm2 in 
area and length are 300 mm and 200 mm respectively. The middle portion of the rod is 20 mm2 in 
area and 500 mm long. If the rod is subjected to an axial tensile load of 1000 N, find its total 
elongation. (E = 200 GPa). 

Answer: Consider the following figure 

Given, Load (P) =1000 N 
           Area; (A1) = 40 mm2, A2 = 20 mm2, A3 = 30 mm2

           Length; (l1) = 300 mm, l2 = 500 mm, l3 = 200 mm 
    E = 200 GPa = 200 109 N/m2 = 200 103 N/mm2

Therefore Total extension of the rod 

                  

31 2

1 2 3

3 2 2 2 2
1000 300 500 200

200 10 / 40 20 30
0.196mm

ll lP
E A A A

N mm mm mm
N mm mm mm mm

Elongation of a tapered body 
 Elongation of a tapering rod of length ‘L’ due to load ‘P’ at the end 

1 2

4PL=
Ed d    (d1 and d2 are the diameters of smaller & larger ends) 

 You may remember this in this way, 

1 2

PL PL= . .
EAE

4
eq

i e
d d

Let us take an example:  A round bar, of length L, tapers uniformly from small diameter d1 at one 
end to bigger diameter d2 at the other end. Show that the extension produced by a tensile axial load 

P is
1 2

4PL=
Ed d

.

If d2 = 2d1, compare this extension with that of a uniform cylindrical bar having a diameter equal to 
the mean diameter of the tapered bar.  

Answer:  Consider the figure below d1 be the radius at the smaller end. Then at a X cross section XX 
located at a distance × from the smaller end, the value of diameter ‘dx’ is equal to  
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1 2 1

1 2 1

2 1
1

1

2 2 2 2

11

x

x

d d d dx
L

xor d d d d
L

d dd kx Where k
L d

x x

x

22
1

We now taking a small strip of diameter 'd 'and length 'd 'at section .
Elongation of this section 'd ' length

. 4 .
. 1

4
x

XX

PL P dx P dxd
AE d d kx EE

22
0 1

1 2

Therefore total elongation of the taper bar
4

1
4

x L

x

P dxd
Ed kx
PL

E d d

Comparison: Case-I: Where d2 = 2d1

                    Elongation 2
1 1 1

4 2
2I

PL PL
Ed d Ed

                     Case –II:  Where we use Mean diameter 

                       

1 2 1 1
1

2

1

2
1

2 3
2 2 2

.Elongation of such bar
3 .

4 2
16

9
Extension of taper bar 2 9

16Extension of uniform bar 8
9

m

II

d d d dd d

PL P L
AE

d E

PL
Ed
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Elongation of a body due to its self weight 
(i) Elongation of a uniform rod of length ‘L’ due to its own weight ‘W’ 

                 

WL=
2AE

The deformation of a bar under its own weight as compared to that when subjected to 
a direct axial load equal to its own weight will be half.

  (ii) Total extension produced in rod of length ‘L’ due to its own weight ‘ ’ per with

       length.      
2

=
2EA
L

  (iii) Elongation of a conical bar due to its self weight 

     
2

max

=
6E 2
gL WL

A E

1.14 Structural members or machines must be designed such that the working stresses are less 

than the ultimate strength of the material. 

1
1

Working stress     n=1.5 to 2
factor of safety

        n 2 to 3

          Proof stress 

y
w

ult

p
p

n

n

n

1.15 Factor of Safety: (n) = y p ult

w

or or

1.16 Thermal or Temperature stress and strain 

When a material undergoes a change in temperature, it either elongates or contracts 
depending upon whether temperature is increased or decreased of the material. 

If the elongation or contraction is not restricted, i. e. free then the material does not 
experience any stress despite the fact that it undergoes a strain.

The strain due to temperature change is called thermal strain and is expressed as, 

T
Where  is co-efficient of thermal expansion, a material property, and T is the change in 
temperature. 

The free expansion or contraction of materials, when restrained induces stress in the 
material and it is referred to as thermal stress.
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t E T   Where, E = Modulus of elasticity 

Thermal stress produces the same effect in the material similar to that of mechanical 
stress. A compressive stress will produce in the material with increase in temperature 
and the stress developed is tensile stress with decrease in temperature. 

Let us take an example: A rod consists of two parts that are made of steel and copper as shown in 
figure below. The elastic modulus and coefficient of thermal expansion for steel are 200 GPa and 
11.7 × 10-6 per °C respectively and for copper 70 GPa and 21.6 × 10-6 per °C respectively. If the 
temperature of the rod is raised by 50°C, determine the forces and stresses acting on the rod. 

Answer:  If we allow this rod to freely expand then free expansion 

               6 611.7 10 50 500 21.6 10 50 750

1.1025 mm Compressive

T T L

But according to diagram only free expansion is 0.4 mm.  
Therefore restrained deflection of rod =1.1025 mm – 0.4 mm = 0.7025 mm 
Let us assume the force required to make their elongation vanish be P which is the reaction force at 
the ends. 

2 29 9

500 7500.7025
0.075 200 10 0.050 70 10

4 4
116.6

Steel Cu

PL PL
AE AE

P Por

or P kN

Therefore, compressive stress on steel rod 

         
3

2

2

116.6 10 N/m 26.39 MPa
0.075

4

Steel
Steel

P
A

         And compressive stress on copper rod 

        
3

2

2

116.6 10 N/m 59.38 MPa
0.050

4

Cu
Cu

P
A
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1.17 Thermal stress on Brass and Mild steel combination
A brass rod placed within a steel tube of exactly same length. The assembly is making in such a 
way that elongation of the combination will be same. To calculate the stress induced in the brass 
rod, steel tube when the combination is raised by toC then the following analogy have to do.  

(a) Original bar before heating. 

(b) Expanded position if the members are allowed to 
expand freely and independently after heating. 

(c) Expanded position of the compound bar i.e. final 
position after heating. 

Compatibility Equation:  

          st sf Bt Bf

Equilibrium Equation:  

                       s s B BA A

Assumption: 

s1. L = L

2.
3.

B

b s

L

Steel Tension
Brass Compression

Where, = Expansion of the compound bar = AD in the above figure. 

st = Free expansion of the steel tube due to temperature rise toC = s L t

     = AB in the above figure.  

sf = Expansion of the steel tube due to internal force developed by the unequal expansion.  

     = BD in the above figure.  

Bt = Free expansion of the brass rod due to temperature rise toC = b L t

     = AC in the above figure. 

Bf = Compression of the brass rod due to internal force developed by the unequal expansion. 

     = BD in the above figure.  
And in the equilibrium equation  
Tensile force in the steel tube =  Compressive force in the brass rod 

 Where, s = Tensile stress developed in the steel tube. 

              B = Compressive stress developed in the brass rod. 

              sA = Cross section area of the steel tube. 

              BA = Cross section area of the brass rod. 

Let us take an example: See the Conventional Question Answer section of this chapter and the 
question is “Conventional Question IES-2008” and it’s answer. Page 14 of 429



Chapter-1 Stress and Strain S K Mondal’s 

1.18 Maximum stress and elongation due to rotation 

(i) 
2 2

max 8
L  and 

2 3

12
LL
E

(ii) 
2 2

max 2
L  and 

2 3

3
LL

E
For remember: You will get (ii) by multiplying by 4 of (i)  

1.18 Creep 
When a member is subjected to a constant load over a long period of time it undergoes a slow 

permanent deformation and this is termed as “creep”. This is dependent on temperature. Usually at 
elevated temperatures creep is high. 

The materials have its own different melting point; each will creep when the homologous 

temperature > 0.5.  Homologous temp = Testing temperature
Melting temperature

> 0.5 

A typical creep curve shows three distinct stages 
with different creep rates. After an initial rapid 
elongation o, the creep rate decrease with time 
until reaching the steady state. 

1) Primary creep is a period of transient creep. 
The creep resistance of the material increases 
due to material deformation.  

2) Secondary creep provides a nearly constant 
creep rate. The average value of the creep rate 
during this period is called the minimum creep 
rate. A stage of balance between competing. 

Strain hardening and recovery (softening) of the material. 

3) Tertiary creep shows a rapid increase in the creep rate due to effectively reduced cross-
sectional area of the specimen leading to creep rupture or failure. In this stage intergranular 
cracking and/or formation of voids and cavities occur.  

  Creep rate =c1 2c

 Creep strain at any time = zero time strain intercept + creep rate ×Time 

              = 2
0 1

cc t

 Where, 1 2,  constantsc c are stress

1.19 If a load P is applied suddenly to a bar then the stress & strain induced will be double
than those obtained by an equal load applied gradually. 

1.20 Stress produced by a load P in falling from height ’h’Page 15 of 429
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21 1   ,

 being stress & strain produced by static load P & L=length of bar.

d
h
L

21 1A AEh
P PL

1.21 Loads shared by the materials of a compound bar made of bars x & y due to load W,

      

.

.

x x
x

x x y y

y y
y

x x y y

A EP W
A E A E

A E
P W

A E A E

1.22 Elongation of a compound bar, 
x x y y

PL
A E A E

1.23 Tension Test 

i) True elastic limit: based on micro-strain measurement at strains on order of 2 × 10-6. Very low 
value and is related to the motion of a few hundred dislocations. 

ii) Proportional limit: the highest stress at which stress is directly proportional to strain. 

iii) Elastic limit: is the greatest stress the material can withstand without any measurable 
permanent strain after unloading. Elastic limit > proportional limit.

iv)  Yield strength is the stress required to produce a small specific amount of 

deformation. The offset yield strength can be determined by the stress 
corresponding to the intersection of the stress-strain curve and a line 
parallel to the elastic line offset by a strain of 0.2 or 0.1%. (  = 0.002 or 

0.001).
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The offset yield stress is referred to proof stress either at 0.1 or 0.5% strain used for design 
and specification purposes to avoid the practical difficulties of measuring the elastic limit or 
proportional limit. 

v)  Tensile strength or ultimate tensile strength (UTS) u is the maximum load Pmax divided 

by the original cross-sectional area Ao of the specimen. 

vi)  % Elongation, f o

o

L L
L

, is chiefly influenced by uniform elongation, which is dependent on the 

strain-hardening capacity of the material. 

vii) Reduction of Area: o f

o

A Aq
A

Reduction of area is more a measure of the deformation required to produce failure and 
its chief contribution results from the necking process. 

Because of the complicated state of stress state in the neck, values of reduction of area 
are dependent on specimen geometry, and deformation behaviour, and they should not be 
taken as true material properties. 

RA is the most structure-sensitive ductility parameter and is useful in detecting quality 
changes in the materials. 

viii) Stress-strain response 

1.24 Elastic strain and Plastic strain 
The strain present in the material after unloading is called the residual strain or plastic strain 
and the strain disappears during unloading is termed as recoverable or elastic strain. 
Equation of the straight line CB is given by 

total Plastic ElasticE E E

Carefully observe the following figures and understand which one is Elastic strain and which one is 
Plastic strain
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Let us take an example:  A 10 mm diameter tensile specimen has a 50 mm gauge length. The load 
corresponding to the 0.2% offset is 55 kN and the maximum load is 70 kN. Fracture occurs at 60 kN. 
The diameter after fracture is 8 mm and the gauge length at fracture is 65 mm. Calculate the 
following properties of the material from the tension test. 
 (i) % Elongation 
 (ii) Reduction of Area (RA) % 
 (iii) Tensile strength or ultimate tensile strength (UTS) 
 (iv) Yield strength 
 (v) Fracture strength 
 (vi) If E = 200 GPa, the elastic recoverable strain at maximum load 
(vii) If the elongation at maximum load (the uniform elongation) is 20%, what is the plastic strain 

at maximum load? 

Answer: Given, Original area 2 2 5 2
0 0.010 m 7.854 10 m

4
A

  Area at fracture 2 2 5 20.008 m 5.027 10 m
4fA

              Original gauge length (L0) = 50 mm 
              Gauge length at fracture (L) = 65 mm 
Therefore 

(i) % Elongation 0

0

65 50100% 100 30%
50

L L
L

(ii) Reduction of area (RA) = q 0

0

7.854 5.027100% 100% 36%
7.854

fA A
A

(iii) Tensile strength or Ultimate tensile strength (UTS),
3

2
5

70 10 N/m 891 MPa
7.854 10

max
u

o

P
A

(iv) Yield strength
3

2
5

55 10 N/m 700 MPa
7.854 10

y
y

o

P
A

(v) Fracture strength
3

2
5

60 10 N/m 764MPa
7.854 10

Fracture
F

o

P
A

(vi) Elastic recoverable strain at maximum load
6

max
9

/ 891 10 0.0045
200 10

o
E

P A
EPage 18 of 429
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(vii) Plastic strain 0.2000 0.0045 0.1955P total E

1.25 Elasticity 
This is the property of a material to regain its original shape 
after deformation when the external forces are removed. When 
the material is in elastic region the strain disappears 
completely after removal of the load, The stress-strain 
relationship in elastic region need not be linear and can be 
non-linear (example rubber). The maximum stress value below 
which the strain is fully recoverable is called the elastic limit.
It is represented by point A in figure. All materials are elastic 
to some extent but the degree varies, for example, both mild 
steel and rubber are elastic materials but steel is more elastic 
than rubber. 

1.26 Plasticity
When the stress in the material exceeds the elastic limit, the 
material enters into plastic phase where the strain can no 
longer be completely removed. Under plastic conditions 
materials ideally deform without any increase in stress. A 
typical stress strain diagram for an elastic-perfectly plastic 
material is shown in the figure. Mises-Henky criterion gives a 
good starting point for plasticity analysis. 

1.27 Strain hardening 
If the material is reloaded from point C, it will follow the 
previous unloading path and line CB becomes its new elastic 
region with elastic limit defined by point B. Though the new 
elastic region CB resembles that of the initial elastic region 
OA, the internal structure of the material in the new state has 
changed. The change in the microstructure of the material is 
clear from the fact that the ductility of the material has come 
down due to strain hardening. When the material is reloaded, 
it follows the same path as that of a virgin material and fails 
on reaching the ultimate strength which remains unaltered 
due to the intermediate loading and unloading process. 
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1.28 Stress reversal and stress-strain hysteresis loop
We know that fatigue failure begins at a local discontinuity and when the stress at the discontinuity 
exceeds elastic limit there is plastic strain. The cyclic plastic strain results crack propagation and 
fracture. 
When we plot the experimental data with reversed loading and the true stress strain hysteresis 
loops is found as shown below.  

True stress-strain plot with a number of stress reversals

Due to cyclic strain the elastic limit increases for annealed steel and decreases for cold drawn steel. 
Here the stress range is . p and e are the plastic and elastic strain ranges, the total strain 
range being . Considering that the total strain amplitude can be given as 

 = p+ e
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Stress in a bar due to self-weight 
GATE-1. Two identical circular rods of same diameter and same length are subjected to 

same magnitude of axial tensile force. One of the rods is made out of mild steel 
having the modulus of elasticity of 206 GPa. The other rod is made out of cast 
iron having the modulus of elasticity of 100 GPa. Assume both the materials to 
be homogeneous and isotropic and the axial force causes the same amount of 
uniform stress in both the rods. The stresses developed are within the 
proportional limit of the respective materials. Which of the following 
observations is correct? [GATE-2003] 

 (a) Both rods elongate by the same amount
 (b) Mild steel rod elongates more than the cast iron rod 
 (c) Cast iron rod elongates more than the mild steel rod 
 (d) As the stresses are equal strains are also equal in both the rods 

GATE-1. Ans. (c) PL 1L or L [AsP, L and A is same]
AE E

                 mild steel CI
CI MS

MSC.I

L E 100 L L
L E 206

GATE-2. A steel bar of 40 mm × 40 mm square cross-section is subjected to an axial 
compressive load of 200 kN. If the length of the bar is 2 m and E = 200 GPa, the 
elongation of the bar will be: [GATE-2006] 

 (a) 1.25 mm (b) 2.70 mm (c) 4.05 mm (d) 5.40 mm 

GATE-2. Ans. (a) 9

200 1000 2PLL m 1.25mm
AE 0.04 0.04 200 10

True stress and true strain 
GATE-3. The ultimate tensile strength of a material is 400 MPa and the elongation up to 

maximum load is 35%. If the material obeys power law of hardening, then the 
true stress-true strain relation (stress in MPa) in the plastic deformation range 
is:  [GATE-2006] 

 (a) 0.30540  (b) 0.30775  (c) 0.35540  (d) 0.35775
GATE-3. Ans. (c)  
 A true stress – true strain curve in 

tension nk
 k = Strength co-efficient = 400 × 

(1.35) = 540 MPa 
 n = Strain – hardening exponent = 

0.35

Elasticity and Plasticity 
GATE-4. An axial residual compressive stress due to a manufacturing process is present 

on the outer surface of a rotating shaft subjected to bending. Under a given 
Page 21 of 429



Chapter-1 Stress and Strain S K Mondal’s 
bending load, the fatigue life of the shaft in the presence of the residual 
compressive stress is: [GATE-2008]   

 (a) Decreased  
(b) Increased or decreased, depending on the external bending load 

 (c) Neither decreased nor increased     
(d) Increased 

GATE-4. Ans. (d) 

 A cantilever-loaded rotating beam, showing the normal distribution of surface stresses. 
(i.e., tension at the top and compression at the bottom) 

 The residual compressive stresses induced. 

 Net stress pattern obtained when loading a surface treated beam. The reduced 
magnitude of the tensile stresses contributes to increased fatigue life. 

GATE-5. A static load is mounted at the centre of a shaft rotating at uniform angular 
velocity. This shaft will be designed for [GATE-2002]

 (a) The maximum compressive stress (static) (b) The maximum tensile stress (static) 
 (c) The maximum bending moment (static) (d) Fatigue loading
GATE-5. Ans. (d) 

GATE-6. Fatigue strength of a rod subjected to cyclic axial force is less than that of a 
rotating beam of the same dimensions subjected to steady lateral force because

 (a) Axial stiffness is less than bending stiffness [GATE-1992]
 (b) Of absence of centrifugal effects in the rod 
 (c) The number of discontinuities vulnerable to fatigue are more in the rod 
 (d) At a particular time the rod has only one type of stress whereas the beam has both 

the tensile and compressive stresses. 
GATE-6. Ans. (d) 

Relation between the Elastic Modulii 
GATE-7. A rod of length L and diameter D is subjected to a tensile load P. Which of the 

following is sufficient to calculate the resulting change in diameter?  
 (a) Young's modulus (b) Shear modulus [GATE-2008] 
 (c) Poisson's ratio (d) Both Young's modulus and shear modulus  
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GATE-7. Ans. (d) For longitudinal strain we need Young's modulus and for calculating transverse 

strain we need Poisson's ratio. We may calculate Poisson's ratio from )1(2GE for 
that we need Shear modulus. 

GATE-8. In terms of Poisson's ratio (μ) the ratio of Young's Modulus (E) to Shear 
Modulus (G) of elastic materials is            
   [GATE-2004]

1 1( ) 2(1 ) ( ) 2(1 ) ( ) (1 ) ( ) (1 )
2 2

a b c d

GATE-8. Ans. (a) 

GATE-9. The relationship between Young's modulus (E), Bulk modulus (K) and Poisson's 
ratio (μ) is given by: [GATE-2002] 
(a) E  3 K 1 2  (b) K  3 E 1 2

 (c) E  3 K 1  (d) K  3 E 1

GATE-9. Ans. (a) 9KGRemember E 2G 1 3K 1 2
3K G

Stresses in compound strut 
GATE-10. In a bolted joint two members 

are connected with an axial 
tightening force of 2200 N. If 
the bolt used has metric 
threads of 4 mm pitch, then 
torque required for achieving 
the tightening force is 

 (a) 0.7Nm (b) 1.0 Nm  
 (c) 1.4Nm (d) 2.8Nm                                             [GATE-2004]

GATE-10. Ans. (c) 0.004T F r 2200 Nm 1.4Nm
2

GATE-11. The figure below shows a steel rod of 25 mm2 cross sectional area. It is loaded 
at four points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998] 

 Assume Esteel = 200 GPa. The total change in length of the rod due to loading is: 
 (a) 1 μm (b) -10 μm (c) 16 μm (d) -20 μm 

GATE-11. Ans. (b) First draw FBD of all parts separately then  

 Total change in length = PL
AE

GATE-12. A bar having a cross-sectional area of 700mm2 is subjected to axial loads at the 
positions indicated. The value of stress in the segment QR is: [GATE-2006]
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        P    Q      R   S 
 (a) 40 MPa   (b) 50 MPa   (c) 70 MPa   (d) 120 MPa 
GATE-12. Ans. (a) 

 F.B.D 

QR
P 28000 MPa 40MPa
A 700

GATE-13. An ejector mechanism consists of a 
helical compression spring having a 
spring constant of K = 981 × 103 N/m. 
It is pre-compressed by 100 mm 
from its free state. If it is used to 
eject a mass of 100 kg held on it, the 
mass will move up through a 
distance of 

 (a) 100mm                             (b) 500mm 
 (c) 981 mm                            (d) 1000mm 

                                                                [GATE-2004] 

GATE-13. Ans. (a) No calculation needed it is pre-
compressed by 100 mm from its free 
state. So it can’t move more than 100 
mm. choice (b), (c) and (d) out. 

GATE-14. The figure shows a pair of pin-jointed 
gripper-tongs holding an object 
weighing 2000 N. The co-efficient of 
friction (μ) at the gripping surface is 
0.1 XX is the line of action of the 
input force and YY is the line of 
application of gripping force. If the 
pin-joint is assumed to be 
frictionless, then magnitude of force 
F required to hold the weight is: 

 (a) 1000 N   
 (b) 2000 N  
 (c) 2500 N   
 (d) 5000 N 

                                         [GATE-2004]
GATE-14. Ans. (d) Frictional force required = 2000 N 

Force needed to produce 2000N frictional force at Y-Y section =  2000 20000N
0.1

So for each side we need (Fy) = 10000 N force Page 24 of 429
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Taking moment about PIN 

y
y

F 50 10000 50F 50 F 100 or F 5000N
100 100

GATE-15. A uniform, slender cylindrical rod is made of a homogeneous and isotropic 
material. The rod rests on a frictionless surface. The rod is heated uniformly. If 
the radial and longitudinal thermal stresses are represented by r and z,
respectively, then [GATE-2005]
( ) 0, 0 ( ) 0, 0 ( ) 0, 0 ( ) 0, 0r z r z r z r za b c d

GATE-15. Ans. (a) Thermal stress will develop only when you prevent the material to 
contrast/elongate. As here it is free no thermal stress will develop. 

Tensile Test 
GATE-16. A test specimen is stressed slightly beyond the yield point and then unloaded. 

Its yield strength will [GATE-1995] 
 (a) Decrease  (b) Increase     
 (c) Remains same (d) Becomes equal to ultimate tensile strength 
GATE-16. Ans. (b)

GATE-17. Under repeated loading a 
material has the stress-strain 
curve shown in figure, which of 
the following statements is 
true?

 (a) The smaller the shaded area, 
the better the material damping

 (b) The larger the shaded area, the 
better the material damping 

 (c) Material damping is an 
independent material property 
and does not depend on this 
curve

 (d) None of these                                       [GATE-1999]
GATE-17. Ans. (a) 

Previous 20-Years IES Questions 

Stress in a bar due to self-weight 
IES-1. A solid uniform metal bar of diameter D and length L is hanging vertically 

from its upper end. The elongation of the bar due to self weight is: [IES-2005]
 (a) Proportional to L and inversely proportional to D2

 (b) Proportional to L2 and inversely proportional to D2

 (c) Proportional of L but independent of D 
 (d) Proportional of U but independent of D Page 25 of 429
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IES-1. Ans. (a) 2 2

WL WL 1L &
2AE D D2 E

4

IES-2. The deformation of a bar under its own weight as compared to that when 
subjected to a direct axial load equal to its own weight will be: [IES-1998]

 (a) The same   (b) One-fourth   (c) Half  (d) Double 
IES-2. Ans. (c) 

IES-3. A rigid beam of negligible weight is supported in a horizontal position by two 
rods of steel and aluminum, 2 m and 1 m long having values of cross - sectional 
areas 1 cm2 and 2 cm2 and E of 200 GPa and 100 GPa respectively. A load P is 
applied as shown in the figure [IES-2002] 

 If the rigid beam is to remain horizontal then      
 (a) The forces on both sides should be equal 
 (b) The force on aluminum rod should be twice the force on steel 
 (c) The force on the steel rod should be twice the force on aluminum 
 (d) The force P must be applied at the centre of the beam 
IES-3. Ans. (b) 

Bar of uniform strength
IES-4. Which one of the following statements is correct? [IES 2007] 
 A beam is said to be of uniform strength, if
 (a) The bending moment is the same throughout the beam 
 (b) The shear stress is the same throughout the beam 
 (c) The deflection is the same throughout the beam  
 (d) The bending stress is the same at every section along its longitudinal axis 
IES-4. Ans. (d) 

IES-5. Which one of the following statements is correct? [IES-2006] 
 Beams of uniform strength vary in section such that 
 (a) bending moment remains constant  (b) deflection remains constant 
 (c) maximum bending stress remains constant (d) shear force remains constant 
IES-5. Ans. (c)

IES-6. For bolts of uniform strength, the shank diameter is made equal to [IES-2003]
 (a) Major diameter of threads   (b) Pitch diameter of threads 
 (c) Minor diameter of threads   (d) Nominal diameter of threads 
IES-6. Ans. (c) 

IES-7. A bolt of uniform strength can be developed by [IES-1995]
 (a) Keeping the core diameter of threads equal to the diameter of unthreaded portion 

of the bolt 
 (b) Keeping the core diameter smaller than the diameter of the unthreaded portion 
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 (c) Keeping the nominal diameter of threads equal the diameter of unthreaded portion 

of the bolt 
 (d) One end fixed and the other end free 
IES-7. Ans. (a)  

Elongation of a Taper Rod 
IES-8. Two tapering bars of the same material are subjected to a tensile load P. The 

lengths of both the bars are the same. The larger diameter of each of the bars is 
D. The diameter of the bar A at its smaller end is D/2 and that of the bar B is 
D/3. What is the ratio of elongation of the bar A to that of the bar B? [IES-2006]

 (a) 3 : 2   (b) 2: 3   (c) 4 : 9   (d) 1: 3 

IES-8. Ans. (b)   Elongation of a taper rod 
1 2

PLl
d d E

4

                    2A B

2B A

l d D / 3 2or
l d D / 2 3

IES-9. A bar of length L tapers uniformly from diameter 1.1 D at one end to 0.9 D at 
the other end. The elongation due to axial pull is computed using mean 
diameter D. What is the approximate error in computed elongation? [IES-2004]

 (a) 10%    (b) 5%   (c) 1%    (d) 0.5% 

IES-9. Ans. (c)
act

1 2

PL PLActual elongation of the bar l
d d E 1.1D 0.9D E

4 4

                  

2Cal

2
act cal

cal

PLCalculated elongation of the bar l
D E
4

l l DError % 100 1 100% 1%
l 1.1D 0.9D

IES-10. The stretch in a steel rod of circular section, having a length 'l' subjected to a 
tensile load' P' and tapering uniformly from a diameter d1 at one end to a 
diameter d2 at the other end, is given [IES-1995] 

 (a) 
1 24
Pl
Ed d

  (b) 
1 2

.pl
Ed d

  (c) 
1 2

.
4
pl
Ed d

  (d) 
1 2

4pl
Ed d

IES-10. Ans. (d)
act

1 2

PLActual elongation of the bar l
d d E

4

IES-11. A tapering bar (diameters of end sections being d1 and d2 a bar of uniform 
cross-section ’d’ have the same length and are subjected the same axial pull. 
Both the bars will have the same extension if’d’ is equal to [IES-1998]

1 2 1 2 1 2
1 2a                   b              c                 d          

2 2 2
d d d d d dd d

IES-11. Ans. (b) 

Poisson’s ratio 
IES-12. In the case of an engineering material under unidirectional stress in the x-

direction, the Poisson's ratio is equal to (symbols have the usual meanings)  
[IAS 1994, IES-2000]
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 (a) 
x

y    (b) 
x

y    (c) 
x

y    (d) 
x

y

IES-12. Ans. (a)  

IES-13. Which one of the following is correct in respect of Poisson's ratio (v) limits for 
an isotropic elastic solid? [IES-2004]

 (a)  (b) 1/ 4 1/ 3   (c) 1 1/ 2    (d) 1/ 2 1/ 2
IES-13. Ans. (c) Theoretically 1 1/ 2 but practically 0 1/ 2

IES-14. Match List-I (Elastic properties of an isotropic elastic material) with List-II 
(Nature of strain produced) and select the correct answer using the codes 
given below the Lists:  [IES-1997] 
List-I      List-II  
A. Young's modulus    1. Shear strain 
B. Modulus of rigidity   2. Normal strain 
C. Bulk modulus     3. Transverse strain 
D. Poisson's ratio     4. Volumetric strain 
Codes: A  B  C  D   A  B  C  D 

  (a)  1  2  3  4   (b)  2  1  3  4 
  (c)  2  1  4  3   (d)  1  2  4  3 
IES-14. Ans. (c) 

IES-15. If the value of Poisson's ratio is zero, then it means that [IES-1994]
 (a) The material is rigid. 
 (b) The material is perfectly plastic. 
 (c) There is no longitudinal strain in the material  
 (d) The longitudinal strain in the material is infinite. 
IES-15. Ans. (a) If Poisson's ratio is zero, then material is rigid. 

IES-16. Which of the following is true (μ= Poisson's ratio) [IES-1992]
 (a) 0 1/ 2  (b) 1 0  (c) 1 1  (d) 
IES-16. Ans. (a) 

Elasticity and Plasticity 
IES-17. If the area of cross-section of a wire is circular and if the radius of this circle 

decreases to half its original value due to the stretch of the wire by a load, then 
the modulus of elasticity of the wire be: [IES-1993]

 (a) One-fourth of its original value   (b) Halved  (c) Doubled  (d) Unaffected 
IES-17. Ans. (d) Note: Modulus of elasticity is the property of material. It will remain same. 

IES-18. The relationship between the Lame’s constant ‘ ’, Young’s modulus ‘E’ and the 
Poisson’s ratio ‘ ’ [IES-1997]

a     ( )         c          d   
1 1 2 1 2 1 1 1

E E E Eb

IES-18. Ans. (a) 

IES-19. Which of the following pairs are correctly matched? [IES-1994] 
 1. Resilience…………… Resistance to deformation. 
 2. Malleability …………..Shape change. 
 3. Creep ........................ Progressive deformation. 
 4. Plasticity .... ………….Permanent deformation. 
 Select the correct answer using the codes given below: 

Codes: (a) 2, 3 and 4  (b) 1, 2 and 3  (c) 1, 2 and 4 (d) 1, 3 and 4 
IES-19. Ans. (a) Strain energy stored by a body within elastic limit is known as resilience. 
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Creep and fatigue 
IES-20. What is the phenomenon of progressive extension of the material i.e., strain 

increasing with the time at a constant load, called? [IES 2007]
 (a) Plasticity  (b) Yielding  (b) Creeping  (d) Breaking 
IES-20. Ans.  (c) 

IES-21. The correct sequence of creep deformation in a creep curve in order of their 
elongation is: [IES-2001] 

 (a) Steady state, transient, accelerated (b) Transient, steady state, accelerated
 (c) Transient, accelerated, steady state  (d) Accelerated, steady state, transient 
IES-21. Ans. (b) 

IES-22. The highest stress that a material can withstand for a specified length of time 
without excessive deformation is called [IES-1997]

 (a) Fatigue strength     (b) Endurance strength   
 (c) Creep strength     (d) Creep rupture strength 
IES-22. Ans. (c)

IES-23. Which one of the following features improves the fatigue strength of a metallic 
material? [IES-2000] 

 (a) Increasing the temperature   (b) Scratching the surface 
 (c) Overstressing     (d) Under stressing
IES-23. Ans. (d) 

IES-24. Consider the following statements: [IES-1993] 
 For increasing the fatigue strength of welded joints it is necessary to employ 
 1. Grinding 2. Coating 3. Hammer peening 
 Of the above statements 
 (a) 1 and 2 are correct  (b) 2 and 3 are correct 
 (c) 1 and 3 are correct  (d) 1, 2 and 3 are correct 
IES-24. Ans. (c) A polished surface by grinding can take more number of cycles than a part with 

rough surface. In Hammer peening residual compressive stress lower the peak tensile 
stress

Relation between the Elastic Modulii 
IES-25. For a linearly elastic, isotropic and homogeneous material, the number of 

elastic constants required to relate stress and strain is: [IAS 1994; IES-1998]
 (a) Two   (b) Three  (c) Four  (d) Six 
IES-25. Ans. (a) 
           
IES-26. E, G, K and  represent the elastic modulus, shear modulus, bulk modulus and 

Poisson's ratio respectively of a linearly elastic, isotropic and homogeneous 
material. To express the stress-strain relations completely for this material, at 
least [IES-2006]

 (a) E, G and  must be known  (b) E, K and  must be known 
 (c) Any two of the four must be known (d) All the four must be known 
IES-26. Ans. (c) 
IES-27. The number of elastic constants for a completely anisotropic elastic material 

which follows Hooke's law is: [IES-1999] 
 (a) 3    (b) 4    (c) 21    (d) 25 
IES-27. Ans. (c) 

IES-28. What are the materials which show direction dependent properties, called? 
 (a) Homogeneous materials (b) Viscoelastic materials [IES 2007]
 (c) Isotropic materials (d) Anisotropic materials 
IES-28. Ans. (d)          

IES-29. An orthotropic material, under plane stress condition will have:  [IES-2006] Page 29 of 429
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 (a) 15 independent elastic constants (b) 4 independent elastic constants 
 (c) 5 independent elastic constants  (d) 9 independent elastic constants 
IES-29. Ans. (d) 

IES-30. Match List-I (Properties) with List-II (Units) and select the correct answer 
using the codes given below the lists: [IES-2001] 
List I     List II  
A. Dynamic viscosity   1. Pa 
B. Kinematic viscosity   2. m2/s
C. Torsional stiffness   3. Ns/m2

D. Modulus of rigidity   4. N/m 
 Codes: A B C D  A B C D 
  (a) 3 2 4 1 (b) 5 2 4 3 
  (b) 3 4 2 3 (d) 5 4 2 1 
IES-30. Ans. (a) 
        
IES-31. Young's modulus of elasticity and Poisson's ratio of a material are 1.25 × 105

MPa and 0.34 respectively. The modulus of rigidity of the material is: 
[IAS 1994, IES-1995, 2001, 2002, 2007] 

 (a) 0.4025 ×105 Mpa (b) 0.4664 × 105 Mpa 
 (c) 0.8375 × 105 MPa (d) 0.9469 × 105 MPa
IES-31. Ans.(b) )1(2GE  or 1.25x105 = 2G(1+0.34) or G = 0.4664 × 105 MPa 

IES-32. In a homogenous, isotropic elastic material, the modulus of elasticity E in 
terms of G and K is equal to [IAS-1995, IES - 1992]

 (a)
3

9
G K
KG

  (b) 
3
9
G K
KG

  (c) 
9

3
KG

G K
  (d) 

9
3
KG

K G
IES-32. Ans. (c) 

IES-33. What is the relationship between the linear elastic properties Young's modulus 
(E), rigidity modulus (G) and bulk modulus (K)? [IES-2008]

1 9 3 3 9 1 9 3 1 9 1 3(a) (b) (c) (d)
E K G E K G E K G E K G

IES-33. Ans. (d) 9KGE 2G 1 3K 1 2
3K G

IES-34. What is the relationship between the liner elastic properties Young’s modulus 
(E), rigidity modulus (G) and bulk modulus (K)? [IES-2009] 

 (a) 
9
KGE
K G

        (b) 
9KGE
K G

        (c) 
9

3
KGE

K G
       (d) 

9
3
KGE
K G

IES-34. Ans. (d) 9KGE 2G 1 3K 1 2
3K G

IES-35. If E, G and K denote Young's modulus, Modulus of rigidity and Bulk Modulus, 
respectively, for an elastic material, then which one of the following can be 
possibly true? [IES-2005] 

 (a) G = 2K   (b) G = E   (c) K = E   (d) G = K = E

IES-35. Ans.(c) 9KGE 2G 1 3K 1 2
3K G

1the value of must be between 0 to 0.5 so E never equal to G but if then
3

E k so ans. is c

IES-36. If a material had a modulus of elasticity of 2.1 × 106 kgf/cm2 and a modulus of 
rigidity of 0.8 × 106 kgf/cm2 then the approximate value of the Poisson's ratio of 
the material would be: [IES-1993] 

 (a) 0.26  (b) 0.31   (c) 0.47   (d) 0.5  
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IES-36. Ans. (b) Use 2 1E G

IES-37. The modulus of elasticity for a material is 200 GN/m2 and Poisson's ratio is 0.25. 
 What is the modulus of rigidity? [IES-2004]
 (a) 80 GN/m2   (b) 125 GN/m2   (c) 250 GN/m2   (d) 320 GN/m2

IES-37. Ans. (a) 2E 200E 2G 1 or G 80GN / m
2 1 2 1 0.25

IES-38. Consider the following statements: [IES-2009] 
1. Two-dimensional stresses applied to a thin plate in its own plane 

represent the plane stress condition. 
 2. Under plane stress condition, the strain in the direction perpendicular to 

the plane is zero. 
 3. Normal and shear stresses may occur simultaneously on a plane. 
 Which of the above statements is /are correct? 

(a) 1 only                     (b) 1 and 2                   (c) 2 and 3               (d) 1 and 3 
IES-38. Ans. (d) Under plane stress condition, the strain in the direction perpendicular to the plane 

is not zero. It has been found experimentally that when a body is stressed within elastic 
limit, the lateral strain bears a constant ratio to the linear strain. [IES-2009]

Stresses in compound strut 
IES-39. Eight bolts are to be selected for fixing the cover plate of a cylinder subjected 

to a maximum load of 980·175 kN. If the design stress for the bolt material is 
315 N/mm2, what is the diameter of each bolt? [IES-2008]

 (a) 10 mm  (b) 22 mm  (c) 30 mm  (d) 36 mm 

IES-39. Ans. (b)
2d P 980175Total load P 8 or d 22.25mm

4 2 2 315

IES-40. For a composite consisting of a bar enclosed inside a tube of another material 
when compressed under a load 'w' as a whole through rigid collars at the end 
of the bar. The equation of compatibility is given by (suffixes 1 and 2) refer to 
bar and tube respectively [IES-1998] 

1 2 1 2
1 2 1 2

1 1 2 2 1 2 2 1

( ) ( ) . ( ) ( )W W W Wa W W W b W W Const c d
A E A E AE A E

IES-40. Ans. (c) Compatibility equation insists that the change in length of the bar must be 
compatible with the boundary conditions. Here (a) is also correct but it is equilibrium 
equation.  

IES-41. When a composite unit consisting of a steel rod surrounded by a cast iron tube 
is subjected to an axial load. [IES-2000] 

 Assertion (A): The ratio of normal stresses induced in both the materials is 
equal to the ratio of Young's moduli of respective materials. 

 Reason (R): The composite unit of these two materials is firmly fastened 
together at the ends to ensure equal deformation in both the materials. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is not the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-41. Ans. (a) 

IES-42. The figure below shows a steel rod of 25 mm2 cross sectional area. It is loaded 
at four points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998] 
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 Assume Esteel = 200 GPa. The total change in length of the rod due to loading is         
 (a) 1 μm    (b) -10 μm    (c) 16 μm (d) -20 μm
IES-42. Ans. (b) First draw FBD of all parts separately then  

 Total change in length = PL
AE

IES-43. The reactions at the rigid 
supports at A and B for 
the bar loaded as shown 
in the figure are 
respectively. 

 (a) 20/3 kN,10/3 kN  
 (b) 10/3 kN, 20/3 kN 
 (c) 5 kN, 5 kN           
 (d) 6 kN, 4 kN 
                                                                         [IES-2002; IAS-

2003]
IES-43. Ans. (a) Elongation in AC = length reduction in CB 

A BR 1 R 2
AE AE

 And RA + RB = 10 

IES-44. Which one of the following is correct? [IES-2008] 
 When a nut is tightened by placing a washer below it, the bolt will be subjected 

to
 (a) Compression only   (b) Tension 
 (c) Shear only    (d) Compression and shear 
IES-44. Ans. (b)  

IES-45. Which of the following stresses are associated with the tightening of nut on a 
bolt? [IES-1998] 
1. Tensile stress due to the stretching of bolt    

 2. Bending stress due to the bending of bolt 
 3. Crushing and shear stresses in threads  
 4. Torsional shear stress due to frictional resistance between the nut and 

the bolt. 
 Select the correct answer using the codes given below 

Codes: (a) 1, 2 and 4   (b) 1, 2 and 3   (c) 2, 3 and 4  (d) 1, 3 and 4 
IES-45. Ans. (d)  

Thermal effect
IES-46. A 100 mm × 5 mm × 5 mm steel bar free to expand is heated from 15°C to 40°C. 

What shall be developed? [IES-2008]
 (a) Tensile stress (b) Compressive stress (c) Shear stress (d) No stress 
IES-46. Ans. (d) If we resist to expand then only stress will develop. 

IES-47. Which one of the following statements is correct? [GATE-1995; IES 2007] 
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 (a) Thermal stress (b) Tensile stress (c) Compressive stress (d) No stress 
IES-47. Ans. (d) 

IES-48. A cube having each side of length a, is constrained in all directions and is 
heated uniformly so that the temperature is raised to T°C. If  is the thermal 
coefficient of expansion of the cube material and E the modulus of elasticity, 
the stress developed in the cube is: [IES-2003]

 (a) 
TE

  (b) 
1 2
TE

   (c) 
2
TE

  (d) 
1 2
TE

IES-48. Ans. (b) 
33 3

3

1p a T aV
V K a

3

3 1 2

POr T
E

IES-49. Consider the following statements:                                                              [IES-2002] 
 Thermal stress is induced in a component in general, when 

1. A temperature gradient exists in the component 
2. The component is free from any restraint 
3. It is restrained to expand or contract freely 

 Which of the above statements are correct? 
(a) 1 and 2    (b) 2 and 3  (c) 3 alone   (d) 2 alone 

IES-49. Ans. (c) 

IES-50. A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200 
GPa and  = 12 × 10-6 per °C. If the rod is not free to expand, the thermal stress 
developed is: [IAS-2003, IES-1997, 2000, 2006]

 (a) 120 MPa (tensile)     (b) 240 MPa (tensile)
 (c) 120 MPa (compressive)    (d) 240 MPa (compressive) 
IES-50. Ans. (d) 6 3E t 12 10 200 10 120 20 240MPa
 It will be compressive as elongation restricted. 

IES-51. A cube with a side length of 1 cm is heated uniformly 1° C above the room 
temperature and all the sides are free to expand. What will be the increase in 
volume of the cube? (Given coefficient of thermal expansion is  per °C) 

 (a) 3  cm3  (b) 2  cm3  (c)  cm3  (d) zero [IES-2004]
IES-51. Ans. (a) co-efficient of volume expansion 3 co efficient of linear expansion

IES-52. A bar of copper and steel form a composite system. [IES-2004] 
 They are heated to a temperature of 40 ° C. What type of stress is induced in the 

copper bar? 
 (a) Tensile  (b) Compressive  (c) Both tensile and compressive (d) Shear 
IES-52. Ans. (b) 

IES-53. -6 o=12.5×10 / C, E = 200GPa If the rod fitted strongly between the supports as 
shown in the figure, is heated, the stress induced in it due to 20oC rise in 
temperature will be: [IES-1999] 

 (a) 0.07945 MPa (b) -0.07945 MPa (c) -0.03972 MPa (d) 0.03972 MPa 

Page 33 of 429



Chapter-1 Stress and Strain S K Mondal’s 

IES-53. Ans. (b) Let compression of the spring = x  m 
 Therefore spring force = kx kN 
 Expansion of the rod due to temperature rise = L t

 Reduction in the length due to compression force = 
kx L

AE

 Now 
kx L

L t x
AE

 Or 
6

2
6

0.5 12.5 10 20x 0.125mm

50 0.51
0.010 200 10
4

Compressive stress = 
2

kx 50 0.125 0.07945MPa
A 0.010

4

IES-54. The temperature stress is a function of [IES-1992] 
 1. Coefficient of linear expansion   2. Temperature rise   3. Modulus of elasticity 
 The correct answer is: 
 (a) 1 and 2 only (b) 1 and 3 only  (c) 2 and 3 only  (d) 1, 2 and 3 
IES-54. Ans. (d) Stress in the rod due to temperature rise = t E

Impact loading 
IES-55. Assertion (A): Ductile materials generally absorb more impact loading than a 

brittle material [IES-2004] 
 Reason (R): Ductile materials generally have higher ultimate strength than 

brittle materials 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is not the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-55. Ans. (c) 

IES-56. Assertion (A): Specimens for impact testing are never notched. [IES-1999] 
 Reason (R): A notch introduces tri-axial tensile stresses which cause brittle 

fracture. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-56. Ans. (d) A is false but R is correct.  
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Tensile Test 
IES-57. During tensile-testing of a specimen using a Universal Testing Machine, the 

parameters actually measured include [IES-1996]
 (a) True stress and true strain (b) Poisson’s ratio and Young's modulus 
 (c) Engineering stress and engineering strain (d) Load and elongation 
IES-57. Ans. (d) 

IES-58. In a tensile test, near the elastic limit zone [IES-2006]
 (a) Tensile stress increases at a faster rate 
 (b) Tensile stress decreases at a faster rate 
 (c) Tensile stress increases in linear proportion to the stress 
 (d) Tensile stress decreases in linear proportion to the stress 
IES-58. Ans. (b) 

IES-59. Match List-I (Types of Tests and Materials) with List-II (Types of Fractures) 
and select the correct answer using the codes given below the lists:

 List I List-II [IES-2002; IAS-2004] 
 (Types of Tests and Materials) (Types of Fractures) 

A. Tensile test on CI 1. Plain fracture on a transverse plane 
B. Torsion test on MS 2. Granular helecoidal fracture 
C. Tensile test on MS 3. Plain granular at 45° to the axis 
D. Torsion test on CI 4. Cup and Cone 

5. Granular fracture on a transverse plane 
Codes:

  A B C  D   A B C  D 
 (a)  4 2 3  1  (c)  4 1 3  2 
 (b)  5  1  4  2  (d)  5  2  4  1 
IES-59. Ans. (d) 

IES-60. Which of the following materials generally exhibits a yield point? [IES-2003]
 (a) Cast iron     (b) Annealed and hot-rolled mild steel 
 (c) Soft brass     (d) Cold-rolled steel 
IES-60. Ans. (b) 

IES-61. For most brittle materials, the ultimate strength in compression is much large 
then the ultimate strength in tension. The is mainly due to [IES-1992]

 (a) Presence of flaws and microscopic cracks or cavities 
 (b) Necking in tension 
 (c) Severity of tensile stress as compared to compressive stress 
 (d) Non-linearity of stress-strain diagram 
IES-61. Ans. (a) 

IES-62. What is the safe static tensile load for a M36 × 4C bolt of mild steel having yield 
stress of 280 MPa and a factor of safety 1.5? [IES-2005]

 (a) 285 kN   (b) 190 kN    (c) 142.5 kN   (d) 95 kN 

IES-62. Ans. (b)
2

c c2

W dor W
4d

4

;

2 2
c

safe
dW 280 36W N 190kN

fos fos 4 1.5 4

IES-63. Which one of the following properties is more sensitive to increase in strain 
rate? [IES-2000] 

 (a) Yield strength (b) Proportional limit (c) Elastic limit (d) Tensile strength
IES-63. Ans. (b) 
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IES-64. A steel hub of 100 mm internal diameter and uniform thickness of 10 mm was 

heated to a temperature of 300oC to shrink-fit it on a shaft. On cooling, a crack 
developed parallel to the direction of the length of the hub. Consider the 
following factors in this regard: [IES-1994]

 1. Tensile hoop stress   2. Tensile radial stress 
 3. Compressive hoop stress  4. Compressive radial stress 
 The cause of failure is attributable to 
 (a) 1 alone   (b) 1 and 3   (c) 1, 2 and 4   (d) 2, 3 and 4 
IES-64. Ans. (a) A crack parallel to the direction of length of hub means the failure was due to 

tensile hoop stress only. 

IES-65. If failure in shear along 45° planes is to be avoided, then a material subjected 
to uniaxial tension should have its shear strength equal to at least [IES-1994] 

 (a) Tensile strength    (b) Compressive strength  
 (c) Half the difference between the tensile and compressive strengths. 
 (d) Half the tensile strength. 
IES-65. Ans. (d)  
IES-66. Select the proper sequence [IES-1992]
 1. Proportional Limit 2. Elastic limit 3. Yielding 4. Failure 
 (a) 2, 3, 1, 4 (b) 2, 1, 3, 4 (c) 1, 3, 2, 4 (d) 1, 2, 3, 4 
IES-66. Ans. (d) 

Previous 20-Years IAS Questions 

Stress in a bar due to self-weight 
IAS-1. A heavy uniform rod of length 'L' and material density ' ' is hung vertically 

with its top end rigidly fixed. How is the total elongation of the bar under its 
own weight expressed? [IAS-2007] 

         (a)
22 L g
E

  (b) 
2L g
E

  (c) 
2

2
L g
E

  (d) 
2

2
L g
E

IAS-1. Ans. (d) Elongation due to self weight =
2

2 2 2
ALg LWL L g

AE AE E

IAS-2. A rod of length 'l' and cross-section area ‘A’ rotates about an axis passing 
through one end of the rod. The extension produced in the rod due to 
centrifugal forces is (w is the weight of the rod per unit length and  is the 
angular velocity of rotation of the rod). [IAS 1994]

 (a) 
gE
wl2

  (b) 
gE
wl

3

32

  (c) 
gE
wl32

  (d) 32
3
wl
gE

IAS-2. Ans. (b) 
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Elongation of a Taper Rod 
IAS-3. A rod of length, " " tapers uniformly from a diameter ''D1' to a diameter ''D2' and 

carries an axial tensile load of "P". The extension of the rod is (E represents the 
modulus of elasticity of the material of the rod) [IAS-1996]

 (a) 
1 2

4 1P
ED D 1 2

4 1( ) PEb
D D

 (c)
1 2

1
4
EP
D D

 (d) 
1 2

1
4
P

ED D

IAS-3. Ans. (a) The extension of the taper rod = 
1 2

Pl

D D .E
4

Poisson’s ratio 
IAS-4. In the case of an engineering material under unidirectional stress in the x-

direction, the Poisson's ratio is equal to (symbols have the usual meanings)  
[IAS 1994, IES-2000]

 (a) 
x

y    (b) 
x

y    (c) 
x

y    (d) 
x

y

IAS-4. Ans. (a)  

IAS-5. Assertion (A): Poisson's ratio of a material is a measure of its ductility.                  
 Reason (R): For every linear strain in the direction of force, Poisson's ratio of 

the material gives the lateral strain in directions perpendicular to the 
direction of force. [IAS-1999] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is not the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-5. ans. (d) 

IAS-6. Assertion (A): Poisson's ratio is a measure of the lateral strain in all direction 
perpendicular to and in terms of the linear strain. [IAS-1997] 

 Reason (R): The nature of lateral strain in a uni-axially loaded bar is opposite 
to that of the linear strain. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is not the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-6. Ans. (b) 

Elasticity and Plasticity 
IAS-7. A weight falls on a plunger fitted in a container filled with oil thereby 

producing a pressure of 1.5 N/mm2 in the oil. The Bulk Modulus of oil is 2800 
N/mm2. Given this situation, the volumetric compressive strain produced in the 
oil will be: [IAS-1997]                 

 (a) 400 × 10-6   (b) 800 × 106 (c) 268 × 106  (d) 535 × 10-6 

IAS-7. Ans. (d) Bulk modulus of elasticity (K) = 6
v

v

P P 1.5or 535 10
K 2800

Relation between the Elastic Modulii 
IAS-8. For a linearly elastic, isotropic and homogeneous material, the number of 

elastic constants required to relate stress and strain is: [IAS 1994; IES-1998]
 (a) Two   (b) Three  (c) Four  (d) Six 
IAS-8. Ans. (a) 
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IAS-9. The independent elastic constants for a homogenous and isotropic material are 
 (a) E, G, K, v  (b) E, G, K (c) E, G, v (d) E, G [IAS-1995]
IAS-9. Ans. (d) 

IAS-10. The unit of elastic modulus is the same as those of [IAS 1994]
 (a) Stress, shear modulus and pressure   (b) Strain, shear modulus and force 
 (c) Shear modulus, stress and force   (d) Stress, strain and pressure. 
IAS-10. Ans. (a)  

IAS-11. Young's modulus of elasticity and Poisson's ratio of a material are 1.25 × 105

MPa and 0.34 respectively. The modulus of rigidity of the material is: 
[IAS 1994, IES-1995, 2001, 2002, 2007] 

 (a) 0.4025 × 105 MPa    (b) 0.4664 × 105 MPa
 (c) 0.8375 × 105 MPa    (d) 0.9469 × 105 MPa
IAS-11. Ans.(b) )1(2GE  or 1.25x105 = 2G(1+0.34) or G = 0.4664 × 105 MPa 

IAS-12. The Young's modulus of elasticity of a material is 2.5 times its modulus of 
rigidity. The Posson's ratio for the material will be: [IAS-1997]

 (a) 0.25    (b) 0.33   (c) 0.50    (d) 0.75 

IAS-12. Ans. (a) E E 2.5E 2G 1 1 1 1 0.25
2G 2G 2

IAS-13. In a homogenous, isotropic elastic material, the modulus of elasticity E in 
terms of G and K is equal to [IAS-1995, IES - 1992]

 (a)
3

9
G K
KG

  (b) 
3
9
G K
KG

  (c) 
9

3
KG

G K
  (d) 

9
3
KG

K G
IAS-13. Ans. (c) 

IAS-14. The Elastic Constants E and K are related as ( is the Poisson’s ratio) [IAS-1996]
 (a) E = 2k (1 – 2 )  (b) E = 3k (1- 2 ) (c) E = 3k (1 + )  (d) E = 2K(1 + 2 )
IAS-14. Ans. (b) E = 2G (1 + ) = 3k (1- 2 )

IAS-15. For an isotropic, homogeneous and linearly elastic material, which obeys 
Hooke's law, the number of independent elastic constant is: [IAS-2000]

 (a) 1   (b) 2   (c) 3    (d) 6 
IAS-15. Ans. (b) E, G, K and μ represent the elastic modulus, shear modulus, bulk modulus and 

poisons ratio respectively of a ‘linearly elastic, isotropic and homogeneous material.’ To 
express the stress – strain relations completely for this material; at least any two of the 

four must be known. 
92 1 3 1 3

3
KGE G K
K G

IAS-16. The moduli of elasticity and rigidity of a material are 200 GPa and 80 GPa, 
respectively. What is the value of the Poisson's ratio of the material? [IAS-2007]

 (a) 0·30  (b) 0·26   (c) 0·25   (d) 0·24 

IAS-16. Ans. (c)   E = 2G (1+ ) or =
2001 1 0.25

2 2 80
E
G

Stresses in compound strut 
IAS-17. The reactions at the rigid supports at A and B for the bar loaded as shown in 

the figure are respectively. [IES-2002; IAS-2003] 
 (a) 20/3 kN,10/3 Kn (b) 10/3 kN, 20/3 kN (c) 5 kN, 5 kN  (d) 6 kN, 4 kN 
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IAS-17. Ans. (a) Elongation in AC = length reduction in CB 
A BR 1 R 2
AE AE

 And RA + RB = 10 

Thermal effect
IAS-18. A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200 

GPa and  = 12 × 10-6 per °C. If the rod is not free to expand, the thermal stress 
developed is: [IAS-2003, IES-1997, 2000, 2006]

 (a) 120 MPa (tensile)    (b) 240 MPa (tensile)
 (c) 120 MPa (compressive)   (d) 240 MPa (compressive) 
IAS-18. Ans. (d) 6 3E t 12 10 200 10 120 20 240MPa
 It will be compressive as elongation restricted. 

IAS-19. A. steel rod of diameter 1 cm and 1 m long is heated from 20°C to 120°C. Its 
612 10 / K and E=200 GN/m2. If the rod is free to expand, the thermal 

stress developed in it is: [IAS-2002] 
 (a) 12 × 104 N/m2  (b) 240 kN/m2  (c) zero  (d) infinity 
IAS-19. Ans. (c) Thermal stress will develop only if expansion is restricted. 

IAS-20. Which one of the following pairs is NOT correctly matched? [IAS-1999] 
 (E = Young's modulus,  = Coefficient of linear expansion, T = Temperature 

rise, A = Area of cross-section, l= Original length) 
 (a) Temperature strain with permitted expansion   ….. ( Tl )
 (b) Temperature stress      ….. TE
 (c) Temperature thrust      ….. TEA

 (d) Temperature stress with permitted expansion   ….. 
( )E Tl
l

IAS-20. Ans. (a) Dimensional analysis gives (a) is wrong

Impact loading 
IAS-21. Match List I with List II and select the correct answer using the codes given 

below the lists: [IAS-1995] 
 List I (Property)    List II (Testing Machine)

A. Tensile strength    1. Rotating Bending Machine 
B. Impact strength     2. Three-Point Loading Machine 
C. Bending strength    3. Universal Testing Machine 
D. Fatigue strength    4. Izod Testing Machine 

Codes:  A B C D  A B C D 
  (a) 4 3 2  1 (b) 3  2  1 4 
  (c) 2 1 4 3 (d)  3  4  2  1 
IAS-21. Ans. (d)  
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Tensile Test 
IAS-22. A mild steel specimen is tested in tension up to fracture in a Universal Testing 

Machine. Which of the following mechanical properties of the material can be 
evaluated from such a test? [IAS-2007] 
1. Modulus of elasticity   2. Yield stress   3. Ductility  

 4. Tensile strength   5. Modulus of rigidity 
 Select the correct answer using the code given below: 
 (a) 1, 3, 5 and 6 (b) 2, 3, 4 and 6  (c) 1, 2, 5 and 6  (d) 1, 2, 3 and 4 
IAS-22. Ans. (d) 

IAS-23. In a simple tension test, Hooke's law is valid upto the [IAS-1998]
 (a) Elastic limit  (b) Limit of proportionality (c) Ultimate stress (d) Breaking point 
IAS-23. Ans. (b) 

IAS-24. Lueder' lines on steel specimen under simple tension test is a direct indication 
of yielding of material due to slip along the plane [IAS-1997]

 (a) Of maximum principal stress   (b) Off maximum shear 
 (c) Of loading     (d) Perpendicular to the direction of loading 
IAS-24. Ans. (b) 

IAS-25. The percentage elongation of a material as obtained from static tension test 
depends upon the [IAS-1998]

 (a) Diameter of the test specimen   (b) Gauge length of the specimen 
 (c) Nature of end-grips of the testing machine (d) Geometry of the test specimen 
IAS-25. Ans. (b) 

IAS-26. Match List-I (Types of Tests and Materials) with List-II (Types of Fractures) 
and select the correct answer using the codes given below the lists: 

 List I List-II [IES-2002; IAS-2004]
(Types of Tests and Materials)   (Types of Fractures) 
A. Tensile test on CI   1. Plain fracture on a transverse plane 
B. Torsion test on MS   2. Granular helecoidal fracture 
C. Tensile test on MS   3. Plain granular at 45° to the axis 
D. Torsion test on CI   4. Cup and Cone 

       5. Granular fracture on a transverse plane 
Codes: A B C  D  A B C  D 

  (a)  4 2 3  1 (c)  4 1 3  2 
  (b)  5  1  4  2 (d)  5  2  4  1 
IAS-26. Ans. (d) 

IAS-27. Assertion (A): For a ductile material stress-strain curve is a straight line up to 
the yield point. [IAS-2003] 

 Reason (R): The material follows Hooke's law up to the point of proportionality. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is not the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-27. Ans. (d) 

IAS-28. Assertion (A): Stress-strain curves for brittle material do not exhibit yield 
point. [IAS-1996] 

 Reason (R): Brittle materials fail without yielding.
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-28. Ans. (a) Up to elastic limit. 
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IAS-29. Match List I (Materials) with List II (Stress-Strain curves) and select the 

correct answer using the codes given below the Lists: [IAS-2001]

Codes:  A  B  C D  A  B  C D 
  (a)  3  1  4 1 (b)  3  2  4  2 
  (c)  2  4  3  1 (d)  4  1 3  2 
IAS-29. Ans. (b) 

IAS-30. The stress-strain curve of an ideal elastic strain hardening material will be as

[IAS-1998]
IAS-30. Ans. (d) 

IAS-31. An idealised stress-strain curve for a perfectly plastic material is given by 

[IAS-1996]
IAS-31. Ans. (a) 

IAS-32. Match List I with List II and select the correct answer using the codes given 
below the Lists: [IAS-2002] 
List I     List II  
A. Ultimate strength   1. Internal structure 
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B. Natural strain   2. Change of length per unit instantaneous length 
C. Conventional strain  3. Change of length per unit gauge length 
D. Stress     4. Load per unit area 
Codes: A  B  C  D  A  B  C  D 

  (a)  1  2  3  4 (b)  4  3  2  1 
  (c)  1  3  2  4 (d)  4  2  3  1 
IAS-32. Ans. (a) 

IAS-33. What is the cause of failure of a short MS strut under an axial load? [IAS-2007]
 (a) Fracture stress  (b) Shear stress (c) Buckling  (d) Yielding 
IAS-33. Ans. (d) In compression tests of ductile materials fractures is seldom obtained. 

Compression is accompanied by lateral expansion and a compressed cylinder ultimately 
assumes the shape of a flat disc. 

IAS-34. Match List I with List II and select the correct answer using the codes given 
the lists: [IAS-1995] 

 List I List II 
    A. Rigid-Perfectly plastic 

    B. Elastic-Perfectly plastic 

   C.  Rigid-Strain hardening 

   D. Linearly elastic 

Codes: A B  C  D  A B C D  
  (a)  3  1 4 2 (b) 1  3 2 4 
  (c) 3 1 2 4 (d)  1  3 4 2 
IAS-34. Ans. (a) 

IAS-35. Which one of the following materials is highly elastic? [IAS-1995]
 (a) Rubber   (b) Brass  (c) Steel   (d) Glass 
IAS-35. Ans. (c) Steel is the highly elastic material because it is deformed least on loading, and 

regains its original from on removal of the load. 

IAS-36. Assertion (A): Hooke's law is the constitutive law for a linear elastic material. 
Reason (R) Formulation of the theory of elasticity requires the hypothesis that there 

exists a unique unstressed state of the body, to which the body returns 
whenever all the forces are removed. [IAS-2002] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is not the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-36. Ans. (a) 
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1. There are only two independent elastic constants. 

 2. Elastic constants are different in orthogonal directions.  
 3. Material properties are same everywhere. 
 4. Elastic constants are same in all loading directions. 
 5. The material has ability to withstand shock loading. 
 Which of the above statements are true for a linearly elastic, homogeneous and 

isotropic material? 
 (a) 1, 3, 4 and 5  (b) 2, 3 and 4  (c) 1, 3 and 4  (d) 2 and 5 
IAS-37. Ans. (a) 

IAS-38. Which one of the following pairs is NOT correctly matched? [IAS-1999]
 (a) Uniformly distributed stress  …. Force passed through the centroid of the 
       cross-section 
 (b) Elastic deformation   …. Work done by external forces during  
       deformation is dissipated fully as heat 
 (c) Potential energy of strain  …. Body is in a state of elastic deformation 
 (d) Hooke's law   …. Relation between stress and strain 
IAS-38. Ans. (b) 

IAS-39. A tensile bar is stressed to 250 N/mm2 which is beyond its elastic limit. At this 
stage the strain produced in the bar is observed to be 0.0014. If the modulus of 
elasticity of the material of the bar is 205000 N/mm2 then the elastic component 
of the strain is very close to [IAS-1997]

 (a) 0.0004   (b) 0.0002  (c) 0.0001  (d) 0.00005 
IAS-39. Ans. (b) 
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Previous Conventional Questions with Answers 

Conventional Question IES-2010 
Q. If a load of 60 kN is applied to a rigid 

bar suspended by 3 wires as shown 
in the above figure what force will 
be resisted by each wire? 

The outside wires are of Al, cross- 
sectional area 300 mm2 and length 4 
m. The central wire is steel with area 
200 mm2 and length 8 m.

Initially there is no slack in the 
wires 5 2E 2 10 N / mm  for Steel 

5 20.667 10 N / mm for Aluminum 

[2 Marks]

Ans.

FA1
FSt

Aluminium wire

Steel wire
FA1

60kN
P 60 kN

2
A1 A1a 300mm l 4m

2
st sta 200mm l 8m

5 2
A1E 0.667 10 N / mm

5 2
stE 2 10 N / mm

 Force balance along vertical direction 
A1 st2F F 60 kN              (1) 

 Elongation will be same in all wires because rod is rigid remain horizontal  after 
loading 

st stA1 A1

Al Al st st

F .lF l
a .E a .E

             (2) 

stA1
5 5

F 8F 4
300 0.667 10 200 2 10

A1 stF 1.0005 F                    (3) 
Page 44 of 429



Chapter-1 Stress and Strain S K Mondal’s 

 From equation (1)     
3

st
60 10F 19.99 kN or 20 kN
3.001

A1F 20 kN

A1

st

F 20 kN
F 20 kN

 Answer. 

Conventional Question GATE 
Question: The diameters of the brass and steel segments of the axially loaded bar 

shown in figure are 30 mm and 12 mm respectively. The diameter of the 
hollow section of the brass segment is 20 mm.  

Determine: (i) The maximum normal stress in the steel and brass (ii) The displacement of the free 
end ; Take Es = 210 GN/m2 and Eb = 105 GN/m2

Answer: 2 2 6 2
sA 12 36 mm 36 10 m

4

              2 2 6 2
b BC

A 30 225 mm 225 10 m
4

              2 2 2 6 2
b CD

A 30 20 125 mm 125 10 m
4

 (i) The maximum normal stress in steel and brass: 
3

6 2 2
s 6

3
6 2 2

b 6BC

3
6 2 2

b 6CD

10 10 10 MN / m 88.42MN / m
36 10

5 10 10 MN / m 7.07MN / m
225 10

5 10 10 MN / m 12.73MN / m
125 10

  (ii) The displacement of the free end: 
s b bAB BC CD

9 6 9 6 9 6

5

l l l l

88.42 0.15 7.07 0.2 12.73 0.125 ll
E210 10 10 105 10 10 105 10 10

9.178 10 m 0.09178 mm

Conventional Question IES-1999 
Question: Distinguish between fatigue strength and fatigue limit. 
Answer: Fatigue strength as the value of cyclic stress at which failure occurs after N cycles. And 

fatigue limit as the limiting value of stress at which failure occurs as N becomes very 
large (sometimes called infinite cycle)
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Question: List at least two factors that promote transition from ductile to brittle 

fracture. 
Answer: (i) With the grooved specimens only a small reduction in area took place, and the 

appearance of the facture was like that of brittle materials. 
 (ii) By internal cavities, thermal stresses and residual stresses may combine with 

the effect of the stress concentration at the cavity to produce a crack. The 
resulting fracture will have the characteristics of a brittle failure without 
appreciable plastic flow, although the material may prove ductile in the usual 
tensile tests. 

Conventional Question IES-1999 
Question: Distinguish between creep and fatigue. 
Answer: Fatigue is a phenomenon associated with variable loading or more precisely to cyclic 

stressing or straining of a material, metallic, components subjected to variable loading 
get fatigue, which leads to their premature failure under specific conditions. 

 When a member is subjected to a constant load over a long period of time it undergoes 
a slow permanent deformation and this is termed as ''Creep''. This is dependent on 
temperature. 

Conventional Question IES-2008 
Question: What different stresses set-up in a bolt due to initial tightening, while used as 

a fastener? Name all the stresses in detail. 
Answer: (i) When the nut is initially tightened there will be some elongation in the bolt so 

tensile stress will   develop. 
 (ii) While it is tightening a torque across some shear stress. But when tightening will 

be completed there should be no shear stress. 

Conventional Question IES-2008 
Question: A Copper rod 6 cm in diameter is placed within a steel tube, 8 cm external 

diameter and 6 cm internal diameter, of exactly the same length. The two 
pieces are rigidly fixed together by two transverse pins 20 mm in diameter, 
one at each end passing through both rod and the tube. 

 Calculated the stresses induced in the copper rod, steel tube and the pins if 
the temperature of the combination is raised by 50oC.

 [Take ES=210 GPa, 0.0000115 /os C ; Ec=105 GPa, 0.000017 /oc C ]
Answer:

( )c s
c s

c s

t
E E

22
2 3 2

c
6Area of copper rod(A ) = 2.8274 10

4 4 100
d m m

2 22
2 3 28 6Area of steel tube (A ) = 2.1991 10

4 4 100 100s
d m m

 in temperature, 50oRise t C

cFree expansion of copper bar= L t
Free expansion of steel tube = sL tPage 46 of 429
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Difference in free expansion = c s L t
6 -4= 17-11.5 ×10 50=2.75×10L Lm

 A compressive force (P) exerted by the steel tube on the copper rod opposed the extra 
expansion of the copper rod and the copper rod exerts an equal tensile force P to pull 
the steel tube. In this combined effect reduction in copper rod and increase in length of 
steel tube equalize the difference in free expansions of the combined system. 

 Reduction in the length of copper rod due to force P Newton= 

3 9 m
2.8275 10 105 10C

c c

PL PLL
A E

Increase in length of steel tube due to force P

3 9
.

2.1991 10 210 10S
s s

PL P LL m
A E

 Difference in length is equated 
42.75 10

c s
L L L

                 4
3 9 3 9

. 2.75 10
2.8275 10 105 10 2.1991 10 210 10

PL P L L

 Or P = 49.695 kN 

c 3
49695Stress in copper rod, MPa=17.58MPa

2.8275 10c

P
A

    3
49695 in steel tube, MPa 22.6MPa

2.1991 10s
s

PStress
A

 Since each of the pin is in double shear, shear stress in pins ( pin )

 =
2

49695 =79 MPa
2 2 0.02

4
pin

P
A

Conventional Question IES-2002 
Question: Why are the bolts, subjected to impact, made longer? 
Answer: If we increase length its volume will increase so shock absorbing capacity will 

increased.

Conventional Question IES-2007 
Question: Explain the following in brief: 
 (i) Effect of size on the tensile strength  
 (ii) Effect of surface finish on endurance limit. 
Answer: (i) When size of the specimen increases tensile strength decrease. It is due to the 

reason that if size increases there should be more change of defects (voids) into 
the material which reduces the strength appreciably. 

 (ii) If the surface finish is poor, the endurance strength is reduced because of 
scratches present in the specimen. From the scratch crack propagation will start. 

Conventional Question IES-2004 
Question: Mention the relationship between three elastic constants i.e. elastic modulus 

(E), rigidity modulus (G), and bulk modulus (K) for any Elastic material. How 
is the Poisson's ratio ( ) related to these modulli?  

 Answer: 
9

3
KGE

K G
9KGμ) = 2G(1+ μ) =

3K + G
3 (1 2E K
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Conventional Question IES-1996
Question: The elastic and shear moduli of an elastic material are 2×1011 Pa and 8×1010

Pa respectively. Determine Poisson's ratio of the material. 

Answer: We know that E = 2G(1+μ ) = 9KG3K(1- 2μ) =
3K + G

or  μ

μ

11

10

or,1
2

2 101 1 0.25
2 2 (8 10 )

E
G

E
G

Conventional Question IES-2003 
Question: A steel bolt of diameter 10 mm passes through a brass tube of internal 

diameter 15 mm and external diameter 25 mm. The bolt is tightened by a nut 
so that the length of tube is reduced by 1.5 mm. If the temperature of the 
assembly is raised by 40oC, estimate the axial stresses the bolt and the tube 
before and after heating. Material properties for steel and brass are: 

5  5
SE 2 10  / 1.2 10 /oS C2N mm  and Eb= 1×105 N/mm2 b=1.9×10-15/oC

Answer:

2 2 5 2
s

2 2 4
b

 of steel bolt (A )= (0.010) 7.854 10
4

 of brass tube (A )= (0.025) (0.015) 3.1416 10
4

Area m m

Area

S

L
L

b

b. b

Stress due to tightening of the nut

Compressive force on brass tube= tensile fore on steel bolt
or, 

( ),  E .                                     E=

b s

b
s s

A A

lor A A

3
5 6 4 -5

3
5

b.

 assume total length ( )=1m
(1.5 10 )Therefore  (1×10 10 ) 3.1416 10 7.854×10

1
600 ( )

( ) (1.5 10 )and =E (1×10 ) 150 ( )
1

s

s

b
b

Let

or MPa tensile
l

MPa MPa Compressive
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b

s

 before heating
    Stress in brass tube ( ) 150 ( )
    Stress in steel bolt( ) 600 (tensile)

So
MPa compressive

MPa

 Stress due to rise of temperature 
 Let stress ' '

b & s due to brass tube and steel bolt.are
 If the two members had been free to expand, 
 Free expansion of steel = s 1t
 Free expansion of brass tube = 1b t
 Since b s free expansion of copper is greater than the free expansion of steel. But 

they are rigidly fixed so final expansion of each members will be same. Let us assume 
this final expansion is ' ', The free expansion of brass tube is grater than , while the 
free expansion of steel is less than . Hence the steel rod will be subjected to a tensile 
stress while the brass tube will be subjected to a compressive stress. 

 For the equilibrium of the whole system, 

 Total tension (Pull) in steel =Total compression (Push) in brass tube. 
'
b

5
' ' ' ' '

b s 4

7.854 10,   0.25
3.14 10

s
b s s S S

b

AA A or
A

'
s

sE

'
b

s
b

' '
5 5

5 6 5 6

Final expansion of steel =final expansion of brass tube

( ).1 1 ( ) 1 1
E

, 1.2 10 40 1 (1.9 10 ) 40 1 ( )
2 10 10 1 10 10

b

s b

t t

or ii

'
s

4
11 11

'

'
b

From(i) & (ii) we get

1 0.25 2.8 10
2 10 10

, 37.33 MPa (Tensile stress)

or, = 9.33MPa (compressive)
sor

'
b b

'
s s

Therefore, the final stresses due to tightening and temperature rise 
Stress in brass tube = + =150+9.33MPa=159.33MPa

Stress in steel bolt = + = 600 + 37.33 = 637.33MPa.

Conventional Question IES-1997 
Question: A Solid right cone of axial length h is made of a material having density 

and elasticity modulus E. It is suspended from its circular base. Determine its 
elongation due to its self weight. 

Answer: See in the figure MNH is a solid right cone of 
length 'h' . 

 Let us assume its wider end of diameter’d’ fixed 
rigidly at MN. 

 Now consider a small strip of thickness dy at a 
distance y from the lower end.  

 Let 'ds' is the diameter of the strip. 

21Weight of portion UVH= ( )
3 4

sd y g i
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From the similar triangles MNH and UVH,
MN
UV

., ( )

s

s

d
d y

d yor d ii

2

force at UV Weight of UVHStress at section UV =
sec  area at UV

4
scross tion d

2

2

1 . . . 13 4    =
3

4

s

s

d y g
y g

d

h 2

0

1 .
3,  extension in dy=

1
3Total extension of the bar =

6

y g dy
So

E

y gdy gh
E E

d

From stress-strain relation ship
.E= ,or d
E

Conventional Question IES-2004 
Question: Which one of the three shafts listed hare has the highest ultimate tensile 

strength? Which is the approximate carbon content in each steel? 
 (i) Mild Steel  (ii) cast iron (iii) spring steel 
Answer: Among three steel given, spring steel has the highest ultimate tensile strength. 
 Approximate carbon content in 
 (i) Mild steel is (0.3% to 0.8%) 
 (ii) Cost iron (2% to 4%) 
 (iii) Spring steel (0.4% to 1.1%) 

Conventional Question IES-2003 
Question: If a rod of brittle material is subjected to pure torsion, show with help of a 

sketch, the plane along which it will fail and state the reason for its failure. 
Answer: Brittle materials fail in tension. In a torsion test the maximum tensile test Occurs at 

45° to the axis of the shaft. So failure will occurs along a 45o to the axis of the shaft. So 
failure will occurs along a 45° helix 

X
X

 So failures will occurs according to 45° plane. Page 50 of 429
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Conventional Question IAS-1995 
Question: The steel bolt shown in Figure has a thread pitch of 1.6 mm. If the nut is 

initially tightened up by hand so as to cause no stress in the copper spacing 
tube, calculate the stresses induced in the tube and in the bolt if a spanner is 
then used to turn the nut through 90°.Take Ec and Es as 100 GPa and 209 GPa 
respectively. 

Answer: Given: p = 1.6 mm, Ec= 100 GPa ; Es = 209 CPa. 

 Stresses induced in the tube and the bolt, c s, :
2

5 2
s

2 2
5 2

s

10A 7.584 10 m
4 1000

18 12A 14.14 10 m
4 1000 1000

 Tensile force on steel bolt, Ps = compressive force in copper tube, Pc = P 
 Also, Increase in length of bolt + decrease in length of tube = axial displacement of nut 

3
s c

3
s c

s s c c

3
5 9 5 9

s c

90i,e l l 1.6 0.4mm 0.4 10 m
360

Pl Plor 0.4 10 l l l
A E A E

100 1 1or P 0.4 10
1000 7.854 10 209 10 14.14 10 100 10

or P 30386N
P P386.88MPa and 214.89MPa
A A

Conventional Question AMIE-1997 
Question: A steel wire 2 m long and 3 mm in diameter is extended by 0·75 mm when a 

weight W is suspended from the wire. If the same weight is suspended from a 
brass wire, 2·5 m long and 2 mm in diameter, it is elongated by 4 -64 mm. 
Determine the modulus of elasticity of brass if that of steel be 2.0 × 105 N / 
mm2

Answer: Given, sl 2 m, ds = 3 mm,  sl  0·75 mm; Es = 2·0 × 105 N / mm2; bl 2.5 m, db

 =2 mm bl 4.64m m and let modulus of elasticity of brass = Eb

 Hooke's law gives, Pll
AE

        [Symbol has usual meaning] 

 Case I: For steel wire: 
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s
s

s s

2 5

Pll
A E

P 2 1000
or 0.75

13 2.0 10
4 2000

  ---- (i) 

 Case II: For bass wire: 
b

b
b b

2
b

2
b

Pll
A E

P 2.5 1000
4.64

2 E
4

1or P 4.64 2 E
4 2500

    ---- (ii) 

 From (i) and (ii), we get 
2 5 2

b

5 2
b

1 10.75 3 2.0 10 4.64 2 E
4 2000 4 2500

or E 0.909 10 N / mm

Conventional Question AMIE-1997 
Question: A steel bolt and sleeve assembly is shown in figure below. The nut is 

tightened up on the tube through the rigid end blocks until the tensile force 
in the bolt is 40 kN. If an external load 30 kN is then applied to the end 
blocks, tending to pull them apart, estimate the resulting force in the bolt 
and sleeve. 

Answer: Area of steel bolt, 
2

4 2
b

25A 4.908 10 m
1000

 Area of steel sleeve, 
2 2

3 2
s

62.5 50A 1.104 10 m
4 1000 1000

 Forces in the bolt and sleeve: 
 (i) Stresses due to tightening the nut: 
 Let b  = stress developed in steel bolt due to tightening the nut; and 

s = stress developed in steel sleeve due to tightening the nut. 
 Tensile force in the steel bolt = 40 kN = 0·04 MN  
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b b
4

b

2
b 4

A 0.04

or 4.908 10 0.04
0.04 81.5MN / m tensile

4.908 10
 Compressive force in steel sleeve = 0·04 MN 

s s
3

s

2
s 3

A 0.04

or 1.104 10 0.04
0.04 36.23MN / m compressive

1.104 10
 (ii) Stresses due to tensile force: 
 Let the stresses developed due to tensile force of 30 kN = 0·03 MN in steel bolt and 

sleeve be b s' and ' respectively. 
 Then, b b s s' A ' A 0.03

4 3
b s' 4.908 10 ' 1.104 10 0.03 (i)

 In a compound system with an external tensile load, elongation caused in each will be 
the same. 

b
b b

b

b
b b

b

s
s s

s

b s

b s

b s

b s b s

'l l
E
'or l 0.5 Given,l 500mm 0.5

E
'and l 0.4 Given,l 400mm 0.4

E
But l

' '0.5 0.4
E E

or ' 0.8 ' Given,E E (2)
 Substituting this value in (1), we get 

4 3
s s

2
s

2
b

2
b b br

s s sr

0.8 ' 4.908 10 ' 1.104 10 0.03

gives ' 20MN / m tensile

and ' 0.8 20 16MN / m tensile
Resulting stress in steel bolt,

' 81.5 16 97.5MN / m

Resulting stress in steelsleeve,
' 36.23 20 16.23MN / 2

b br
4

b sr
3

m compressive

Resulting force in steel bolt, A

97.5 4.908 10 0.0478MN tensile

Resulting force in steelsleeve A

16.23 1.104 10 0.0179MN compressive
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 2.  Principal Stress and Strain 

Theory at a Glance (for IES, GATE, PSU)
2.1 States of stress 

Uni-axial stress: only one non-zero 

principal stress, i.e. 1

Right side figure represents Uni-axial state of 
stress.

Bi-axial stress: one principal stress 

equals zero, two do not, i.e. 1 > 3 ; 2 = 0
Right side figure represents Bi-axial state of 
stress.

Tri-axial stress: three non-zero 

principal stresses, i.e. 1 > 2 > 3

Right side figure represents Tri-axial state of 
stress.

Isotropic stress: three principal 

stresses are equal, i.e. 1 = 2 = 3

Right side figure represents isotropic state of 
stress.

Axial stress: two of three principal 

stresses are equal, i.e. 1 = 2 or 2 = 3

Right side figure represents axial state of 
stress.
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Hydrostatic pressure: weight of column of 
fluid in interconnected pore spaces.  

             Phydrostatic = fluid gh (density, gravity, depth) 

Hydrostatic stress: Hydrostatic stress is 
used to describe a state of tensile or 
compressive stress equal in all directions 
within or external to a body. Hydrostatic 
stress causes a change in volume of a 
material. Shape of the body remains 
unchanged i.e. no distortion occurs in the 
body.  

Right side figure represents Hydrostatic state of 
stress.

Or

2.2 Uni-axial stress on oblique plane 
Let us consider a bar of uniform cross sectional area A under direct tensile load P giving rise to axial 
normal stress P/A acting on a cross section XX. Now consider another section given by the plane YY 
inclined at  with the XX. This is depicted in following three ways. 

Fig. (a) Fig. (b) 

Fig. (c) 

Area of the YY Plane =
cos

A ; Let us assume the normal stress in the YY plane is n  and there is 

a shear stress acting parallel to the YY plane.   

Now resolve the force P in two perpendicular direction one normal to the plane YY = cosP  and 

another parallel to the plane YY = Pcos
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Therefore equilibrium gives,       cos
cosn
A P or 2cosn

P
A

   and sin
cos
A P         or sin cosP

A
  or

sin 2
2
P
A

Note the variation of normal stress n  and shear stress with the variation of .

When 0 , normal stress n is maximum i.e. 
maxn

P
A

 and shear stress 0 . As  is 

increased, the normal stress n  diminishes, until when 0, 0n .  But if angle 

increased shear stress increases to a maximum value max 2
P
A

 at 45
4

o and then 

diminishes to 0  at 90o

The shear stress will be maximum when sin2 1 45oor

And the maximum shear stress, max 2
P
A

In ductile material failure in tension is initiated by shear stress i.e. the failure occurs across 
the shear planes at 45o (where it is maximum) to the applied load.  

Let us clear a concept about a common mistake: The angle is not between the applied load 

and the plane. It is between the planes XX and YY.  But if in any question the angle between the 

applied load and the plane is given don’t take it as . The angle between the applied load and the 

plane is 90 - . In this case you have to use the above formula as 

2cos (90 ) and sin(180 2 )
2n

P P
A A

 where  is the angle between the applied load and the 

plane. Carefully observe the following two figures it will be clear.  

Let us take an example: A metal block of 100 mm2 cross sectional area carries an axial tensile load 
of 10 kN. For a plane inclined at 300 with the direction of applied load, calculate: 
          (a) Normal stress 
          (b) Shear stress 
          (c) Maximum shear stress. 

Answer: Here 90 30 60o o o
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(a) Normal stress 
3

2 2
2

10 10cos cos 60 25MPa
100

o
n

P N
A mm

(b) Shear stress 
3

2
10 10sin2 sin120 43.3MPa

2 2 100
oP N

A mm

(c) Maximum shear stress
3

max 2
10 10 50MPa

2 2 100
P N
A mm

Complementary stresses 
Now if we consider the stresses on an oblique plane Y’Y’ which is perpendicular to the previous 
plane YY. The stresses on this plane are known as complementary stresses. Complementary 

normal stress is n and complementary shear stress is . The following figure shows all 

the four stresses. To obtain the stresses n  and we need only to replace  by 090 in the 

previous equation. The angle 090  is known as aspect angle.

Therefore 

2 2cos 90 sino
n

P P
A A

sin 2 90 sin 2
2 2

oP P
A A

It is clear n n
P
A

     and 

i.e. Complementary shear stresses are always equal in magnitude but opposite in sign.  

Sign of Shear stress 
For sign of shear stress following rule have to be followed:  
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The shear stress on any face of the element will be considered positive when it has a 

clockwise moment with respect to a centre inside the element. If the moment is counter-

clockwise with respect to a centre inside the element, the shear stress in negative.

Note: The convention is opposite to that of moment of force. Shear stress tending to turn clockwise is 
positive and tending to turn counter clockwise is negative.   

Let us take an example: A prismatic bar of 500 mm2 cross sectional area is axially loaded with a 
tensile force of 50 kN. Determine all the stresses acting on an element which makes 300 inclination 
with the vertical plane. 

Answer: Take an small element ABCD in 300 plane as shown in figure below, 
Given, Area of cross-section, A = 500 mm2, Tensile force (P) = 50 kN 

Normal stress on 30° inclined plane, 
3

2 2
n 2

P 50×10 N= cos = ×cos 30 =75MPa
A 500 mm

o (+ive means tensile). 

Shear stress on 30° planes, 
3

2
50 10sin2 sin 2 30 43.3MPa

2 2 500
oP N

A mm

                                                                                                     (+ive means clockwise) 
Complementary stress on 90 30 120o

Normal stress on 1200 inclined plane, 
3

2 2
2

50 10cos cos 120 25MPa
500

o
n

P N
A mm

                                                                                                            (+ ive means tensile)

Shear stress on 1200 nclined plane, 
3

2
50 10sin2 sin 2 120 43.3MPa

2 2 500
oP N

A mm

(- ive means counter clockwise) 
 State of stress on the element ABCD is given below (magnifying) 
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2.3 Complex Stresses (2-D Stress system)  
i.e. Material subjected to combined direct and shear stress 
We now consider a complex stress system below. The given figure ABCD shows on small element of 
material 

Stresses in three dimensional element Stresses in cross-section of the element 

x and y  are normal stresses and may be tensile or compressive. We know that normal stress 

may come from direct force or bending moment. xy  is shear stress. We know that shear stress may 

comes from direct shear force or torsion and xy  and yx  are complementary and 

xy = yx

Let n is the normal stress and is the shear stress on a plane at angle .

Considering the equilibrium of the element we can easily get  

Normal stress cos2 sin 2
2 2

x y x y
n xy

and

Shear stress 2  - cos2
2

x y
xysin

Above two equations are coming from considering equilibrium. They do not depend on material 
properties and are valid for elastic and in elastic behavior. 
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Location of planes of maximum stress 

(a) Normal stress, 
maxn

For n  maximum or minimum 

xy

x

0, where cos2 sin2
2 2

2
sin2 2 cos2 2 0 or tan2 =

2 ( )

x y x yn
n xy

x y
xy p

y

or

 (b) Shear stress, max

For  maximum or minimum 

0, where sin2 cos2
2

x y
xy

cos2 2 sin2 2 0
2

cot 2

x y
xy

xy

x y

or

or

Let us take an example: At a point in a crank shaft the stresses on two mutually perpendicular 
planes are 30 MPa (tensile) and 15 MPa (tensile). The shear stress across these planes is 10 MPa. 
Find the normal and shear stress on a plane making an angle 300 with the plane of first stress. Find 
also magnitude and direction of resultant stress on the plane. 

Answer: Given  025MPa tensile , 15MPa tensile , 10MPa and 40x y xy

Therefore, Normal stress cos2 sin2
2 2
30 15 30 15 cos 2 30 10sin 2 30 34.91 MPa

2 2

x y x y
n xy

o o

Shear stress sin2 cos2
2

30 15 sin 2 30 10cos 2 30 1.5MPa
2

x y
xy

o o

2 2

0

Resultant stress 34.91 1.5 34.94MPa
1.5and Obliquity , tan 2.46

34.91

r

n
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2.4 Bi-axial stress 
Let us now consider a stressed element ABCD where xy =0, i.e. only x  and y  is there. This type 

of stress is known as bi-axial stress. In the previous equation if you put xy =0 we get Normal stress, 

n and shear stress, on a plane at angle .

Normal stress , n 2
2 2

x y x y cos

Shear/Tangential stress, sin 2
2

x y

For complementary stress, aspect angle = 090

Aspect angle ‘ ’ varies from 0 to /2

Normal stress  varies between the valuesn

           y( 0) & ( / 2)x

Let us take an example: The principal tensile stresses at a point across two perpendicular planes 
are 100 MPa and 50 MPa. Find the normal and tangential stresses and the resultant stress and its 
obliquity on a plane at 200 with the major principal plane 

Answer: Given 0100MPa tensile , 50MPa tensile 20x y and

100 50 100 50Normal stress, cos2 cos 2 20 94MPa
2 2 2 2

x y x y o
n

0

2 2

100 50Shear stress, sin2 sin 2 20 16MPa
2 2

Resultant stress 94 16 95.4MPa

x y

r

1 1 016Therefore angle of obliquity, tan tan 9.7
94n
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We may derive uni-axial stress on oblique plane from 

cos2 sin 2
2 2

x y x y
n xy

and 2  - cos2
2

x y
xysin

Just put 0y  and xy =0

Therefore,  

20 0 1cos2 1 cos2 cos
2 2 2

x x
n x x

and
0 sin2 sin2

2 2
x x

2.5 Pure Shear

Pure shear is a particular case of bi-axial stress where x y
Note: orx y which one is compressive that is immaterial but one should be tensile and 

other should be compressive and equal magnitude. If 100MPax then 

must be 100MPay otherwise if 100MPay then must be 100MPax .

In case of pure shear on 45o planes 

      max x ; 0 and 0n n

We may depict the pure shear in an element by following two ways  
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(a) In a torsion member, as shown below, an element ABCD is in pure shear (only shear 

stress is present in this element) in this member at 45o plane an element A B C D is also 

in pure shear where x y but in this element no shear stress is there.  

(b) In a bi-axial state of stress a member, as shown below, an element ABCD in pure shear 

where x y but in this element no shear stress is there and an element A B C D  at 

45o plane is also in pure shear (only shear stress is present in this element). 

Let us take an example: See the in the Conventional question answer section in this chapter and 
the question is “Conventional Question IES-2007”

2.6 Stress Tensor 

State of stress at a point ( 3-D) 
Stress acts on every surface that passes through the point. We can use three mutually 
perpendicular planes to describe the stress state at the point, which we approximate as a cube 
each of the three planes has one normal component & two shear components therefore, 9 
components necessary to define stress at a point 3 normal and 6 shear stress.  
Therefore, we need nine components, to define the state of stress at a point

x xy xz

y yx yz

z zx zy

For cube to be in equilibrium (at rest: not moving, not spinning) 
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xy yx

xz zx

yz zy

If they don’t offset, block spins therefore, 

only six are independent.

The nine components (six of which are independent) can be written in matrix form 

11 12 13

21 22 23

31 32 33

or
xx xy xz xx xy xz x xy xz

ij yx yy yz ij yx yy yz yx y yz

zx zy zz zx zy zz zx zy z

This is the stress tensor 
Components on diagonal are normal stresses; off are shear stresses 

State of stress at an element (2-D) 

2.7 Principal stress and Principal plane 
When examining stress at a point, it is possible to choose three mutually perpendicular 

planes on which no shear stresses exist in three dimensions, one combination of 
orientations for the three mutually perpendicular planes will cause the shear stresses on all 
three planes to go to zero this is the state defined by the principal stresses.
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Principal stresses are normal stresses that are orthogonal to 

each other

Principal planes are the planes across which principal 
stresses act (faces of the cube) for principal stresses (shear 

stresses are zero)

Major Principal Stress  

2

2
1 2 2

x y x y
xy

Minor principal stress 

2

2
2 2 2

x y x y
xy

Position of principal planes

xy

x

2
tan2 =

( )p
y

Maximum shear stress

2

21 2
max 2 2

x y
xy

Let us take an example: In the wall of a cylinder the state of stress is given by, 

85MPa x compressive , 25MPa tensile and shear stress 60MPay xy

Calculate the principal planes on which they act. Show it in a figure.  

Answer: Given 85MPa, 25MPa, 60MPax y xy
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2

2
1

2
2

Major principal stress
2 2

85 25 85 25 60 51.4MPa
2 2

x y x y
xy

2
2

2

2
2

Minor principalstress
2 2

85 25 85 25 60
2 2

111.4 MPa i.e. 111.4 MPa Compressive

x y x y
xy

For principalplanes
2 2 60tan2

85 25
xy

P
x y

0
1

0
2

or 24 it is for 

Complementary plane 90 66 it is for 
The Figure showing state of stress and principal stresses is given below

P

P P

The direction of one principle plane and the principle stresses acting on this would be 1 when is 

acting normal to this plane, now the direction of other principal plane would be 900 + p  because the 

principal planes are the two mutually perpendicular plane, hence rotate the another plane 900 + p

in the same direction to get the another plane, now complete the material element as p  is negative 

that means we are measuring the angles in the opposite direction to the reference plane BC. The 

following figure gives clear idea about negative and positive p .
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2.8 Mohr's circle for plane stress 
The transformation equations of plane stress can be represented in a graphical form which is 
popularly known as Mohr's circle.

Though the transformation equations are sufficient to get the normal and shear stresses on 
any plane at a point, with Mohr's circle one can easily visualize their variation with respect 
to plane orientation .

Equation of Mohr's circle 

We know that normal stress, cos 2 sin 2
2 2

x y x y
n xy

 And Tangential stress, 2  - cos 2
2

x y
xysin

      Rearranging we get, cos 2 sin 2
2 2

x y x y
n xy ……………(i)  

and 2  - cos 2
2

x y
xysin ……………(ii) 

A little consideration will show that the above two equations are the equations of a circle with n

and as its coordinates and 2  as its parameter. 
If the parameter 2  is eliminated from the equations, (i) & (ii) then the significance of them will 
become clear. 

2
x y

avg and R = 
2

2

2
x y

xy

Or
2 2 2

n avg xy R

It is the equation of a circle with centre, ,0 . . ,0
2

x y
avg i e
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and radius,

2

2

2
x y

xyR

Construction of Mohr’s circle  
Convention for drawing  

A xy that is clockwise (positive) on a face resides above the axis; a xy

anticlockwise (negative) on a face resides below axis.

Tensile stress will be positive and plotted right of the origin O. Compressive stress 
will be negative and will be plotted left to the origin O.

An angle on real plane transfers as an angle 2  on Mohr’s circle plane. 

We now construct Mohr’s circle in the following stress conditions 

I. Bi-axial stress when x and y known and xy = 0 

II. Complex state of stress  ( ,x y and xy  known)     

I. Constant of Mohr’s circle for Bi-axial stress (when only x and y  known) 

If x and y both are tensile or both compressive sign of x and y will be same and this state of 

stress is known as “ like stresses” if one is tensile and other is compressive sign of x and y will 

be opposite and this state of stress is known as ‘unlike stress’. 

Construction of Mohr’s circle for like stresses (when x and y are same type of stress)

Step-I: Label the element ABCD and draw all stresses.

Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as 
ordinate) i.e. in Y-axis 
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Step-III: Using sign convention and some suitable scale, plot the stresses on two adjacent faces 
e.g. AB and BC on the graph. Let OL and OM equal to x and y respectively on the 
axis O .

Step-IV: Bisect ML at C. With C as centre and CL or CM as radius, draw a circle. It is the 
Mohr’s circle. 

Step-V: At the centre C draw a line CP at an angle2 , in the same direction as the normal to 
the plane makes with the direction of x . The point P represents the state of 
stress at plane ZB.
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Step-VI: Calculation, Draw a perpendicular PQ and PR where PQ =  and PR = n

OC and MC = CL = CP = 
2 2

PR = cos 2
2 2

PQ =  = CPsin 2  = sin 2
2

x y x y

x y x y

x y

n

[Note: In the examination you only draw final figure (which is in Step-V) and follow the 
procedure step by step so that no mistakes occur.]

Construction of Mohr’s circle for unlike stresses (when x and y are opposite in sign)

Follow the same steps which we followed for construction for ‘like stresses’ and finally will get 
the figure shown below.  

Note: For construction of Mohr’s circle for principal stresses when ( 1and 2 is known) then follow 

the same steps of Constant of Mohr’s circle for Bi-axial stress (when only x and y  known) just 

change the 1x and 2y
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II. Construction of Mohr’s circle for complex state of stress ( x , y  and xy known)

Step-I: Label the element ABCD and draw all stresses.

Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as 
ordinate) i.e. in Y-axis 

Step-III: Using sign convention and some suitable scale, plot the stresses on two adjacent faces 
e.g. AB and BC on the graph. Let OL and OM equal to x and y respectively on the 

axis O . Draw LS perpendicular to o  axis and equal to xy .i.e. LS= xy  . Here LS 

is downward as xy  on AB face is (– ive) and draw MT perpendicular to o  axis and 

equal to xy  i.e. MT= xy . Here MT is upward as xy  BC face is (+ ive).  
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Step-IV: Join ST and it will cut oσ  axis at C. With C as centre and CS or CT as radius, draw
circle. It is the Mohr’s circle.

Step-V: At the centre draw a line CP at an angle 2θ in the same direction as the normal to the
plane makes with the direction of xσ .

Step-VI: Calculation, Draw a perpendicular PQ and PR where PQ = τ  and PR = σ n

Centre, OC =
2

x yσ σ+

Radius CS = ( ) ( )
2

2 2 2CL LS CT= CP
2

yx xy
σ σ

τ
−⎛ ⎞

+ = + =⎜ ⎟⎜ ⎟⎝ ⎠

PR cos 2 sin 2
2 2

PQ sin2 cos2 .
2

x y x y
n xy

x y
xy

σ σ σ σ
σ θ τ θ

σ σ
τ θ τ θ

+ −
= = + +

−
= = −

[Note: In the examination you only draw final figure (which is in Step-V) and follow the

procedure step by step so that no mistakes occur.]
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Note:  The intersections of o  axis are two principal stresses, as shown below. 

Let us take an example: See the in the Conventional question answer section in this chapter and 
the question is “Conventional Question IES-2000” 

2.9 Mohr's circle for some special cases: 
i) Mohr’s circle for axial loading: 

; 0x y xy
P
A

ii) Mohr’s circle for torsional loading: 

; 0xy x y
Tr
J

It is a case of pure shear 
iii) In the case of pure shear 
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x y

max x

iv) A shaft compressed all round by a hub 

1 = 2 = 3 = Compressive (Pressure)
v) Thin spherical shell under internal pressure 

1 2 2 4
pr pD
t t

 (tensile) 

vi) Thin cylinder under pressure 

1 2
pD pr

t t
(tensile) and 2 4 2

pd pr
t t

(tensile)

vii) Bending moment  applied at the free end of a cantilever 

Only bending stress, 1
My
I

 and 2 0xy
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2.10 Strain
Normal strain 
Let us consider an element AB of infinitesimal length x. After deformation of the actual body if 

displacement of end A is u, that of end B is uu+ . x.
x

This gives an increase in length of element AB 

is u uu+ . x -u x
x x

 and therefore the strain in x-direction is x
u
x

 Similarly, strains in y and z directions are y
wand .

x zz

Therefore, we may write the three normal strain components  

x y
u w; ; and
x y zz .

Change in length of an infinitesimal element. 
Shear strain 
Let us consider an element ABCD in x-y plane and let the displaced position of the element be 
A B C D .This gives shear strain in x-y plane as xy where  is the angle made by the 

displaced live B C with the vertical and is the angle made by the displaced line A D with the 

horizontal. This gives

u . y . xux xand =
y y x x

We may therefore write the three shear strain components as  

xy yz
u w;

x z yy
  and zx

w u
x z

Therefore the state of strain at a point can be completely described by the six strain components
and the strain components in their turns can be completely defined by the displacement components 
u, , and w. 

Therefore, the complete strain matrix can be written as 
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0 0

0 0

u0 0

0 w

0

0

x

y

z

xy

yz

zx

x

y

z

x y

y z

z x

Shear strain associated with the distortion of an infinitesimal element. 

Strain Tensor  
The three normal strain components are 

x xx y
u w;   and  
x y zyy z zz .

The three shear strain components are 

1 u 1 w 1 w;        and       
2 2 x 2 2 z y 2 2 z
xy yz zx

xy yz zx
u

y x
Therefore the strain tensor is  

2 2

2 2

2 2

xy xz
xx

xx xy xz
yx yz

ij yx yy yz yy

zx zy zz
zyzx

zz

Constitutive Equation 
The constitutive equations relate stresses and strains and in linear elasticity. We know from the 
Hook’s law E.

Where E is modulus of elasticity 
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It is known that x produces a strain of 
E

x  in x-direction  

and Poisson’s effect gives  
E

x  in y-direction   and
E

x in z-direction. 

Therefore we my write the generalized Hook’s law as 
1

x x y zE
,

1
y y z xE

   and
1

z z x yE
It is also known that the shear stress, G , where G is the shear modulus and is shear strain. 

We may thus write the three strain components as 

xy yz zx
xy yz zx, and  

G G G
In general each strain is dependent on each stress and we may write 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

K K K K K K
K K K K K K
K K K K K K
K K K K K K
K K K K K K
K K K K K K

x x

y y

z z

xy xy

yz yz

zx zx

The number of elastic constant is 36 (For anisotropic materials) 

For isotropic material 

11 22 33

44 55 66

12 13 21 23 31 32

1K K K
E
1K K K

K K K K K K
E

G

Rest of all elements in K matrix are zero. 
For isotropic material only two independent elastic constant is there say E and G.  

1-D Strain
Let us take an example: A rod of cross sectional area Ao is 
loaded by a tensile force P. 

It’s stresses  , 0, 0
Ax y z

o

P and

1-D state of stress or Uni-axial state of stress
0 0 0 0 0 0

0 0 0 or 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

xx xx x

ij ij

Therefore strain components are  
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x
x E ;

x
y xE ; and

x
z xE

1-D state of strain or Uni-axial state of strain 

0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0

0 0

x

x y
x

ij x y

x y
x

E p
q

E
q

E

2-D Strain ( 0)z

(i)
1

x x yE
1

y y xE
z x yE

   [Where, , ,x y z  are strain component in X, Y, and Z axis respectively] 

(ii) 21x x y
E

21y y x
E

3-D Strain 

(i)   
1

x x y zE
1

y y z xE
1

z z x yE

(ii) 1
1 1 2x x y z

E
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1
1 1 2

1
1 1 2

y y z x

z z x y

E

E

Let us take an example: At a point in a loaded member, a state of plane stress exists and the 

strains are 6 6 6
x xy270 10 ; 90 10 and 360 10 .y  If the elastic constants 

E,  and G are 200 GPa, 0.25 and 80 GPa respectively.  

Determine the normal stress x and y  and the shear stress 
xy

at the point. 

Answer: We know that 

  . 

x x
1
E
1
E

G

y

y y x

xy
xy

9
6 6

x x y2 2
E 200 10This gives 270 10 0.25 90 10 Pa

1 1 0.25
52.8 MPa (i.e. tensile)

x2

9
6 6

2

6 9
xy xy

Eand 
1
200 10 90 10 0.25 270 10  Pa 4.8 MPa (i.e.compressive)
1 0.25

and  .G 360 10 80 10 Pa 28.8MPa

y y

2.12 An element subjected to strain components , &
2
xy

x y

Consider an element as shown in the figure given. The strain component In X-direction is x , the 

strain component in Y-direction is y  and the shear strain component is xy .

Now consider a plane at an angle with X- axis in this plane a normal strain and a shear 

strain . Then  

2 sin 2
2 2 2

x y x y xycos

2 cos 2
2 2 2

x y xysin
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We may find principal strain and principal plane for strains in the same process which we 

followed for stress analysis.   

In the principal plane shear strain is zero. 

Therefore principal strains are  

2 2

1,2 2 2 2
x y x y xy

The angle of principal plane 

tan 2
( )

xy
p

x y

Maximum shearing strain is equal to the difference between the 2 principal strains i.e 

max 1 2( )xy

Mohr's Circle for circle for Plain Strain 

We may draw Mohr’s circle for strain following same procedure which we followed for drawing 

Mohr’s circle in stress.  Everything will be same and in the place of x write x , the place of 

y write y  and in place of xy  write 
2
xy

.
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2.15 Volumetric Strain (Dilation) 
Rectangular block,

0
x y z

V
V

Proof: Volumetric strain 

0 0

3

3

1 1 1

o

x y z

x y z

V VV
V V

L L L L
L

(neglecting second and third order 
term, as very small )

Before deformation, 
Volume (Vo) = L3

After deformation, 
Volume (V)  

= 1 1 1x y zL L L

In case of prismatic bar,

Volumetric strain,
dv 1 2
v

Proof: Before deformation, the volume of the 
bar,   V = A.L 

 After deformation, the length L 1L

 and the new cross-sectional area 2A A 1

 Therefore now volume 2A L =AL 1 1V
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2AL 1 1 ALV V -V 1 2

V V AL
V 1 2

V

Thin Cylindrical vessel 

1=Longitudinal strain = 1 2 1 2
2
pr

E E Et

2 =Circumferential strain = 2 1 2
2
pr

E E Et

   1 22 [5 4 ]
2o

V pr
V Et

Thin Spherical vessels 

1 2 [1 ]
2
pr
Et

0

33 [1 ]
2

V pr
V Et

In case of pure shear 

x y

Therefore

x

y

z

1
E

1
E

0

     x y z
dvTherefore 0
vv

2.16 Measurement of Strain 
Unlike stress, strain can be measured directly.  The most common way of measuring strain is by use 
of the Strain Gauge.

Strain Gauge
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A strain gage is a simple device, comprising of a thin 
electric wire attached to an insulating thin backing 
material such as a bakelite foil. The foil is exposed to the 
surface of the specimen on which the strain is to be 
measured.  The thin epoxy layer bonds the gauge to the 
surface and forces the gauge to shorten or elongate as if it 
were part of the specimen being strained. 

A change in length of the gauge due to longitudinal strain 
creates a proportional change in the electric resistance, 
and since a constant current is maintained in the gauge, a 
proportional change in voltage. (V = IR).  

The voltage can be easily measured, and through 
calibration, transformed into the change in length of the 
original gauge length, i.e. the longitudinal strain along the 
gauge length.

Strain Gauge factor (G.F)  

The strain gauge factor relates a change in resistance with strain. 

Strain Rosette
The strain rosette is a device used to measure the state of strain at a point in a plane.   
It comprises three or more independent strain gauges, each of which is used to read normal strain 
at the same point but in a different direction.    

The relative orientation between the three gauges is known as  ,  and 

The three measurements of normal strain provide sufficient information for the determination of the 
complete state of strain at the measured point in 2-D.  

We have to find out , ,x y xyand form measured value , ,a b cand
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General arrangement:
The orientation of strain gauges is given in the 
figure. To relate strain we have to use the 
following formula.  

2 sin2
2 2 2

x y x y xycos

We get 

2 sin2
2 2 2

x y x y xy
a cos

2 sin2
2 2 2

x y x y xy
b cos

2 sin2
2 2 2

x y x y xy
c cos

From this three equations and three unknown we may solve , ,x y xyand

Two standard arrangement of the of the strain rosette are as follows: 

(i) 45° strain rosette or Rectangular strain rosette. 
In the general arrangement above, put  

0 ; 45 45o o oand

Putting the value we get 

a x

2 2
xyx x

b

c y

45
o

(ii) 60° strain rosette or Delta strain rosette 
In the general arrangement above, put 

0 ; 60 60o o oand

Putting the value we get 
a y

3 3
4 4

x y
b xy

3 3
4 4

x y
c xy

Solving above three equation we get 

60
o

120
0

or
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Stresses due to Pure Shear 
GATE-1. A block of steel is loaded by a tangential force on its top surface while the 

bottom surface is held rigidly. The deformation of the block is due to 
[GATE-1992]

 (a) Shear only       (b) Bending only (c) Shear and bending  (d) Torsion 
GATE-1. Ans. (a) It is the definition of shear stress. The force is applied tangentially it is not a 

point load so you cannot compare it with a cantilever with a point load at its free end. 

GATE-2. A shaft subjected to torsion experiences a pure shear stress  on the surface. 
The maximum principal stress on the surface which is at 45° to the axis will 
have a value [GATE-2003] 

 (a) cos 45°  (b) 2 cos 45° (c) cos2 45° (d) 2 sin 45° cos 45°  

GATE-2. Ans. (d) x y x y
n xycos2 sin2

2 2
 Here o

x 2 xy0, , 45

GATE-3. The number of components in a stress tensor defining stress at a point in three 
dimensions is: [GATE-2002]

 (a) 3  (b) 4   (c) 6   (d) 9 
GATE-3. Ans. (d) It is well known that,

xy yx, xz zx yz zy

x y z xy yz zx

and

so that the state of stress at a point is given by six components , , and , ,

Principal Stress and Principal Plane 
GATE-4. A body is subjected to a pure tensile stress of 100 units. What is the maximum 

shear produced in the body at some oblique plane due to the above? [IES-2006]
 (a) 100 units   (b) 75 units  (c) 50 units   (d) 0 unit 

GATE-4. Ans. (c) 1 2
max

100 0 50 units.
2 2

GATE-5. In a strained material one of the principal stresses is twice the other. The 
maximum shear stress in the same case is max  .Then, what is the value of the 
maximum principle stress? [IES 2007] 

 (a) max    (b) 2 max   (c) 4 max   (d) 8 max

GATE-5. Ans. (c) 
2

21
max , 21 2  or 

2
2

max  or max2 2  or 21 2 = max4

GATE-6. A material element subjected to a plane state of stress such that the maximum 
shear stress is equal to the maximum tensile stress, would correspond to 

[IAS-1998]
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GATE-6. Ans. (d) 1 2 1 1
max 1

( )
2 2

GATE-7. A solid circular shaft is subjected to a maximum shearing stress of 140 MPs. 
The magnitude of the maximum normal stress developed in the shaft is: 

[IAS-1995] 
 (a) 140 MPa   (b) 80 MPa  (c) 70 MPa   (d) 60 MPa  

GATE-7. Ans. (a) 1 2
max 2

 Maximum normal stress will developed if 1 2

GATE-8. The state of stress at a point in a loaded member is shown in the figure. The 
magnitude of maximum shear stress is [1MPa = 10 kg/cm2] [IAS 1994]

 (a) 10 MPa    (b) 30 MPa  (c) 50 MPa  (d) 100MPa 

GATE-8. Ans. (c) 2
2

max 2 xy
yx = 2

2

30
2

4040
= 50 MPa    

GATE-9. A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 
MPa. It is further subjected to a torque of 10 kNm. The maximum principal 
stress experienced on the shaft is closest to [GATE-2008] 

 (a) 41 MPa   (b) 82 MPa  (c) 164 MPa  (d) 204 MPa

GATE-9. Ans. (b) Shear Stress ( )= MPaPa
d
T 93.50

)1.0(
100001616

33

 Maximum principal Stress = 2
2

22
bb =82 MPa 

GATE-10. In a bi-axial stress problem, the stresses in x and y directions are ( x = 200 MPa 
and y =100 MPa. The maximum principal stress in MPa, is: [GATE-2000]

 (a) 50    (b) 100   (c) 150    (d) 200 

GATE-10. Ans. (d)
2

x y x y 2
1 xy xyif 0

2 2
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2

x y x y
x2 2

GATE-11. The maximum principle stress for the stress 
state shown in the figure is 

 (a)     (b) 2    
 (c) 3    (d) 1.5 

                [GATE-2001]
GATE-11. Ans. (b) x y xy, ,

                   
2

2x y x y 2 2
1 xymax

0 2
2 2 2

GATE-12. The normal stresses at a point are x = 10 MPa and, y = 2 MPa; the shear stress 
at this point is 4MPa. The maximum principal stress at this point is: 

[GATE-1998]
 (a) 16 MPa    (b) 14 MPa    (c) 11 MPa   (d) 10 MPa 

GATE-12. Ans. (c) 
2

x y x y 2
1 xy2 2

2
210 2 10 2 4 11.66 MPa

2 2

GATE-13. In a Mohr's circle, the radius of the circle is taken as: [IES-2006; GATE-1993]

 (a) 
2

2

2
x y

xy    (b) 

2
2

2
x y

xy

 (c) 
2

2

2
x y

xy    (d) 
2 2

x y xy

 Where, x and y are normal stresses along x and y directions respectively and xy is the 
shear stress. 

GATE-13. Ans. (a) 

GATE-14. A two dimensional fluid element rotates like a rigid body. At a point within the 
element, the pressure is 1 unit. Radius of the Mohr's circle, characterizing the 
state of stress at that point, is: [GATE-2008] 

 (a) 0.5 unit   (b) 0 unit  (c) 1 unit  (d) 2 units
GATE-14. Ans. (b)  
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GATE-15. The Mohr's circle of plane stress 

for a point in a body is shown. 
The design is to be done on the 
basis of the maximum shear 
stress theory for yielding. Then, 
yielding will just begin if the 
designer chooses a ductile 
material whose yield strength is: 

 (a) 45 MPa   (b) 50 MPa   
 (c) 90 MPa   (d) 100 MPa 
                              

                                                 [GATE-2005]

GATE-15. Ans. (c) 
1 2

y1 2
max

1 2 y y

Given 10 MPa, 100 MPa

Maximum shear stress theory give
2 2

or 10 ( 100) 90MPa

GATE-16. The figure shows the state of 
stress at a certain point in a 
stressed body. The magnitudes of 
normal stresses in the x and y 
direction are 100MPa and 20 MPa 
respectively. The radius of 
Mohr's stress circle representing 
this state of stress is: 

 (a) 120   (b) 80 
 (c) 60    (d) 40 
                                                       

[GATE-2004]
GATE-16. Ans. (c) 

x y

x y

100MPa, 20MPa

100 20
Radius of Mohr 'scircle 60

2 2
Data for Q17–Q18 are given below. Solve the problems and choose correct answers. 

[GATE-2003] 
The state of stress at a point "P" in a two dimensional loading is such that the Mohr's 
circle is a point located at 175 MPa on the positive normal stress axis. 

GATE-17. Determine the maximum and minimum principal stresses respectively from the 
Mohr's circle 

 (a) + 175 MPa, –175MPa (b) +175 MPa, +175 MPa 
  (c) 0, –175 MPa (d) 0, 0 
GATE-17. Ans. (b) 

1 2 x y 175 MPa

GATE-18. Determine the directions of maximum and minimum principal stresses at the 
point “P” from the Mohr's circle [GATE-2003]Page 88 of 429
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 (a) 0, 90°  (b) 90°, 0  (c) 45°, 135°  (d) All directions 
GATE-18. Ans. (d) From the Mohr’s circle it will give all directions. 

Principal strains 
GATE-19. If the two principal strains at a point are 1000 × 10-6 and -600 × 10-6, then the 

maximum shear strain is: [GATE-1996]
 (a) 800 × 10-6   (b) 500 × 10-6  (c) 1600 × 10-6   (d) 200 × 10-6 

GATE-19. Ans. (c) Shear strain 6 6
max mine e 1000 600 10 1600 10

Previous 20-Years IES Questions 

Stresses due to Pure Shear 
IES-1. If a prismatic bar be subjected to an axial tensile stress , then shear stress 

induced on a plane inclined at  with the axis will be: [IES-1992]
2 2a  sin 2                  b  cos 2             c  cos                   d   sin         

2 2 2 2
IES-1. Ans. (a) 

IES-2. In the case of bi-axial state of normal stresses, the normal stress on 45° plane is 
equal to [IES-1992] 

 (a) The sum of the normal stresses  (b) Difference of the normal stresses  
 (c) Half the sum of the normal stresses (d) Half the difference of the normal stresses 

IES-2. Ans. (c) x y x y
n xycos2 sin2

2 2
x yo

xy nAt 45 and 0;
2

IES-3. In a two-dimensional problem, the state of pure shear at a point is 
characterized by [IES-2001] 

 (a) 0x y xyand    (b) 0x y xyand
 (c) 2 0x y xyand    (d) 0.5 0x y xyand
IES-3. Ans. (b) 

IES-4. Which one of the following Mohr’s circles represents the state of pure shear? 
[IES-2000] 

IES-4. Ans. (c) 
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IES-5. For the state of stress of pure shear  the strain energy stored per unit volume 

in the elastic, homogeneous isotropic material having elastic constants E and 
 will be: [IES-1998] 

 (a) 
2

1
E

    (b) 
2

1
2E

    (c) 
22 1
E

    (d) 
2

2
2E

IES-5. Ans. (a) 1 2 3, , 0
22 21 1U 2 V V

2E E

IES-6. Assertion (A): If the state at a point is pure shear, then the principal planes 
through that point making an angle of 45° with plane of shearing stress carries 
principal stresses whose magnitude is equal to that of shearing stress. 

 Reason (R): Complementary shear stresses are equal in magnitude, but 
opposite in direction. [IES-1996] 
(a) Both A and R are individually true and R is the correct explanation of A 

 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-6. Ans. (b) 

        
IES-7. Assertion (A): Circular shafts made of brittle material fail along a helicoidally 

surface inclined at 45° to the axis (artery point) when subjected to twisting 
moment. [IES-1995]                      
Reason (R): The state of pure shear caused by torsion of the shaft is equivalent 
to one of tension at 45° to the shaft axis and equal compression in the 
perpendicular direction. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-7. Ans. (a) Both A and R are true and R is correct explanation for A. 

IES-8. A state of pure shear in a biaxial state of stress is given by [IES-1994]

 (a) 1

2

0
0

 (b) 1

1

0
0

 (c) x xy

yx y
 (d) None of the above 

IES-8. Ans. (b) 1 2 3, , 0

IES-9. The state of plane stress in a plate of 100 mm thickness is given as [IES-2000]
xx = 100 N/mm2, yy = 200 N/mm2, Young's modulus = 300 N/mm2, Poisson's ratio 

= 0.3. The stress developed in the direction of thickness is: 
 (a) Zero   (b) 90 N/mm2   (c) 100 N/mm2   (d) 200 N/mm2

IES-9. Ans. (a) 

IES-10. The state of plane stress at a point is described by and 0x y xy . The 
normal stress on the plane inclined at 45° to the x-plane will be: [IES-1998] 

a                          b   2                   c  3                  d  2         

IES-10. Ans. (a) x y x y
n xycos2 sin2

2 2

IES-11. Consider the following statements: [IES-1996, 1998] 
 State of stress in two dimensions at a point in a loaded component can be 

completely specified by indicating the normal and shear stresses on 
1. A plane containing the point 

 2. Any two planes passing through the point 
 3. Two mutually perpendicular planes passing through the point Page 90 of 429
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 Of these statements 
 (a) 1, and 3 are correct       (b) 2 alone is correct      
 (c) 1 alone is correct     (d) 3 alone is correct 
IES-11. Ans. (d) 

Principal Stress and Principal Plane 
IES-12. A body is subjected to a pure tensile stress of 100 units. What is the maximum 

shear produced in the body at some oblique plane due to the above? [IES-2006]
 (a) 100 units   (b) 75 units  (c) 50 units   (d) 0 unit 

IES-12. Ans. (c) 1 2
max

100 0 50 units.
2 2

IES-13. In a strained material one of the principal stresses is twice the other. The 
maximum shear stress in the same case is max .  Then, what is the value of the 
maximum principle stress? [IES 2007] 

 (a) max    (b) 2 max   (c) 4 max   (d) 8 max

IES-13. Ans. (c) 
2

21
max , 21 2  or 

2
2

max  or max2 2  or 21 2 = max4

IES-14. In a strained material, normal stresses on two mutually perpendicular planes 
are x and y (both alike) accompanied by a shear stress xy One of the principal 
stresses will be zero, only if [IES-2006]                

 (a) 
2

x y
xy  (b) xy x y   (c) xy x y  (d) 2 2

xy x y

IES-14. Ans. (c)  
2

x y x y 2
1,2 xy2 2

2
x y x y 2

2 xy

2 2
x y x y 2

xy xy x y

if 0
2 2

or or
2 2

IES-15. The principal stresses 1, 2 and 3 at a point respectively are 80 MPa, 30 MPa 
and –40 MPa. The maximum shear stress is: [IES-2001] 

 (a) 25 MPa    (b) 35 MPa  (c) 55 MPa  (d) 60 MPa 

IES-15. Ans. (d) 1 2
max

80 ( 40) 60
2 2

MPa

IES-16. Plane stress at a point in a body is defined by principal stresses 3  and . The 
ratio of the normal stress to the maximum shear stresses on the plane of 
maximum shear stress is: [IES-2000]                

 (a) 1     (b) 2    (c) 3    (d) 4 

IES-16. Ans. (b) xy

x y

2
tan2 0

1 2
max

3
2 2

 Major principal stress on the plane of maximum shear = 1
3 2

2
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IES-17. Principal stresses at a point in plane stressed element are 2500 kg/cmx y .

Normal stress on the plane inclined at 45o to x-axis will be: [IES-1993] 
 (a) 0   (b) 500 kg/cm2 (c) 707 kg/cm2 (d) 1000 kg/cm2

IES-17. Ans. (b) When stresses are alike, then normal stress n on plane inclined at angle 45° is 
2 2

2 2 21 1 1 1cos sin 500 500kg/cm
2 22 2n y x y x

IES-18. If the principal stresses corresponding to a two-dimensional state of stress are 

1  and 2  is greater than 2  and both are tensile, then which one of the 

following would be the correct criterion for failure by yielding, according to 
the maximum shear stress criterion? [IES-1993]

1 2 1 2
1( ) ( ) ( ) ( ) 2

2 2 2 2 2 2
yp yp yp

ypa b c d

IES-18. Ans. (a) 

IES-19. For the state of plane stress.  
 Shown the maximum and 

minimum principal stresses are: 
 (a) 60 MPa and 30 MPa   
 (b) 50 MPa and 10 MPa 
 (c) 40 MPa and 20 MPa   
 (d) 70 MPa and 30 MPa 

                                        [IES-1992]

IES-19. Ans. (d)
2

x y x y 2
1,2 xy2 2

2
2

1,2
50 ( 10) 50 10 40

2 2

max min70 and 30

IES-20. Normal stresses of equal magnitude p, but of opposite signs, act at a point of a 
strained material in perpendicular direction. What is the magnitude of the 
resultant normal stress on a plane inclined at 45° to the applied stresses? 

[IES-2005]
 (a) 2 p   (b) p/2   (c) p/4    (d) Zero 

IES-20. Ans. (d) x y x y
x cos2

2 2

n
P P P P cos2 45 0

2 2

IES-21. A plane stressed element is subjected to the state of stress given by 
2100 kgf/cmx xy  and y = 0. Maximum shear stress in the element is equal 

to [IES-1997]

2 2 2 2a  50 3 kgf/cm             b 1 00 kgf/cm         c   50 5  kgf/cm          d 1 50kgf/cm
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IES-21. Ans. (c)
2

2
1,2

0 0 50 50 5
2 2
x x

xy

 Maximum shear stress = 1 2 50 5
2

IES-22. Match List I with List II and select the correct answer, using the codes given 
below the lists: [IES-1995] 
List I(State of stress)    List II(Kind of loading) 

 Codes: A B C D  A B C D 
  (a)  1  2  3  4  (b)  2  3  4  1 

 (c)  2  4  3  1 (d)  3  4  1  2 
IES-22. Ans. (c) 

Mohr's circle 
IES-23. Consider the Mohr's circle shown 

above:
 What is the state of stress 

represented by this circle? 
x y xy

x y xy

x y xy

x y xy

(a) 0, 0

(b) 0, 0

(c) 0, 0

(d) 0, 0

                                 [IES-2008]
IES-23. Ans. (b) It is a case of pure shear.  1 2Just put

IES-24. For a general two dimensional stress system, what are the coordinates of the 
centre of Mohr’s circle?  [IE

 (a) 
2

yx , 0 (b) 0, 
2

yx  (c) 
2

yx ,0 (d) 0, 
2

yx

IES-24. Ans. (c) 

IES-25. In a Mohr's circle, the radius of the circle is taken as: [IES-2006; GATE-1993]

 (a) 
2

2

2
x y

xy     (b) 

2
2

2
x y

xy

 (c) 
2

2

2
x y

xy     (d) 
2 2

x y xy
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 Where, x and y are normal stresses along x and y directions respectively and xy is the 

shear stress. 
IES-25. Ans. (a) 

IES-26. Maximum shear stress in a Mohr's Circle [IES- 2008]
 (a) Is equal to radius of Mohr's circle (b) Is greater than radius of Mohr's circle  
 (c) Is less than radius of Mohr's circle  (d) Could be any of the above 
IES-26. Ans. (a)  

2
2 2

x y x y2 2
x x y xy

2
x y 2

xy

2
x y x y 2

t xy

2
x y x y 2

2 xy

x y1 2
max max

2 2

Radius of the Mohr Circle

2

2 2

2 2

r       
2 2

2
2
xy

IES-27. At a point in two-dimensional stress system x = 100 N/mm2, y = xy = 40 N/mm2.
What is the radius of the Mohr circle for stress drawn with a scale of: 1 cm = 10 
N/mm2? [IES-2005]                   

 (a) 3 cm    (b) 4 cm  (c) 5 cm   (d) 6 cm 
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IES-27. Ans. (c) Radius of the Mohr circle  

2 2
x y 2 2

xy
100 40/ 10 40 / 10 50 / 10 5cm

2 2

IES-28. Consider a two dimensional state of stress given for an element as shown in the 
diagram given below: [IES-2004]

What are the coordinates of the centre of Mohr's circle? 
 (a) (0, 0)  (b) (100, 200) (c) (200, 100) (d) (50, 0) 

IES-28. Ans. (d) Centre of Mohr’s circle is x y 200 100,0 ,0 50,0
2 2

IES-29. Two-dimensional state of stress at a point in a plane stressed element is 
represented by a Mohr circle of zero radius. Then both principal stresses 

 (a) Are equal to zero [IES-2003]
 (b) Are equal to zero and shear stress is also equal to zero 
 (c) Are of equal magnitude but of opposite sign 
 (d) Are of equal magnitude and of same sign 
IES-29. Ans. (d) 

IES-30. Assertion (A): Mohr's circle of stress can be related to Mohr's circle of strain by 
some constant of proportionality. [IES-2002]
Reason (R): The relationship is a function of yield stress of the material. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-30. Ans. (c) 

IES-31. When two mutually perpendicular principal stresses are unequal but like, the 
maximum shear stress is represented by [IES-1994]

 (a) The diameter of the Mohr's circle 
 (b) Half the diameter of the Mohr's circle 
 (c) One-third the diameter of the Mohr's circle  
 (d) One-fourth the diameter of the Mohr's circle 
IES-31.  Ans. (b)  

IES-32. State of stress in a plane element is shown in figure I. Which one of the 
following figures-II is the correct sketch of Mohr's circle of the state of stress? 

[IES-1993, 1996]

Figure-I     Figure-II 
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IES-32. Ans. (c) 

Strain 
IES-33. A point in a two dimensional state of strain is subjected to pure shearing strain 

of magnitude xy  radians. Which one of the following is the maximum principal 
strain? [IES-2008]

 (a) xy    (b) xy / 2   (c) xy /2  (d) 2 xy

IES-33. Ans. (c) 

IES-34. Assertion (A): A plane state of stress does not necessarily result into a plane 
state of strain as well. [IES-1996]
Reason (R): Normal stresses acting along X and Y directions will also result 
into normal strain along the Z-direction. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-34. Ans. (a) 

Principal strains 
IES-35. Principal strains at a point are 6100 10  and 6200 10 .  What is the maximum 

shear strain at the point? [IES-2006]
 (a) 300 × 10–6   (b) 200 × 10–6  (c) 150 × 10–6   (d) 100 × 10–6

IES-35. Ans. (a) 6 6
max 1 2 100 200 10 300 10

1 2
max

xy 1 2 1 2
max

don' t confuse withMaximumShear stress
2

in strain and that is the difference.
2 2 2

IES-36. The principal strains at a point in a body, under biaxial state of stress, are 
1000×10–6 and –600 × 10–6. What is the maximum shear strain at that point? 

[IES-2009] 
 (a) 200 × 10–6        (b) 800 × 10–6      (c) 1000 × 10–6    (d) 1600 × 10–6

IES-36. Ans. (d) 
x y xy 6 6 6

xy x y 1000 10 600 10 1600 10
2 2

IES-37. The number of strain readings (using strain gauges) needed on a plane surface 
to determine the principal strains and their directions is: [IES-1994]

 (a) 1    (b) 2    (c) 3    (d) 4 
IES-37. Ans. (c) Three strain gauges are needed on a plane surface to determine the principal 

strains and their directions. 

Principal strain induced by principal stress 
IES-38. The principal stresses at a point in two dimensional stress system are 1 and 

2 and corresponding principal strains are 1  and 2 . If E and  denote 
Young's modulus and Poisson's ratio, respectively, then which one of the 
following is correct? [IES-2008]

1 1 1 1 22

1 1 2 1 1 22

E(a) E (b)
1

E(c) (d) E
1 Page 96 of 429
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IES-38. Ans. (b) 1 2 2 1
1 2and

E E E E
 From these two equation eliminate 2 .

IES-39. Assertion (A): Mohr's construction is possible for stresses, strains and area 
moment of inertia. [IES-2009] 

 Reason (R): Mohr's circle represents the transformation of second-order tensor. 
 (a) Both A and R are individually true and R is the correct explanation of A. 
 (b) Both A and R are individually true but R is NOT the correct explanation of A. 
 (c) A is true but R is false. 
 (d) A is false but R is true. 
IES-39. Ans. (a) 

Previous 20-Years IAS Questions 

Stresses due to Pure Shear 
IAS-1. On a plane, resultant stress is inclined at an angle of 45o to the plane. If the 

normal stress is 100 N /mm2, the shear stress on the plane is: [IAS-2003] 
 (a) 71.5 N/mm2       (b) 100 N/mm2 (c) 86.6 N/mm2     (d) 120.8 N/mm2

IAS-1. Ans. (b) 2
nWeknow cos and sin cos

2100 cos 45 or 200
200sin45cos 45 100

IAS-2. Biaxial stress system is correctly shown in [IAS-1999]

IAS-2. Ans. (c) 

IAS-3. The complementary shear stresses of 
intensity are induced at a point in 
the material, as shown in the figure. 
Which one of the following is the 
correct set of orientations of principal 
planes with respect to AB? 

 (a) 30° and 120°  (b) 45° and 135° 
 (c) 60° and 150°  (d) 75° and 165° 

[IAS-1998]
Page 97 of 429



Chapter-2 Principal Stress and Strain S K Mondal’s 
IAS-3. Ans. (b) It is a case of pure shear so principal planes will be along the diagonal. 

IAS-4. A uniform bar lying in the x-direction is subjected to pure bending. Which one 
of the following tensors represents the strain variations when bending moment 
is about the z-axis (p, q and r constants)? [IAS-2001]

 (a) 
0 0

0 0
0 0

py
qy

ry
    (b) 

0 0
0 0
0 0 0

py
qy

 (c) 
0 0

0 0
0 0

py
py

py
    (d) 

0 0
0 0
0 0

py
qy

qy
IAS-4. Ans. (d) Stress in x direction = x

 Therefore x x x, ,x y zE E E

IAS-5. Assuming E = 160 GPa and G = 100 GPa for a material, a strain tensor is given 
as: [IAS-2001] 

0.002 0.004 0.006
0.004 0.003 0
0.006 0 0

 The shear stress, xy is:
 (a) 400 MPa  (b) 500 MPa  (c) 800 MPa  (d) 1000 MPa 

IAS-5. Ans. (c)  

   and
2

xx xy xz
xy

yx yy yz xy

zx zy zz

3100 10 0.004 2 MPa 800MPaxy xyG

Principal Stress and Principal Plane 
IAS-6. A material element subjected to a plane state of stress such that the maximum 

shear stress is equal to the maximum tensile stress, would correspond to 
[IAS-1998]

IAS-6. Ans. (d) 1 2 1 1
max 1

( )
2 2

IAS-7. A solid circular shaft is subjected to a maximum shearing stress of 140 MPs. 
The magnitude of the maximum normal stress developed in the shaft is: 

[IAS-1995] Page 98 of 429



Chapter-2 Principal Stress and Strain S K Mondal’s 
 (a) 140 MPa   (b) 80 MPa  (c) 70 MPa   (d) 60 MPa  

IAS-7. Ans. (a) 1 2
max 2

 Maximum normal stress will developed if 1 2

IAS-8. The state of stress at a point in a loaded member is shown in the figure. The 
magnitude of maximum shear stress is [1MPa = 10 kg/cm2] [IAS 1994]

 (a) 10 MPa    (b) 30 MPa  (c) 50 MPa  (d) 100MPa 

IAS-8. Ans. (c) 2
2

max 2 xy
yx = 2

2

30
2

4040
= 50 MPa    

IAS-9. A horizontal beam under bending has a maximum bending stress of 100 MPa 
and a maximum shear stress of 20 MPa. What is the maximum principal stress 
in the beam? [IAS-2004] 

 (a) 20    (b) 50   (c) 50 + 2900  (d) 100 
IAS-9. Ans. (c) b=100MPa =20 mPa

1,2=
2

2

2 2
b b

2 2
2 2

1,2
100 100 20 50 2900 MPa

2 2 2 2
b b

IAS-10. When the two principal stresses are equal and like: the resultant stress on any 
plane is: [IAS-2002] 

 (a) Equal to the principal stress   (b) Zero 
 (c) One half the principal stress   (d) One third of the principal stress 

IAS-10. Ans. (a) cos 2
2 2

x y x y
n

 [We may consider this as 0xy ] ( )x y say      So for any planen

IAS-11. Assertion (A): When an isotropic, linearly elastic material is loaded biaxially, 
the directions of principal stressed are different from those of principal 
strains. [IAS-2001]                
Reason (R): For an isotropic, linearly elastic material the Hooke's law gives 
only two independent material properties.    

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-11. Ans. (d) They are same. 
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IAS-12. Principal stress at a point in a stressed solid are 400 MPa and 300 MPa 

respectively. The normal stresses on planes inclined at 45° to the principal 
planes will be: [IAS-2000] 

 (a) 200 MPa and 500 MPa    (b) 350 MPa on both planes 
 (c) 100MPaand6ooMPa     (d) 150 MPa and 550 MPa 
IAS-12. Ans. (b)  

400 300 400 300cos 2 cos 2 45 350
2 2 2 2

x y x y o
n MPa

IAS-13. The principal stresses at a point in an elastic material are 60N/mm2 tensile, 20 
N/mm2 tensile and 50 N/mm2 compressive. If the material properties are: μ = 
0.35 and E = 105 Nmm2, then the volumetric strain of the material is: [IAS-1997] 

 (a) 9 × 10–5    (b) 3 × 10-4  (c) 10.5 × 10–5   (d) 21 × 10–5

IAS-13. Ans. (a) 
y y yx z z x z x

x y z, and
E E E E E E E E E

x y z
v x y z x y z

x y z 5
5

2
E E

60 20 501 2 1 2 0.35 9 10
E 10

Mohr's circle 
IAS-14. Match List-I (Mohr's Circles of stress) with List-II (Types of Loading) and select 

the correct answer using the codes given below the lists: [IAS-2004]
 List-I               List-II 

 (Mohr's Circles of Stress)    (Types of Loading) 

1. A shaft compressed all round by a hub 

2. Bending moment  applied at the free 
end of a cantilever 

3. Shaft under torsion 

4. Thin cylinder under pressure 

5. Thin spherical shell under internal 
pressure

 Codes:  A  B  C  D  A  B  C  D 
  (a)  5  4  3  2  (b)  2  4  1  3 
  (c)  4  3  2  5  (d)  2  3  1  5 
IAS-14. Ans. (d) 
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IAS-15. The resultant stress on a certain plane makes an angle of 20° with the normal 

to the plane. On the plane perpendicular to the above plane, the resultant 
stress makes an angle of  with the normal. The value of  can be: [IAS-2001]

 (a) 0° or 20°      (b) Any value other than 0° or 90° 
 (c) Any value between 0° and 20°    (d) 20° only 
IAS-15. Ans. (b)

IAS-16. The correct Mohr's stress-circle drawn for a point in a solid shaft compressed 
by a shrunk fit hub is as (O-Origin and C-Centre of circle; OA = 1 and OB = 2)

[IAS-2001]

IAS-16. Ans. (d) 

IAS-17. A Mohr's stress circle is drawn for a body subjected to tensile stress  xf  and yf
in two mutually perpendicular directions such that xf  > yf . Which one of the 
following statements in this regard is NOT correct? [IAS-2000]

 (a) Normal stress on a plane at 45° to xf  is equal to 
2

x yf f

 (b) Shear stress on a plane at 450 to xf  is equal to 
2

x yf f

 (c) Maximum normal stress is equal to xf .

 (d) Maximum shear stress is equal to 
2

x yf f

IAS-17. Ans. (d) Maximum shear stress is 
2

x yf f

IAS-18. For the given stress condition x =2 N/mm2, x =0 and 0xy , the correct 
Mohr’s circle is: [IAS-1999]  

IAS-18. Ans. (d) x y 2 0Centre ,0 ,0 1, 0
2 2

2 2
x y 2

x
2 0radius 0 1

2 2

IAS-19. For which one of the following two-dimensional states of stress will the Mohr's 
stress circle degenerate into a point? [IAS-1996]
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IAS-19. Ans. (c) Mohr’s circle will be a point.  

 Radius of the Mohr’s circle = 
2

x y 2
xy xy x y0 and

2

Principal strains 
IAS-20. In an axi-symmetric plane strain problem, let u be the radial displacement at r. 

Then the strain components , ,r e  are given by [IAS-1995]

 (a) 
2

, ,r r
u u u
r r r

  (b) , ,r r
u u o
r r

 (c) , , 0r r
u u
r r

  (d) 
2

, ,r r
u u u
r r

IAS-20. Ans. (b) 

IAS-21. Assertion (A): Uniaxial stress normally gives rise to triaxial strain. 
Reason (R): Magnitude of strains in the perpendicular directions of applied 
stress is smaller than that in the direction of applied stress. [IAS-2004] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-21. Ans. (b) 

IAS-22. Assertion (A): A plane state of stress will, in general, not result in a plane state 
of strain. [IAS-2002] 
Reason (R): A thin plane lamina stretched in its own plane will result in a state 
of plane strain.  

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-22. Ans. (c) R is false. Stress in one plane always induce a lateral strain with its orthogonal 

plane. 
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Previous Conventional Questions with Answers 

Conventional Question IES-1999 
Question: What are principal in planes? 
Answer: The planes which pass through the point in such a manner that the resultant stress 

across them is totally a normal stress are known as principal planes. No shear stress 
exists at the principal planes.

Conventional Question IES-2009 
Q.  The Mohr’s circle for a plane stress is a circle of radius R with its origin at + 2R 

on  axis. Sketch the Mohr’s circle and determine max , min , av , xy max
for

this situation.   [2 Marks] 

Ans.   Here max 3R

min

v

max min
xy

R
3R R 2R

2
3R Rand R

2 2

R

(2R,0)

R

3R

Conventional Question IES-1999 
Question: Direct tensile stresses of 120 MPa and 70 MPa act on a body on mutually 

perpendicular planes. What is the magnitude of shearing stress that can be 
applied so that the major principal stress at the point does not exceed 135 
MPa? Determine the value of minor principal stress and the maximum shear 
stress. 

Answer: Let shearing stress is ' ' MPa.

2
2

1,2

The principal stresses are

120 70 120 70
2 2

2
2

1

Major principal stress is

120 70 120 70
2 2

135(Given) , 31.2 .or MPa
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2
2

2

1 2
max

Minor principal stress is

120 70 120 70 31.2 55MPa
2 2

135 55 40MPa
2 2

Conventional Question IES-2009
Q.   The state of stress at a point in a loaded machine member is given by the 

principle stresses.       [ 2 Marks] 
1 600 MPa, 2 0 and 3 600 MPa .

  (i) What is the magnitude of the maximum shear stress? 
  (ii) What is the inclination of the plane on which the maximum shear stress 

acts with respect to the plane on which the maximum principle stress 
1 acts?

Ans. (i)  Maximum shear stress,  

1 3 600 600
2 2

600 MPa
(ii)  At = 45º max. shear stress occurs with 1 plane. Since 1  and 3 are principle 
stress does not contains shear stress. Hence max. shear stress is at 45º with principle 
plane. 

Conventional Question IES-2008 
Question: A prismatic bar in compression has a cross- sectional area A = 900 mm2 and 

carries an axial load P = 90 kN. What are the stresses acts on  
 (i) A plane transverse to the loading axis; 
 (ii) A plane at = 60o to the loading axis? 
Answer: (i) From figure it is clear A plane 

transverse to loading axis, =0o

2 2
n

2

90000cos = /
900

100 /
P 90000 = 2 = sin =0

2A 2×900

P N mm
A

N mm

and Sin

(iii) A plane at 60o to loading axis,  
          = 60°- 30°  = 30°

2 2
n

2

90000cos = cos 30
900

75 /

P
A

N mm

2

90000sin2 sin2 60
2 2 900
43.3 /

oP
A

N mm

Conventional Question IES-2001 
Question: A tension member with a cross-sectional area of 30 mm2 resists a load of 80 

kN, Calculate the normal and shear stresses on the plane of maximum shear 
stress. 

Answer: 2cos sin2
2n

P P
A A
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oFor maximum shear stress sin2 = 1, or,  = 45
33

2
max

80 1080 10 cos 45 1333   and  1333
30 2 30 2n

PMPa MPa
A

Conventional Question IES-2007 
Question: At a point in a loaded structure, a pure shear stress state  = 400 MPa 

prevails on two given planes at right angles. 
 (i) What would be the state of stress across the planes of an element taken at 

+45° to the given planes? 
 (ii) What are the magnitudes of these stresses? 
Answer: (i) For pure shear 

max; 400x y x MPa

 (ii) Magnitude of these stresses 

2 90 400   and  ( cos2 ) 0o
n xy xy xy xySin Sin MPa

Conventional Question IAS-1997 
Question: Draw Mohr's circle for a 2-dimensional stress field subjected to  
 (a) Pure shear (b) Pure biaxial tension (c) Pure uniaxial tension and (d) Pure 

uniaxial compression       
Answer: Mohr's circles for 2-dimensional stress field subjected to pure shear, pure biaxial 

tension, pure uniaxial compression and pure uniaxial tension are shown in figure 
below:

Conventional Question IES-2003
Question: A Solid phosphor bronze shaft 60 mm in diameter is rotating at 800 rpm and 

transmitting power. It is subjected torsion only. An electrical resistance 
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strain gauge mounted on the surface of the shaft with its axis at 45° to the 
shaft axis, gives the strain reading as 3.98 × 10–4. If the modulus of elasticity 
for bronze is 105 GN/m2 and Poisson's ratio is 0.3, find the power being 
transmitted by the shaft. Bending effect may be neglected. 

Answer:

 Let us assume maximum shear stress on the cross-sectional plane MU is . Then 
2

2

1Principal stress along, VM = - 4  = -  (compressive)
2

1Principal stress along, LU = 4 (tensile)
2

μ 4

4 9

Thus magntude of the compressive strain along VM is

= (1 ) 3.98 10
E

3.98 10 105 10
= 32.15

1 0.3
or MPa

3

6 3

Torque being transmitted (T) = 
16

32.15 10 0.06 =1363.5 Nm
16

d

2 N 2 ×800Power being transmitted, P =T. =T. =1363.5× 114.23
60 60

W kW

Conventional Question IES-2002 
Question: The magnitude of normal stress on two mutually perpendicular planes, at a 

point in an elastic body are 60 MPa (compressive) and 80 MPa (tensile) 
respectively. Find the magnitudes of shearing stresses on these planes if the 
magnitude of one of the principal stresses is 100 MPa (tensile). Find also the 
magnitude of the other principal stress at this point. 
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Answer: Above figure shows stress condition assuming 

shear stress is ' xy'

 Principal stresses 
2

y 2
1,2 2 2

x y x
xy

2
2

1,2
60 80 60 80,

2 2 xyor

2
2

1,2
60 80 60 80,

2 2 xyor

80Mpa

80Mpa

60Mpa60Mpa

Jxy

Jxy

Jxy

Jxy

2 2
1

To make principal stress 100 MPa we have to consider '+' .

100MPa 10 70 ; or, 56.57 MPaxy xy

2
2

2

Therefore other principal stress will be

60 80 60 80 (56.57)
2 2

. . 80 MPa(compressive)i e

Conventional Question IES-2001 
Question: A steel tube of inner diameter 100 mm and wall thickness 5 mm is subjected to a 

torsional moment of 1000 Nm. Calculate the principal stresses and 
orientations of the principal planes on the outer surface of the tube. 

Answer: 4 4 6 4Polar moment of Inertia (J)= 0.110 0.100  = 4.56 10
32

m

6

T . 1000 (0.055)Now  
4.56 10

 12.07MPa

T Ror J
J R J

p

0 0
p

0
1

0
2

2
Now,tan2 ,

 gives 45  135

2 12.07 sin90

12.07  
 12.07sin270

12.07

xy

x y

xy

or

Sin

MPa
and

MPa

50mm

5mm

Conventional Question IES-2000 
Question: At a point in a two dimensional stress system the normal stresses on two 

mutually perpendicular planes are yand x  and the shear stress is xy. At 
what value of shear stress, one of the principal stresses will become zero? 

Answer: Two principal stressdes are
2

2
1,2

-
2 2

x y x y
xy
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Considering (-)ive sign it may be zero

2 2 2
xx 2 2or,

2 2 22
x y y x yy

xy xy

2 2
2 2

yor, or, or,
2 2

x y x y
xy xy x y xy x

Conventional Question IES-1996 
Question: A solid shaft of diameter 30 mm is fixed at one end. It is subject to a tensile 

force of 10 kN and a torque of 60 Nm. At a point on the surface of the shaft, 
determine the principle stresses and the maximum shear stress.   

Answer: Given: D = 30 mm = 0.03 m; P = 10 kN; T= 60 Nm 
1 2 max

3
6 2 2

t x
2

Pr incipal stresses , and max imum shear stress :

10 10Tensile stress 14.15 10 N / m or 14.15 MN / m
0.03

4

TAs per torsion equation,
J R

6 2

44

2

TR TR 60 0.015Shear stress, 11.32 10 N / m
J D 0.03

32 32
or 11.32 MN / m

2
x y x y 2

1 2 xy

2 2
x y xy

2
2

1 2

2

The principal stresses are calculated by using the relations :

,
2 2

Here 14.15MN / m , 0; 11.32 MN / m

14.15 14.15, 11.32
2 2

7.07 13.35 20.425 MN / m , 6.275M 2

2
1

2
2

21 2
max

N / m .
Hence,major principal stress, 20.425 MN / m tensile

Minor principal stress, 6.275MN / m compressive

24.425 6.275
Maximum shear stress, 13.35mm / m

2 2

Conventional Question IES-2000 
Question: Two planes AB and BC which are at right angles are acted upon by tensile 

stress of 140 N/mm2 and a compressive stress of 70 N/mm2 respectively and 
also by stress 35 N/mm2. Determine the principal stresses and principal 
planes. Find also the maximum shear stress and planes on which they act. 

Sketch the Mohr circle and mark the relevant data. 
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Answer: Given

x

y

=140MPa(tensile)
=-70MPa(compressive)

35MPaxy

1 2Principal stresses; , ;

70N/mm2

35Nmm2

A

C B

140N/mm2

x
2

2
1,2

2
2

1 2

We know that, 
2 2

140 70 140 70 35 35 110.7
2 2

Therefore =145.7 MPa  and 75.7MPa

x y y
xy

y

-

1 2

1 2
max

Position of Principal planes ,
2 2 35tan2 0.3333

140 70

145 75.7Maximum shear stress, 110.7
2 2

xy
p

x

MPa

Mohr cirle:

xOL= 140
70

35

Joining ST that cuts at 'N'

y

xy

MPa
OM MPa

SM LT MPa

1

2

SN=NT=radius of Mohr circle =110.7 MPa
OV= 145.7

75.7
MPa

OV MPa

T

V
L

2 =198.4p
S

U
M O 2

140=

Y

N

Conventional Question IES-2010 
Q6.   The data obtained from a rectangular strain gauge rosette attached to a 

stressed steel member are 6 0 6
0 45= 220 10 , 120 100 , and 

6
90  =220 10 . Given that the value of E = 5 22 10 N / mm  and Poisson’s 

Ratio 0.3 , calculate the values of principal stresses acting at the point and 
their directions.           [10 Marks] 

Ans. A rectangular strain gauge rosette strain  

0
6 6 6

0 9045
11 2

220 10 120 10 220 10

E = 2 10 N / m poisson ratio 0.3
 Find out principal stress and their direction. 
 Let    a o c 90 b 45e e and e
 We know that principal strain are  

   2 2a b
12 a b b c

e e e e e e
2

6 6
2 26 6

220 10 120 10 1 220 120 10 120 220 10
2 2

6 6150 10 354.40 10
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6 6

12 50 10 250.6 10
4

1 2.01 10
4

2 3.01 10
 Direction can be find out : -  

6
b a c

p 6 6
c a

2e e e 2 120 10tan2
e e 220 10 220 10

240 0.55
440

p2 28.81
0

p 114.45 clockwiseform principalstraint
  Principal stress:- 

11 4
1 2

1 2 2

2 10 2 0.3 3 10E
1 1 0.3

5 2241.78 10 N / m
5 2527.47 10 N / m

Conventional Question IES-1998 
Question: When using strain-gauge system for stress/force/displacement measurements 

how are in-built magnification and temperature compensation achieved? 
Answer: In-built magnification and temperature compensation are achieved by  
 (a) Through use of adjacent arm balancing of Wheat-stone bridge. 
 (b) By means of self temperature compensation by selected melt-gauge and dual 

element-gauge. 

Conventional Question AMIE-1998 
Question: A cylinder (500 mm internal diameter and 20 mm wall thickness) with closed 

ends is subjected simultaneously to an internal pressure of 0-60 MPa, bending 
moment 64000 Nm and torque 16000 Nm. Determine the maximum tensile 
stress and shearing stress in the wall. 

Answer: Given: d = 500 mm = 0·5 m; t = 20 mm = 0·02 m; p = 0·60 MPa = 0.6 MN/m2;
 M = 64000 Nm = 0·064 MNm; T= 16000 Nm = 0·016 MNm. 
 Maximum tensile stress: 
 First let us determine the principle stresses 1 2and  assuming this as a thin 

cylinder.

 We know, 2
1

pd 0.6 0.5 7.5MN / m
2t 2 0.02

2
2

pd 0.6 0.5and 3.75MN / m
4t 4 0.02

 Next consider effect of combined bending moment and torque on the walls of the 
cylinder. Then the principal stresses 1 2' and '  are given by 
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2 2

1 3

2 2
2 3

2 2 2
1 3

2 2 2
2 3

max

I II
max

II 2 2

16' M M T
d

16and ' M M T
d
16' 0.064 0.064 0.016 5.29MN / m
0.5
16and ' 0.064 0.064 0.016 0.08MN / m
0.5

Maximum shearing stress, :

We Know,
2

' 3.75 2

2
max

0.08 3.67MN / m tensile
12.79 3.67 4.56MN / m

2
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 3.  Moment of Inertia and Centroid 

Theory at a Glance (for IES, GATE, PSU)
3.1 Centre of gravity 

The centre of gravity of a body defined as the point through which the whole weight of a body may be 

assumed to act. 

3.2 Centroid or Centre of area 

The centroid or centre of area is defined as the point where the whole area of the figure is assumed 

to be concentrated. 

3.3 Moment of Inertia (MOI) 

About any point the product of the force and the perpendicular distance between them is 

known as moment of a force or first moment of force. 

This first moment is again multiplied by the perpendicular distance between them to obtain 

second moment of force. 

In the same way if we consider the area of the figure it is called second moment of area or 

area moment of inertia and if we consider the mass of a body it is called second moment of 

mass or mass moment of Inertia. 

Mass moment of inertia is the measure of resistance of the body to rotation and forms the 

basis of dynamics of rigid bodies.

Area moment of Inertia is the measure of resistance to bending and forms the basis of 

strength of materials. 

3.4 Mass moment of Inertia (MOI) 

2
i i

i
I m r

Notice that the moment of inertia ‘I’ depends on the distribution of mass in the system. 

The furthest the mass is from the rotation axis, the bigger the moment of inertia. 

For a given object, the moment of inertia depends on where we choose the rotation axis. 

In rotational dynamics, the moment of inertia ‘I’ appears in the same way that mass m does

in linear dynamics. 
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Solid disc or cylinder of mass M and radius R, about perpendicular axis through its 

centre, 21
2

I MR

Solid sphere of mass M and radius R, about an axis through its centre, I = 2/5 M R2

Thin rod of mass M and length L, about a perpendicular axis through 

its centre. 

                  21
12

I ML

Thin rod of mass M and length L, about a perpendicular axis through its 

end. 

                  
21

3
I ML

3.5 Area Moment of Inertia (MOI) or Second moment of area 

To find the centroid of an area by the first moment of the area 

about an axis was determined ( x dA ) 

Integral of the second moment of area is called moment of 

inertia ( x2dA) 

Consider the area ( A ) 

By definition, the moment of inertia of the differential area 

about the x and y axes are dIxx and dIyy

dIxx = y2dA            Ixx =  y2 dA

dIyy = x2dA           Iyy =  x2 dA

3.6 Parallel axis theorem for an area 
The rotational inertia about any axis is the sum of 
second moment of inertia about a parallel axis 
through the C.G and total area of the body times 
square of the distance between the axes. 

INN = ICG + Ah2
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3.7 Perpendicular axis theorem for an area 
If x, y & z are mutually perpendicular axes as shown, then  

zz xx yyI J I I

Z-axis is perpendicular to the plane of x – y and vertical to this page as 
shown in figure. 

To find the moment of inertia of the differential area about the pole (point of origin) or z-axis, 
(r) is used. (r) is the perpendicular distance from the pole to dA for the entire area  

                  J =  r2 dA =   (x2 + y2 )dA = Ixx + Iyy (since r2 = x2 + y2 ) 
            Where, J = polar moment of inertia 

3.8 Moments of Inertia (area) of some common area 
(i) MOI of Rectangular area
Moment of inertia about axis XX which passes 
through centroid.  
Take an element of width ‘dy’ at a distance y 
from XX axis. 

        Area of the element (dA) = b dy.
and Moment of Inertia of the element about XX 

axis 2 2dA y b.y .dy

Total MOI about XX axis (Note it is area 
moment of Inertia) 

         
32 2

2 2

02

 2
12

h h

xx
h

bhI by dy by dy

3

12xx
bhI

Similarly, we may find, 
3

12yy
hbI

Polar moment of inertia (J) = Ixx + Iyy = 
3 3

12 12
bh hb
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If we want to know the MOI about an axis NN passing 
through the bottom edge or top edge. 
Axis XX and NN are parallel and at a distance h/2. 

Therefore INN = Ixx + Area (distance) 2

          
23 3

12 2 3
bh h bhb h

Case-I: Square area 

4

12xx
aI

Case-II: Square area with diagonal as axis

     

4

12xx
aI

Case-III: Rectangular area with a centrally 

rectangular hole 
Moment of inertia of the area = moment of inertia of BIG 
rectangle – moment of inertia of SMALL rectangle

3 3

12 12xx
BH bhI
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(ii) MOI of a Circular area
The moment of inertia about axis XX this passes through 
the centroid. It is very easy to find polar moment of inertia 
about point ‘O’. Take an element of width ‘dr’ at a distance 
‘r’ from centre. Therefore, the moment of inertia of this 
element about polar axis 

2
xx yy

2

d(J) = d(I  + I ) = area of ring  (radius)
or  d(J) 2 rdr r

4 4
3

0

4

Integrating both side we get 

2
2 32

Due to summetry  

Therefore,      
2 64

R

xx yy

xx yy

R DJ r dr

I I
J DI I

4 4

    and   
64 32xx yy
D DI I J

Case-I: Moment of inertia of a circular 

area with a concentric hole. 
Moment of inertia of the area = moment of inertia of 
BIG circle – moment of inertia of SMALL circle. 

Ixx = Iyy = 
4

64
D  –

4

64
d

4 4

4 4

( )
64

and   ( )
32

D d

J D d

Case-II: Moment of inertia of a semi-
circular area. 

4 4

1 of the momemt of total circular lamina
2
1
2 64 128

NNI

D D

We know that distance of CG from base is 
4 2D h say
3 3

r

i.e. distance of parallel axis XX and NN is (h) 
According to parallel axis theory  
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2

4 2
2

4 2

Area × distance
1or

128 2 4
1 2or

128 2 4 3

NN G

xx

xx

I I
D DI h

D D DI

           or      
40.11xxI R

Case – III: Quarter circle area 
IXX = one half of the moment of Inertia of the Semi-
circular area about XX. 

4 41 0.11 0.055 
2XXI R R

           
40.055XXI R

INN = one half of the moment of Inertia of the Semi-
circular area about NN. 

4 41
2 64 128NN

D DI

(iii) Moment of Inertia of a Triangular area

(a) Moment of Inertia of a Triangular area of 

a axis XX parallel to base and passes through 

C.G.

3

36XX
bhI

(b) Moment of inertia of a triangle about an 

axis passes through base 

3

12NN
bhI
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(iv) Moment of inertia of a thin circular ring: 
Polar moment of Inertia 

2J R area of whole ring

      2 3R 2 Rt 2 R t

3

2XX YY
JI I R t

(v) Moment of inertia of a elliptical area 

      

3

4XX
abI

Let us take an example: An I-section beam of 100 mm wide, 150 mm depth flange and web of 
thickness 20 mm is used in a structure of length 5 m. Determine the Moment of Inertia (of area) of 
cross-section of the beam. 
Answer: Carefully observe the figure below. It has sections with symmetry about the neutral axis.

We may use standard value for a rectangle about an axis passes through centroid. i.e. 
3

  .
12
bhI

The section can thus be divided into convenient rectangles for each of which the neutral axis passes 

the centroid. 

Re tan  
3 3

4

-4 4

 -

0.100 0.150 0.40 0.130-2  m
12 12

1.183 10 m

Beam c gle Shaded areaI I I

3.9 Radius of gyration
Consider area A with moment of inertia Ixx.  Imagine 
that the area is concentrated in a thin strip parallel to 
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the x axis with equivalent Ixx.

               2
xx xxI k A  or 

xx
xx

Ik
A

kxx =radius of gyration with respect to the x axis.

Similarly 

         2
yy yyI k A  or 

yy
yy

I
k

A

2
oJ k A  or o

Jk
A

                   2 2 2
o xx yyk k k

Let us take an example: Find radius of gyration for a circular area of diameter ‘d’ about central 
axis.
Answer:  

We know that, 2
xx xxI K A
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     or 

4

2
64

4
4

XX
XX

d
I dK
A d
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Moment of Inertia (Second moment of an area) 
GATE-1. The second moment of a circular area about the diameter is given by (D is the 

diameter) [GATE-2003] 

 (a) 
4

4
D  (b) 

4

16
D  (c) 

4

32
D  (d) 

4

64
D

GATE-1. Ans. (d) 

GATE-2. The area moment of inertia of a square of size 1 unit about its diagonal is: 
[GATE-2001] 

 (a) 1
3

 (b) 1
4

 (c) 1
12

 (d) 1
6

GATE-2. Ans. (c) 
44 1

12 12xx
aI

Radius of Gyration 
Data for Q3–Q4 are given below. Solve the problems and choose correct 
answers.
A reel of mass “m” and radius of gyration “k” is rolling down smoothly from rest with one 
end of the thread wound on it held in the ceiling as depicted in the figure. Consider the 
thickness of the thread and its mass negligible in comparison with the radius “r” of the 
hub and the reel mass “m”. Symbol “g” represents the acceleration due to gravity. 

[GATE-2003] 
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GATE-3. The linear acceleration of the reel is: 

 (a) 
2

2 2

gr
r k

 (b) 
2

2 2

gk
r k

 (c) 
2 2

grk
r k

 (d) 
2

2 2

mgr
r k

GATE-3. Ans. (a) For downward linear motion mg – T = mf, where f = linear tangential 
acceleration = r ,  = rotational acceleration. Considering rotational motion 

.Tr I

  or, T = 2
2
fmk
r

 therefore mg – T = mf gives f = 
2

2 2

gr
r k

GATE-4. The tension in the thread is: 

 (a) 
2

2 2

mgr
r k

 (b) 
2 2

mgrk
r k

 (c) 
2

2 2

mgk
r k

 (d) 
2 2

mg
r k

GATE-4. Ans. (c)
2 2

2 2
2 2 2 2 2 2

f gr mgkT mk mk
r r r k r k

Previous 20-Years IES Questions 

Centroid
IES-1. Assertion (A): Inertia force always acts through the centroid of the body and is 

directed opposite to the acceleration of the centroid. [IES-2001]
 Reason (R): It has always a tendency to retard the motion. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-1. Ans. (c) It has always a tendency to oppose the motion not retard. If we want to retard a 

motion then it will wand to accelerate.  
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Radius of Gyration 
IES-2. Figure shows a rigid body of mass 

m having radius of gyration k 
about its centre of gravity. It is to 
be replaced by an equivalent 
dynamical system of two masses 
placed at A and B. The mass at A 
should be: 

 (a) a m
a b

  (b) b m
a b

 (c) 
3
m a

b
  (d) 

2
m b

a
  [IES-2003] 

IES-2. Ans. (b) 

IES-3. Force required to accelerate a cylindrical body which rolls without slipping on a 
horizontal plane (mass of cylindrical body is m, radius of the cylindrical 
surface in contact with plane is r, radius of gyration of body is k and 
acceleration of the body is a) is: [IES-2001] 

 (a) 2 2/ 1 .m k r a   (b) 2 2/ .mk r a   (c) 2.mk a  (d) 2 / 1 .mk r a
IES-3. Ans. (a) 

IES-4. A body of mass m and radius of gyration k is to be replaced by two masses m1 and 
m2 located at distances h1 and h2 from the CG of the original body. An 
equivalent dynamic system will result, if [IES-2001]

 (a) 1 2h h k   (b) 2 2 2
1 2h h k  (c) 2

1 2h h k   (d) 2
1 2h h k

IES-4. Ans. (c) 

Previous 20-Years IAS Questions 

Radius of Gyration 
IAS-1. A wheel of centroidal radius of gyration 'k' is rolling on a horizontal surface 

with constant velocity. It comes across an obstruction of height 'h' Because of 
its rolling speed, it just overcomes the obstruction. To determine v, one should 
use the principle (s) of conservation of [IAS 1994] 

 (a) Energy      (b) Linear momentum  
 (c) Energy and linear momentum   (d) Energy and angular momentum 
IAS-1. Ans. (a) 
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Previous Conventional Questions with Answers 

Conventional Question IES-2004 
Question: When are I-sections preferred in engineering applications? Elaborate your 

answer.
Answer: I-section has large section modulus. It will reduce the stresses induced in the material. 

Since I-section has the considerable area are far away from the natural so its section 
modulus increased. 
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 4.  Bending Moment and Shear 

Force Diagram 

Theory at a Glance (for IES, GATE, PSU)
4.1 Shear Force and Bending Moment

At first we try to understand what shear force is and what is bending moment? 
We will not introduce any other co-ordinate system. 
We use general co-ordinate axis as shown in the 
figure. This system will be followed in shear force and 
bending moment diagram and in deflection of beam. 
Here downward direction will be negative i.e. 
negative Y-axis. Therefore downward deflection of the 
beam will be treated as negative.  

We use above Co-ordinate system 

Some books fix a co-ordinate axis as shown in the 
following figure. Here downward direction will be 
positive i.e. positive Y-axis. Therefore downward 
deflection of the beam will be treated as positive. As 
beam is generally deflected in downward directions 
and this co-ordinate system treats downward 
deflection is positive deflection.  

Some books use above co-ordinate system 

Consider a cantilever beam as shown subjected to 
external load ‘P’. If we imagine this beam to be cut by 
a section X-X, we see that the applied force tend to 
displace the left-hand portion of the beam relative to 
the right hand portion, which is fixed in the wall. 
This tendency is resisted by internal forces between 
the two parts of the beam. At the cut section a 
resistance shear force (Vx) and a bending moment 
(Mx) is induced. This resistance shear force and the 
bending moment at the cut section is shown in the 
left hand and right hand portion of the cut beam. 
Using the three equations of equilibrium 

0 , 0 0x y iF F and M

We find that xV P  and .xM P x

In this chapter we want to show pictorially the Page 125 of 429
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variation of shear force and bending moment in a 
beam as a function of ‘x' measured from one end of 
the beam.  

                

Shear Force (V)  equal in magnitude but opposite in direction 
to the algebraic sum (resultant) of the components in the 
direction perpendicular to the axis of the beam of all external 
loads and support reactions acting on either side of the section 
being considered. 

Bending Moment (M) equal in magnitude but opposite in 
direction to the algebraic sum of the moments about (the 
centroid of the cross section of the beam) the section of all 
external loads and support reactions acting on either side of 
the section being considered. 

What are the benefits of drawing shear force and bending moment diagram?  
The benefits of drawing a variation of shear force and bending moment in a beam as a function of ‘x' 
measured from one end of the beam is that it becomes easier to determine the maximum absolute 
value of shear force and bending moment. The shear force and bending moment diagram gives a 
clear picture in our mind about the variation of SF and BM throughout the entire section of the 
beam.
Further, the determination of value of bending moment as a function of ‘x' becomes very important 
so as to determine the value of deflection of beam subjected to a given loading where we will use the 

formula, 
2

2 x
d yEI M
dx

.

4.2 Notation and sign convention 

Shear force (V) 
Positive Shear Force 
A shearing force having a downward direction to the right hand side of a section or upwards 
to the left hand of the section will be taken as ‘positive’. It is the usual sign conventions to be 
followed for the shear force. In some book followed totally opposite sign convention.  
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The upward direction shearing 
force which is on the left hand

of the section XX is positive

shear force.   

The downward direction 
shearing force which is on the 
right hand of the section XX is 
positive shear force.   

Negative Shear Force  
A shearing force having an upward direction to the right hand side of a section or downwards 
to the left hand of the section will be taken as ‘negative’. 

The downward direction 
shearing force which is on the 
left hand of the section XX is 
negative shear force.   

The upward direction shearing 
force which is on the right

hand of the section XX is 
negative shear force.   

Bending Moment (M) 
Positive Bending Moment  
A bending moment causing concavity upwards will be taken as ‘positive’ and called as 
sagging bending moment.  
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Sagging

If the bending moment of 
the left hand of the section 
XX is clockwise then it is a 
positive bending moment.   

If the bending moment of 
the right hand of the 
section XX is anti-

clockwise then it is a 
positive bending moment.  

A bending moment causing 
concavity upwards will be 
taken as ‘positive’ and 
called as sagging bending 
moment.  

Negative Bending Moment  

Hogging
If the bending moment of 
the left hand of the 
section XX is anti-

clockwise then it is a 
positive bending moment.  

If the bending moment of 
the right hand of the 
section XX is clockwise

then it is a positive

bending moment.   

A bending moment causing 
convexity upwards will be 
taken as ‘negative’ and called 
as hogging bending moment.  

Way to remember sign convention

Remember in the Cantilever beam both Shear force and BM are negative (–ive). 

4.3 Relation between S.F (Vx), B.M. (Mx) & Load (w) 

xdV = -w (load)
dx

The value of the distributed load at any point in the beam is 

equal to the slope of the shear force curve. (Note that the sign of this rule may change 
depending on the sign convention used for the external distributed load). 

x
x

dM = V
dx

 The value of the shear force at any point in the beam is equal to the slope 

of the bending moment curve. Page 128 of 429
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4.4 Procedure for drawing shear force and bending moment diagram 
Construction of shear force diagram 

From the loading diagram of the beam constructed shear force diagram. 

First determine the reactions.  

Then the vertical components of forces and reactions are successively summed from the left 
end of the beam to preserve the mathematical sign conventions adopted. The shear at a 
section is simply equal to the sum of all the vertical forces to the left of the section.  

The shear force curve is continuous unless there is a point force on the beam. The curve then 
“jumps” by the magnitude of the point force (+ for upward force). 

When the successive summation process is used, the shear force diagram should end up with 
the previously calculated shear (reaction at right end of the beam). No shear force acts 
through the beam just beyond the last vertical force or reaction. If the shear force diagram 
closes in this fashion, then it gives an important check on mathematical calculations. i.e. The 
shear force will be zero at each end of the beam unless a point force is applied at the end. 

Construction of bending moment diagram

The bending moment diagram is obtained by proceeding continuously along the length of 
beam from the left hand end and summing up the areas of shear force diagrams using proper 
sign convention.  

The process of obtaining the moment diagram from the shear force diagram by summation is 
exactly the same as that for drawing shear force diagram from load diagram.  

The bending moment curve is continuous unless there is a point moment on the beam. The 
curve then “jumps” by the magnitude of the point moment (+ for CW moment). 

We know that a constant shear force produces a uniform change in the bending moment, 
resulting in straight line in the moment diagram. If no shear force exists along a certain 
portion of a beam, then it indicates that there is no change in moment takes place. We also 
know that dM/dx= Vx therefore, from the fundamental theorem of calculus the maximum or 
minimum moment occurs where the shear is zero.  

The bending moment will be zero at each free or pinned end of the beam.  If the end is built 
in, the moment computed by the summation must be equal to the one calculated initially for 
the reaction. 

4.5 Different types of Loading and their S.F & B.M Diagram 
(i) A Cantilever beam with a concentrated load ‘P’ at its free end.  
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Shear force:
At a section a distance x from free end consider the forces to 
the left, then (Vx) = - P (for all values of x) negative in sign 
i.e. the shear force to the left of the x-section are in downward 
direction and therefore negative. 

Bending Moment: 
Taking moments about the section gives (obviously to the left 
of the section)  Mx = -P.x (negative sign means that the 
moment on the left hand side of the portion is in the 
anticlockwise direction and is therefore taken as negative 
according to the sign convention) so that the maximum

bending moment occurs at the fixed end i.e. Mmax = - PL

(at x = L)

S.F and B.M diagram 

(ii) A Cantilever beam with uniformly distributed load over the whole length 
When a cantilever beam is subjected to a uniformly 
distributed load whose intensity is given w /unit length. 
Shear force:
Consider any cross-section XX which is at a distance of x from 
the free end. If we just take the resultant of all the forces on 
the left of the X-section, then  
Vx = -w.x     for all values of ‘x'. 
At x = 0,   Vx = 0 
At x = L,  Vx = -wL (i.e. Maximum at fixed end) 
Plotting the equation Vx = -w.x, we get a straight line 
because it is a equation of a straight line y (Vx) = m(- w) .x  
Bending Moment:
Bending Moment at XX is obtained by treating the load to the 
left of XX as a concentrated load of the same value (w.x) 
acting through the centre of gravity at x/2.  

S.F and B.M diagram 

Therefore, the bending moment at any cross-section XX is  
2.. .

2 2x
x w xM w x

Therefore the variation of bending moment is according to parabolic law.

The extreme values of B.M would be  
at x = 0,      Mx = 0 

and x = L,   Mx =
2

2
wL

Page 130 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s 

Maximum bending moment, 

2

max
wL
2

M   at fixed end 

Another way to describe a cantilever beam with uniformly distributed load (UDL) over it’s whole 
length. 

(iii) A Cantilever beam loaded as shown below draw its S.F and B.M diagram 

In the region 0 < x < a  
Following the same rule as followed previously, we get 

x xV =- P; and M = - P.x

In the region a < x < L 

x xV =- P+P=0; and M = - P.x +P .x a P a

S.F and B.M diagram 

(iv) Let us take an example: Consider a cantilever bean of 5 m length. It carries a uniformly 
distributed load 3 KN/m and a concentrated load of 7 kN at the free end and 10 kN at 3 meters from 
the fixed end.  

Draw SF and BM diagram. 
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Answer: In the region 0 < x < 2 m 
Consider any cross section XX at a distance x from free end. 
Shear force (Vx) = -7- 3x 
So, the variation of shear force is linear. 
at  x = 0,      Vx = -7 kN 
at  x = 2 m , Vx = -7 - 3 2 = -13 kN 
at point Z     Vx = -7 -3 2-10 = -23 kN 

Bending moment (Mx) = -7x - (3x). 
2x 3x 7x

2 2
   So, the variation of bending force is parabolic. 
   at x = 0,        Mx = 0 

   at x = 2 m,    Mx = -7 2 – (3 2) 2
2

= - 20 kNm 

In the region 2 m < x < 5 m 
Consider any cross section YY at a distance x from free 
end
Shear force (Vx) = -7 - 3x – 10 = -17- 3x 
So, the variation of shear force is linear. 
at x = 2 m,  Vx = - 23 kN 
at x = 5 m,  Vx = - 32 kN 

Bending moment (Mx) = - 7x – (3x) x
2

 - 10 (x - 2) 

23 x 17 20
2

x

   So, the variation of bending force is parabolic. 

at x = 2 m, Mx
23 2 17 2 20

2
 = - 20 kNm 

at x = 5 m, Mx = - 102.5 kNm 
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(v) A Cantilever beam carrying uniformly varying load from zero at free end and w/unit 
length at the fixed end 

 Consider any cross-section XX which is at a distance of x from the free end. 

 At this point load (wx) = 
w .x
L

 Therefore total load (W) 
L L

x
0 0

wLw dx .xdx = 
L 2
w

2

max

area of ABC (load triangle)

1 w wx                       . x .x
2 2L

 The shear force variation is parabolic.
at x = 0, V 0

WL WLat x = L, V i.e. Maximum Shear force (V ) at fi
2 2

x

x

L

xShear force V

xed end
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2 3

2 2

max

load distance from centroid of triangle ABC

wx 2x wx.
2L 3 6L

 The bending moment variation is cubic.
at x= 0, M 0

wL wLat x = L, M i.e. Maximum Bending moment (M ) at fi
6 6

x

x

xBending moment M

xed end.

x

  Integration method

d V wWe know that load .x
dx L

wor d(V ) .x .dx
Lx

Alternative way :

V x

0 0
2

Integrating both side

wd V . x .dx
L

w xor V .
L 2

x

x

x

2
x

x

2

x

Again we know that
d M wx                          V -

dx 2L
wxor d M - dx
2L
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x

M 2

x
0 0

3 3

x

Integrating both side we get at x=0,M =0

wxd(M ) .dx
2L

w x wxor M - × -
2L 3 6L

x x

(vi) A Cantilever beam carrying gradually varying load from zero at fixed end and 
w/unit length at the free end 

 Considering equilibrium we get, 
2

A A
wL wLM and Reaction R
3 2

 Considering any cross-section XX which is at a distance of x from the fixed end. 

 At this point load W(W ) .x
Lx

 Shear force AR area of triangle ANMxV

     

2

x max

x

wL 1 w wL wx- . .x .x = +  - 
2 2 L 2 2L

The shear force variation is parabolic.
wL wLat x 0, V i.e. Maximum shear force, V
2 2

at x L, V 0

 Bending moment 
2

A A
wx 2x=R .x - .  - M
2L 3xM

     

3 2

2 2

max

x

wL wx wL= .x -  - 
2 6L 3

The bending moment variation is cubic
wL wLat  x = 0,  M i.e.Maximum B.M. M .
3 3

at x L,  M 0

x
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(vii) A Cantilever beam carrying a moment M at free end 

 Consider any cross-section XX which is at a distance of x from the free end. 
 Shear force: Vx = 0 at any point. 
 Bending moment (Mx) = -M at any point, i.e. Bending moment is constant throughout the 

length.  

(viii) A Simply supported beam with a concentrated load ‘P’ at its mid span.  

 Considering equilibrium we get, A B
PR = R  = 
2

 Now consider any cross-section XX which is at a distance of x from left end A and section YY at 
a distance from left end A, as shown in figure below. 

 Shear force: In the region 0 < x < L/2 
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  Vx = RA = + P/2   (it is constant) 

   In the region L/2 < x < L 

  Vx = RA – P =
2
P  - P = - P/2    (it is constant) 

 Bending moment: In the region 0 < x < L/2

   Mx = 
P
2

.x     (its variation is linear) 

   at x = 0,   Mx = 0    and   at x = L/2 Mx =
PL
4

 i.e. maximum 

 Maximum bending moment, max
PL
4

M   at x = L/2 (at mid-point)  

            In the region L/2 < x < L 

   Mx =
2
P .x – P(x - L/2) =

PL
2

P
2

.x    (its variation is linear) 

   at x = L/2 , Mx =
PL
4

    and   at x = L,     Mx = 0 

(ix) A Simply supported beam with a concentrated load ‘P’ is not at its mid span. 

 Considering equilibrium we get, RA = B
Pb Paand R =
L L

 Now consider any cross-section XX which is at a distance x from left end A and another section 
YY at a distance x from end A as shown in figure below.Page 137 of 429
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 Shear force: In the range 0 < x < a

                    Vx = RA = + Pb
L

             (it is constant) 

                    In the range a < x < L 

             Vx = RA - P = - Pa
L

          (it is constant) 

 Bending moment: In the range 0 < x < a

                             Mx = +RA.x = 
Pb
L

.x       (it is variation is linear) 

                             at x = 0, Mx = 0    and   at x = a, Mx =
Pab

L
              (i.e. maximum) 

                           In the range a < x < L 

                           Mx = RA.x – P(x- a) =
Pb
L

.x – P.x  + Pa  (Put   b = L - a) 

        = Pa (1 - x1
L

Pa )

        at  x = a,  Mx = 
Pab

L
     and   at  x = L,   Mx = 0 

(x) A Simply supported beam with two concentrated load ‘P’ from a distance ‘a’ both end. 
The loading is shown below diagram 
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Take a section at a distance x from the left support. This section is applicable for any value of x just 
to the left of the applied force P. The shear, remains constant and is +P. The bending moment varies 
linearly from the support, reaching a maximum of +Pa. 

A section applicable anywhere between the two applied forces. Shear force is not necessary to 
maintain equilibrium of a segment in this part of the beam. Only a constant bending moment of +Pa 
must be resisted by the beam in this zone. 

Such a state of bending or flexure is called pure bending.

Shear and bending-moment diagrams for this loading condition are shown below. 

(xi) A Simply supported beam with a uniformly distributed load (UDL) through out its 
length

We will solve this problem by following two alternative ways.  
(a) By Method of Section

Considering equilibrium we get RA = RB = wL
2

Now Consider any cross-section XX which is at a distance x from left end A. 
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Then the section view 

Shear force: Vx = wL wx
2

(i.e. S.F. variation is linear) 

  at  x = 0,     Vx = 
wL
2

  at  x = L/2,  Vx = 0 

  at  x = L,     Vx = -
wL
2

Bending moment:
2

.
2 2x

wL wxM x

(i.e. B.M. variation is parabolic) 
 at  x = 0,  Mx = 0 
 at  x = L,  Mx = 0 

Now we have to determine maximum bending 
moment and its position. 

For maximum B.M:   0 . . 0x x
x x

d M d M
i e V V

dx dx

or 0
2 2

wL Lwx or x

Therefore, maximum bending moment,

2

max 8
wLM at x = L/2

(a) By Method of Integration 

Shear force: 

We know that, xd V
w

dx

      xor d V wdx

Integrating both side we get (at x =0, Vx =
2

wL )
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0
2

2

2

xV x

x
wL

x

x

d V wdx

wLor V wx

wLor V wx

Bending moment: 

We know that, x
x

d M
V

dx

      
2x x

wLor d M V dx wx dx

Integrating both side we get (at x =0, Vx =0) 

0
2

2

.
2 2

xM x

x
o

x

wLd M wx dx

wL wxor M x

Let us take an example: A loaded beam as shown below. Draw its S.F and B.M diagram. 

Considering equilibrium we get 

A

B

M 0 gives

- 200 4 2 3000 4 R 8 0
R 1700NBor

A B

A

R R 200 4 3000
R 2100N

And
or

Now consider any cross-section which is at a distance 'x' from left end A and
as shown in figure

XX
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In the region 0 < x < 4m 

Shear force (Vx) = RA – 200x = 2100 – 200 x 

Bending moment (Mx) = RA .x – 200 x . x
2

= 2100 x -100 x2

at  x = 0,       Vx = 2100 N,                        Mx = 0 

at  x = 4m,     Vx = 1300 N,             Mx = 6800 N.m 

In the region 4 m < x < 8 m 

Shear force (Vx) = RA - 200 4 – 3000 = -1700 

Bending moment (Mx) = RA. x - 200 4 (x-2) – 3000 (x- 4) 

   = 2100 x – 800 x + 1600 – 3000x +12000 = 13600 -1700 x 

at x = 4 m,         Vx = -1700 N,                       Mx = 6800 Nm 

at  x = 8 m,        Vx = -1700 N,             Mx = 0 
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(xii) A Simply supported beam with a gradually varying load (GVL) zero at one end and 
w/unit length at other span.  

Consider equilibrium of the beam = 1 wL
2

acting at a point C at a distance 2L/3 to the left end A. 

B

A

A

BA

M 0 gives

wL LR .L - . 0
2 3
wLor R
6

wLSimilarly M 0 gives R
3

The free body diagram of section A - XX as shown below, Load at section XX, (wx) =
w x
L
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The resulted of that part of the distributed load which acts on this free body is 
21 w wxx . x 

2 L 2L
applied at a point Z, distance x/3 from XX section. 

Shear force (Vx) =
2 2

A
wx wL wxR  -  - 
2L 6 2L

Therefore the variation of shear force is parabolic 

at x = 0,    Vx = wL
6

at x = L,    Vx = -
wL
3

2 3wL wx x wL wxand  .x . .x
6 2L 3 6 6LxBending Moment (M )

The variation of BM is cubic 
at x = 0,   Mx = 0 
at x = L,   Mx = 0 

For maximum BM;   x x
x x

d M d M
0 i.e. V 0 V

dx dx

2

3 2

max

wL wx Lor - 0 or x
6 2L 3

wL L w L wLand M
6 6L3 3 9 3

i.e.

2

max
wLM
9 3

Lat x
3
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(xiii) A Simply supported beam with a gradually varying load (GVL) zero at each end and 
w/unit length at mid span.  

Consider equilibrium of the beam AB total load on the beam 1 L wL2 w
2 2 2

A B
wLTherefore R R
4

The free body diagram of section A –XX as shown below, load at section XX (wx)
2w .x
L

The resultant of that part of the distributed load which acts on this free body is 
21 2w wx.x. .x

2 L L
applied at a point, distance x/3 from section XX.  
Shear force (Vx): Page 145 of 429
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In the region 0 < x < L/2

2 2

x A
wx wL wxV R
L 4 L

Therefore the variation of shear force is parabolic. 

at x = 0,  Vx = wL
4

at x = L/4,  Vx = 0 
In the region of L/2 < x < L 

The Diagram will be Mirror image of AC. 

Bending moment (Mx):
In the region 0 < x < L/2 

3

x
wL 1 2wx wL wxM .x .x. . x / 3 -
4 2 L 4 3L

The variation of BM is cubic 
at x = 0,    Mx = 0 

at x = L/2, Mx =
2wL

12
In the region L/2 < x < L  

BM diagram will be mirror image of AC. 
For maximum bending moment 

x x
x x

d M d M
0 i.e. V 0 V

dx dx

2

2

max

wL wx Lor - 0 or x
4 L 2

wLand M
12

i.e.

2

max
wLM
12

Lat x
2
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(xiv) A Simply supported beam with a gradually varying load (GVL) zero at mid span and 
w/unit length at each end.

We now superimpose two beams as 
(1) Simply supported beam with a UDL 
through at its length  

           
x 1

2

x 1

wLV wx
2
wL wxM .x
2 2

And (2) a simply supported beam with a gradually varying load (GVL) zero at each end and w/unit 
length at mind span. 
In the range 0 < x < L/2 

2

x 2

3

x 2

wL wxV
4 L
wL wxM .x
4 3L

Now superimposing we get 
Shear force (Vx):
In the region of 0< x < L/2 
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2

x x x1 2

2

wL wL wxV V V -wx -
2 4 L

w x - L/2
L

Therefore the variation of shear force is parabolic 

at x = 0,  Vx = +
wL
4

at x = L/2,  Vx = 0 
In the region L/2 < x < L 

The diagram will be mirror image of AC 

Bending moment (Mx) = x 1
M - x 2

M  =

2 3 3 2wL wx wL wx wx wx wL.x .x .x
2 2 4 3L 3L 2 4

The variation of BM is cubic 

x
2

x

at x 0, M 0

wxat x L / 2, M
24

(xv) A simply supported beam with a gradually varying load (GVL) w1/unit length at one 
end and w2/unit length at other end.  
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At first we will treat this problem by considering a UDL of identifying (w1)/unit length over the 
whole length and a varying load of zero at one end to (w2- w1)/unit length at the other end. Then 
superimpose the two loadings. 

Consider a section XX at a distance x from left end A 
(i) Simply supported beam with UDL (w1) over whole length 

1
x 11

21
x 11

w LV w x
2

w L 1M .x w x
2 2

And (ii) simply supported beam with (GVL) zero at one end (w2- w1) at other end gives 
2

2 1 2 1
2

3
2 1

2 12

6 2

. .
6 6

x

x

w w w w x
V

L
w w xLM w w x

L

Now superimposing we get 

Shear force
2

1 2
x x 1 2 11 2

w L w L xV + V + w x w w
3 6 2LxV

 The SF variation is parabolic

1 2
x 1 2

x 1 2

w L w L Lat x  0,   V 2w w
3 6 6
Lat x L,   V w 2w
6

Bending moment 2 31 1 2 1
x x 11 2

w L w L w -w1M M .x .x w x .x
3 6 2 6LxM

The BM variation is cubic.

x

x

at x 0, M 0
at x L, M 0
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(xvi) A Simply supported beam carrying a continuously distributed load. The intensity of 

the load at any point is, sinx
xw w

L
.  Where ‘x’ is the distance from each end of 

the beam.

We will use Integration method as it is easier in this case. 

We know that x x
x

d V d M
load and V

dx dx

x

x

d V
Therefore  sin

dx L

d V  sin dx
L

xw

xw

x x

Integrating both side we get
xw cos

x wL xLd V w sin  dx or V  A cos
L L

L
where, constant of Integration

A

A
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x
x x x

2

x 2

Again we know that
d M wL xV or d M V  dx cos dx

dx L
Integrating both side we get

wL xsin
wL xLM x + B sin x + B

L
L

A

A A

[Where B = constant of Integration] 
Now apply boundary conditions 
 At  x = 0,          Mx = 0   and  at  x = L,  Mx = 0 
This gives A = 0 and B = 0 

x max

2

x 2

2

max 2

wL x wL Shear force V cos and V at x 0
L

wL xAnd   M  sin
L

wLM at x = L/2

(xvii) A Simply supported beam with a couple or moment at a distance ‘a’ from left end. 

Considering equilibrium we get 
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A

B B

B

A A

M 0 gives
MR ×L+M 0 R
L

and M 0 gives
MR ×L+M 0 R
L

or

or

Now consider any cross-section XX which is at a distance ‘x’ from left end A and another section YY 

at a distance ‘x’ from left end A as shown in figure. 

In the region 0 < x < a 

Shear force (Vx) = RA = M
L

Bending moment (Mx) = RA.x = M
L

.x

In the region a< x < L 

Shear force (Vx) = RA = M
L

Bending moment (Mx) = RA.x – M = M
L

.x - M 
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(xviii) A Simply supported beam with an eccentric load  

When the beam is subjected to an eccentric load, the eccentric load is to be changed into a couple = 
Force (distance travel by force) 
 = P.a  (in this case)   and    a force = P 
Therefore equivalent load diagram will be 

Considering equilibrium 

AM 0 gives

-P.(L/2) + P.a + RB L = 0 

or RB = P P.a
2 L

   and   RA + RB = P gives RA = 
P P.a
2 L

Now consider any cross-section XX which is at a distance ‘x’ from left end A and another section YY 
at a distance ‘x’ from left end A as shown in figure. 

Page 153 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s 

In the region 0 < x < L/2 

Shear force (Vx) =
P P.a
2 L

Bending moment (Mx) = RA . x = P Pa
2 L

. x 

In the region   L/2 < x < L 

Shear force (Vx) =
P Pa P PaP = -
2 L 2 L

Bending moment (Vx) = RA . x – P.( x - L/2 ) – M 

                                  = PL P Pa .x - Pa
2 2 L

4.6 Bending Moment diagram of Statically Indeterminate beam 
Beams for which reaction forces and internal forces cannot be found out from static equilibrium 
equations alone are called statically indeterminate beam. This type of beam requires deformation 
equation in addition to static equilibrium equations to solve for unknown forces. 

Statically determinate - Equilibrium conditions sufficient to compute reactions. 
Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium equations 
should be used to find out reactions. 
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Type of Loading & B.M Diagram Reaction Bending Moment 

RA= RB =
P
2 MA = MB =

PL-
8

RA = RB =
wL
2 MA= MB =

2wL-
12

2

A 3

2

3

R (3 )

(3 )B

Pb a b
L
PaR b a
L

MA = -
2

2

Pab
L

MB = -
2

2

Pa b
L

RA= RB =
3
16
wL

Rc =
5

8
wL

R A RB

+
--
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4.7 Load and Bending Moment diagram from Shear Force diagram 
     OR 
 Load and Shear Force diagram from Bending Moment diagram 

If S.F. Diagram for a beam is given, then 

(i) If S.F. diagram consists of rectangle then the load will be point load 

(ii) If S.F diagram consists of inclined line then the load will be UDL on that portion 

(iii) If S.F diagram consists of parabolic curve then the load will be GVL 

(iv) If S.F diagram consists of cubic curve then the load distribute is parabolic. 

       After finding load diagram we can draw B.M diagram easily. 

If B.M Diagram for a beam is given, then 

(i) If B.M diagram consists of inclined line then the load will be free point load 

(ii) If B.M diagram consists of parabolic curve then the load will be U.D.L. 

(iii) If B.M diagram consists of cubic curve then the load will be G.V.L. 

(iv) If B.M diagram consists of fourth degree polynomial then the load distribution is 
parabolic.

Let us take an example: Following is the S.F diagram of a beam is given. Find its loading 
diagram. 

Answer: From A-E inclined straight line so load will be UDL and in AB = 2 m length load = 6 kN if 
UDL is w N/m then  w.x = 6  or  w 2 = 6 or w = 3 kN/m after that S.F is constant so no force is 
there. At last a 6 kN for vertical force complete the diagram then the load diagram will be 

As there is no support at left end it must be a cantilever beam. 
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4.8 Point of Contraflexure 
In a beam if the bending moment changes sign at a point, the point itself having zero bending 
moment, the beam changes curvature at this point of zero bending moment and this point is called 
the point of contra flexure. 

Consider a loaded beam as shown below along with the B.M diagrams and deflection diagram.  

In this diagram we noticed that for the beam loaded as in this case, the bending moment diagram is 
partly positive and partly negative. In the deflected shape of the beam just below the bending 
moment diagram shows that left hand side of the beam is ‘sagging' while the right hand side of the 
beam is ‘hogging’. 

The point C on the beam where the curvature changes from sagging to hogging is a point of 
contraflexure.  

There can be more than one point of contraflexure in a beam. 

4.9 General expression 

EI
4

2

d y
dx

3

3 x
d yEI V
dx

2

2 x
d yEI M
dx
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dy = = slope
dx
y= = Deflection 

Flexural rigidity = EI
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Shear Force (S.F.) and Bending Moment (B.M.) 
GATE-1. A concentrated force, F is applied 

(perpendicular to the plane of the figure) on 
the tip of the bent bar shown in Figure. The 
equivalent load at a section close to the fixed 
end is: 

 (a) Force F   
 (b) Force F and bending moment FL  
 (c) Force F and twisting moment FL   
 (d) Force F bending moment F L, and twisting 

moment FL          
                  [GATE-1999]

GATE-1. Ans. (c) 

GATE-2. The shear force in a beam subjected to pure positive bending is…… 
(positive/zero/negative) [GATE-1995] 

GATE-2. Ans. Zero 

Cantilever
GATE-3. Two identical cantilever beams are supported as shown, with their free ends in 

contact through a rigid roller. After the load P is applied, the free ends will 
have [GATE-2005] 

 (a) Equal deflections but not equal slopes 
 (b) Equal slopes but not equal deflections 
 (c) Equal slopes as well as equal deflections 
 (d) Neither equal slopes nor equal deflections 

GATE-3. Ans. (a) As it is rigid roller, deflection must be same, because after deflection they also 
will be in contact. But slope unequal. 

GATE-4. A beam is made up of two 
identical bars AB and BC, by 
hinging them together at B. The 
end A is built-in (cantilevered) 
and the end C is simply-
supported. With the load P acting 
as shown, the bending moment at 
A is: 

[GATE-2005]
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 (a) Zero (b) 
PL
2

 (c) 
3PL

2
 (d) Indeterminate

GATE-4. Ans. (b) 

Cantilever with Uniformly Distributed Load 
GATE-5. The shapes of the bending moment diagram for a uniform cantilever beam 

carrying a uniformly distributed load over its length is: [GATE-2001]
 (a) A straight line (b) A hyperbola (c) An ellipse (d) A parabola 
GATE-5. Ans. (d) 

Cantilever Carrying load Whose Intensity varies 
GATE-6. A cantilever beam carries the anti-

symmetric load shown, where o is 
the peak intensity of the 
distributed load. Qualitatively, the 
correct bending moment diagram 
for this beam is: 

                                                 [GATE-2005]

GATE-6. Ans. (d) 
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2 3

x
wx wxM

2 6L

Simply Supported Beam Carrying Concentrated Load 
GATE-7. A concentrated load of P acts on a simply supported beam of span L at a 

distance 
3
L

 from the left support. The bending moment at the point of 

application of the load is given by [GATE-2003]  
2 2( ) ( ) ( ) ( )

3 3 9 9
PL PL PL PLa b c d

GATE-7. Ans. (d) 

c

L 2LP
Pab 2PL3 3M

l L 9

GATE-8. A simply supported beam carries a load 'P' 
through a bracket, as shown in Figure. The 
maximum bending moment in the beam is 

 (a) PI/2    (b) PI/2 + aP/2  
 (c) PI/2 + aP              (d) PI/2 – aP 
       

[GATE-2000] 
GATE-8.  Ans. (c) 
 Taking moment about Ra

b
lP Pa R l 02

b a
P a P aor R P R P
2 l 2 l

 Maximum bending moment will be at centre ‘C’

c a b max
l l PlM R P a R or M Pa
2 2 2

Simply Supported Beam Carrying a Uniformly 
Distributed Load 
Statement for Linked Answer and Questions Q9-Q10: 
A mass less beam has a loading pattern as shown in the figure. The beam is of rectangular 
cross-section with a width of 30 mm and height of 100 mm. [GATE-2010] 
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GATE-9. The maximum bending moment occurs at 
 (a) Location B   (b) 2675 mm to the right of A 
 (c) 2500 mm to the right of A  (d) 3225 mm to the right of A 
GATE-9. Ans. (C) 

R1 R2

3000 N/m

1 2

1

1
n

1

R R 3000 2 6000N
R 4 3000 2 1 0
R 1500,

S.F. eq . at any section x from end A.
R 3000 x 2 0 for x 2m}
x 2.5 m.

GATE-10. The maximum magnitude of bending stress (in MPa) is given by 
 (a) 60.0 (b) 67.5 (c) 200.0 (d) 225.0 
GATE-10. Ans. (b) 
 Binding stress will be maximum at the outer surface 
 So taking 9 = 50 mm  

3

3

2
3

x

6
2500

6

3

50and &
12

12

m 1.5 10 [2000 ]
2

3.375 10

3.375 10 50 12 67.5
30 100

ld mI
dl

xx

m N mm

MPa

Data for Q11-Q12 are given below. Solve the problems and choose correct 
answers
A steel beam of breadth 120 mm and 
height 750 mm is loaded as shown in the 
figure. Assume Esteel= 200 GPa. 

  [GATE-2004] 
GATE-11. The beam is subjected to a maximum bending moment of 
 (a) 3375 kNm   (b) 4750 kNm   (c) 6750 kNm   (d) 8750 kNm Page 162 of 429
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GATE-11. Ans. (a)
2 2

max
wl 120 15M kNm 3375kNm
8 8

GATE-12. The value of maximum deflection of the beam is:
 (a) 93.75 mm   (b) 83.75 mm   (c) 73.75 mm   (d) 63.75 mm 

GATE-12. Ans. (a) Moment of inertia (I) = 
33

3 40.12 0.75bh 4.22 10 m
12 12

4 3 4

max 9 3

5 wl 5 120 10 15 m 93.75mm
384 EI 384 200 10 4.22 10

Statement for Linked Answer and Questions Q13-Q14: 
A simply supported beam of span length 6m and 75mm diameter carries a uniformly 
distributed load of 1.5 kN/m [GATE-2006] 

GATE-13. What is the maximum value of bending moment? 
 (a) 9 kNm   (b) 13.5 kNm   (c) 81 kNm   (d) 125 kNm 

GATE-13. Ans. (a) 
2 2

max
wl 1.5 6M 6.75kNm
8 8

  But not in choice. Nearest choice (a) 

GATE-14. What is the maximum value of bending stress? 
 (a) 162.98 MPa   (b) 325.95 MPa  (c) 625.95 Mpa   (d) 651.90 Mpa 

GATE-14. Ans. (a) 
3

3 2

32M 32 6.75 10 Pa 162.98MPa
d 0.075

Simply Supported Beam Carrying a Load whose 
Intensity varies Uniformly from Zero at each End to w 
per Unit Run at the MiD Span 
GATE-15. A simply supported beam is 

subjected to a distributed 
loading as shown in the 
diagram given below: 

 What is the maximum shear 
force in the beam? 

 (a) WL/3         (b) WL/2 
 (c)  WL/3        (d) WL/6

[IES-2004] 
GATE-15. Ans. (d) 

2

x

max at x 0

1 WLTotal load L W
2 2

WL 1 W WL WxS x. X
L4 2 4 L
2

WLS
4

GATE-16. A simply supported beam of length 'l' is subjected to a symmetrical uniformly 
varying load with zero intensity at the ends and intensity w (load per unit 
length) at the mid span. What is the maximum bending moment? [IAS-2004]
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 (a) 
23

8
wl

   (b)
2

12
wl

   (c) 
2

24
wl

  (d) 
25

12
wl

GATE-16. Ans. (b)  

Previous 20-Years IES Questions 

Shear Force (S.F.) and Bending Moment (B.M.) 
IES-1. A lever is supported on two 

hinges at A and C. It carries a 
force of 3 kN as shown in the 
above figure. The bending 
moment at B will be 

 (a) 3 kN-m   (b) 2 kN-m  
 (c) 1 kN-m  (d) Zero 
                                            

  [IES-1998] 
IES-1. Ans. (a) 

IES-2. A beam subjected to a load P is shown in 
the given figure. The bending moment at 
the support AA of the beam will be 

 (a) PL                          (b) PL/2 
 (c) 2PL                        (d) zero 

[IES-1997] 

IES-2. Ans. (b) Load P at end produces moment 
2
PL

 in 

anticlockwise direction. Load P at end 
produces moment of PL in clockwise 
direction. Net moment at AA is PL/2. 

                                                           

IES-3. The bending moment (M) is constant over a length segment (I) of a beam. The 
shearing force will also be constant over this length and is given by [IES-1996]

 (a) M/l   (b) M/2l   (c) M/4l   (d) None of the above 
IES-3. Ans. (d) Dimensional analysis gives choice (d) 

IES-4. A rectangular section beam subjected to a bending moment M varying along its 
length is required to develop same maximum bending stress at any cross-
section. If the depth of the section is constant, then its width will vary as 

[IES-1995]
 (a) M    (b) M   (c) M2   (d) 1/M 

IES-4. Ans. (a)
3M bhconst. and I

I 12

IES-5. Consider the following statements: [IES-1995] 
 If at a section distant from one of the ends of the beam, M represents the 

bending moment. V the shear force and w the intensity of loading, then  
 1. dM/dx = V         2. dV/dx = w        
 3. dw/dx = y (the deflection of the beam at the section) 
 Select the correct answer using the codes given below: 
 (a) 1 and 3   (b) 1 and 2  (c) 2 and 3   (d) 1, 2 and 3 
IES-5. Ans. (b)  Page 164 of 429
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Cantilever
IES-6. The given figure shows a beam BC simply supported at C and hinged at B (free 

end) of a cantilever AB. The beam and the cantilever carry forces of 

100 kg and 200 kg respectively. The bending moment at B is: [IES-1995]
 (a) Zero   (b) 100 kg-m   (c) 150 kg-m   (d) 200 kg-m 
IES-6. Ans. (a) 

IES-7. Match List-I with List-II and select the correct answer using the codes given 
below the lists: [IES-1993] 

  List-I  List-II 
 (Condition of beam) (Bending moment diagram) 

A. Subjected to bending moment at the  1. Triangle 
  end of a cantilever 

B. Cantilever carrying uniformly distributed  2. Cubic parabola 
  load over the whole length 

C. Cantilever carrying linearly varying load 3. Parabola 
  from zero at the fixed end to maximum at  
  the support   

D. A beam having load at the centre and 4. Rectangle 
  supported at the ends  

Codes: A  B  C D  A  B  C D 
  (a)  4  1  2  3 (b)  4  3  2  1 
  (c)  3  4  2  1 (d)  3  4  1  2  
IES-7. Ans. (b)  

IES-8. If the shear force acting at every section of a beam is of the same magnitude 
and of the same direction then it represents a [IES-1996]

 (a) Simply supported beam with a concentrated load at the centre. 
 (b) Overhung beam having equal overhang at both supports and carrying equal 

concentrated loads acting in the same direction at the free ends. 
 (c) Cantilever subjected to concentrated load at the free end. 
 (d) Simply supported beam having concentrated loads of equal magnitude and in the 

same direction acting at equal distances from the supports. 
IES-8. Ans. (c) 

Cantilever with Uniformly Distributed Load 
IES-9. A uniformly distributed load (in kN/m) is acting over the entire length of a 3 

m long cantilever beam. If the shear force at the midpoint of cantilever is 6 kN, 
what is the value of ? [IES-2009] 

 (a) 2                             (b) 3                            (c) 4                         (d) 5 
IES-9. Ans. (c) 

 Shear force at mid point of cantilever 

6
2

3 6
2

6 2 4 kN / m
3

l
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IES-10. Match List-I with List-II and select the correct answer using the code given 

below the Lists: [IES-2009] 

 Code: A B C D  A B C D 
  (a) 1 5 2 4 (b) 4 5 2 3 
  (c) 1 3 4 5 (d) 4 2 5 3 
IES-10. Ans. (b)  

IES-11. The shearing force diagram for a 
beam is shown in the above figure. 
The bending moment diagram is 
represented by which one of the 
following?

[IES-2008]

IES-11. Ans. (b) Uniformly distributed load on cantilever beam. 
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IES-12. A cantilever beam having 5 m length is so loaded that it develops a shearing 
force of 20T and a bending moment of 20 T-m at a section 2m from the free end. 
Maximum shearing force and maximum bending moment developed in the 
beam under this load are respectively 50 T and 125 T-m. The load on the beam 
is: [IES-1995]

 (a) 25 T concentrated load at free end 
 (b) 20T concentrated load at free end 
 (c) 5T concentrated load at free end and 2 T/m load over entire length 
 (d) 10 T/m udl over entire length 
IES-12. Ans. (d)  

Cantilever Carrying Uniformly Distributed Load for a 
Part of its Length 
IES-13. A vertical hanging bar of length L and weighing w N/ unit length carries a load 

W at the bottom. The tensile force in the bar at a distance Y from the support 
will be given by [IES-1992]

a              b ( )             c /           d   ( ) WW wL W w L y W w y L W L y
w

IES-13. Ans. (b) 

Cantilever Carrying load Whose Intensity varies 
IES-14. A cantilever beam of 2m length supports a triangularly distributed load over 

its entire length, the maximum of which is at the free end. The total load is 37.5 
kN.What is the bending moment at the fixed end? [IES 2007]

 (a) 50 106 N mm (b) 12.5  106 N mm (c) 100 106 N mm (d) 25 106 N mm 
IES-14. Ans. (a) 
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 M = 37.5
3
4

KNm = 50 106 Nmm

Simply Supported Beam Carrying Concentrated Load 
IES-15. Assertion (A): If the bending moment along the length of a beam is constant, 

then the beam cross section will not experience any shear stress. [IES-1998]
Reason (R): The shear force acting on the beam will be zero everywhere along 
the length. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-15.  Ans. (a) 
IES-16. Assertion (A): If the bending moment diagram is a rectangle, it indicates that 

the beam is loaded by a uniformly distributed moment all along the length.
Reason (R): The BMD is a representation of internal forces in the beam and not 
the moment applied on the beam. [IES-2002] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-16. Ans. (d) 

IES-17. The maximum bending moment in a simply supported beam of length L loaded 
by a concentrated load W at the midpoint is given by [IES-1996]

 (a) WL   (b) 
2
WL

   (c) 
4
WL

  (d) 
8
WL

IES-17. Ans. (c) 

IES-18. A simply supported beam is 
loaded as shown in the above 
figure. The maximum shear force 
in the beam will be 

 (a) Zero    (b) W   
 (c) 2W    (d) 4W 

[IES-1998] 
IES-18. Ans. (c) 

IES-19. If a beam is subjected to a constant bending moment along its length, then the 
shear force will [IES-1997]

 (a) Also have a constant value everywhere along its length  
 (b) Be zero at all sections along the beam 
 (c) Be maximum at the centre and zero at the ends  (d) zero at the centre and 

maximum at the ends
IES-19. Ans. (b) 
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IES-20. A loaded beam is shown in 

the figure. The bending 
moment diagram of the 
beam is best represented as:

                                                                  [IES-2000]

IES-20. Ans. (a) 

IES-21. A simply supported beam has equal over-hanging lengths and carries equal 
concentrated loads P at ends. Bending moment over the length between the 
supports [IES-2003]

 (a) Is zero (b) Is a non-zero constant
 (c) Varies uniformly from one support to the other (d) Is maximum at mid-span 
IES-21. Ans. (b) 

IES-22. The bending moment diagram for the case shown below will be q as shown in 

   
(a) (b)

(c) (d)

[IES-1992]
IES-22. Ans. (a) 
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IES-23. Which one of the following 

portions of the loaded beam 
shown in the given figure is 
subjected to pure bending? 

 (a) AB  (b)DE  
 (c) AE  (d) BD 

     [IES-1999] 
IES-23. Ans. (d) Pure bending takes place in the section between two weights W 

IES-24. Constant bending moment over span "l" will occur in [IES-1995]

IES-24. Ans. (d) 
IES-25. For the beam shown in the above 

figure, the elastic curve between the 
supports B and C will be: 

 (a) Circular  (b) Parabolic 
 (c) Elliptic   (d) A straight line 

[IES-1998] 
IES-25. Ans. (b)  

IES-26. A beam is simply supported at its ends and is loaded by a couple at its mid-span 
as shown in figure A. Shear force diagram for the beam is given by the figure.

[IES-1994]

 (a) B     (b) C    (c) D   (d) E 
IES-26. Ans. (d)  

IES-27. A beam AB is hinged-supported at its ends and is loaded by couple P.c. as 
shown in the given figure. The magnitude or shearing force at a section x of the 
beam is: [IES-1993]

 (a) 0    (b) P    (c) P/2L   (d) P.c./2L 
Page 170 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s 
IES-27. Ans. (d) If F be the shearing force at section x (at point A), then taking moments about B, F 

x 2L = Pc 

Thus shearing force in zone x
2 2
Pc Pcor F
L L

Simply Supported Beam Carrying a Uniformly 
Distributed Load 
IES-28. A freely supported beam at its ends carries a central concentrated load, and maximum 

bending moment is M. If the same load be uniformly distributed over the beam length, 
then what is the maximum bending moment? [IES-2009]

  (a) M                              (b) 
2
M

                             (c) 
3
M

                         (d) 2M 

IES-28. Ans. (b) 

Max
WLB.M M
4

 Where the Load is U.D.L. 
 Maximum Bending Moment 

2W L
L 8

WL 1 WL M
8 2 4 2
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Simply Supported Beam Carrying a Load whose 
Intensity varies Uniformly from Zero at each End to w 
per Unit Run at the MiD Span 
IES-29. A simply supported beam is 

subjected to a distributed 
loading as shown in the 
diagram given below: 

 What is the maximum shear 
force in the beam? 

 (a) WL/3         (b) WL/2 
 (c)  WL/3        (d) WL/6

[IES-2004] 
IES-29. Ans. (d) 

2

x

max at x 0

1 WLTotal load L W
2 2

WL 1 W WL WxS x. X
L4 2 4 L
2

WLS
4

Simply Supported Beam carrying a Load whose 
Intensity varies 
IES-30. A beam having uniform cross-section carries a uniformly distributed load of 

intensity q per unit length over its entire span, and its mid-span deflection is .

The value of mid-span deflection of the same beam when the same load is 
distributed with intensity varying from 2q unit length at one end to zero at the 
other end is: [IES-1995] 

 (a) 1/3     (b) 1/2    (c) 2/3    (d) 
IES-30. Ans. (d) 

Simply Supported Beam with Equal Overhangs and 
carrying a Uniformly Distributed Load 
IES-31. A beam, built-in at both ends, carries a uniformly distributed load over its 

entire span as shown in figure-I. Which one of the diagrams given below, 
represents bending moment distribution along the length of the beam? 

[IES-1996]
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IES-31. Ans. (d) 

The Points of Contraflexure 
IES-32. The point· of contraflexure is a point where: [IES-2005]
 (a) Shear force changes sign  (b) Bending moment changes sign 
 (c) Shear force is maximum  (d) Bending moment is maximum 
IES-32. Ans. (b) 

IES-33. Match List I with List II and select the correct answer using the codes given 
below the Lists: [IES-2000] 

 List-I List-II  
A. Bending moment is constant 1. Point of contraflexure 
B. Bending moment is maximum or minimum 2. Shear force changes sign 
C. Bending moment is zero 3. Slope of shear force diagram is 

                                                                                        zero over the portion of the beam 
D. Loading is constant 4. Shear force is zero over the 

                                                                                        portion of the beam 
Code: A B C D  A B C D 

  (a) 4 1 2 3 (b) 3 2 1 4 
  (c) 4 2 1 3 (d) 3 1 2 4 
IES-33. Ans. (b) 

Loading and B.M. diagram from S.F. Diagram 
IES-34. The bending moment diagram shown in Fig. I correspond to the shear force 

diagram in [IES-1999]  

IES-34. Ans. (b) If shear force is zero, B.M. will also be zero. If shear force varies linearly with 
length, B.M. diagram will be curved line. 

IES-35. Bending moment distribution in a built be am is shown in the given 
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The shear force distribution in the beam is represented by [IES-2001] 

IES-35. Ans. (a) 

IES-36. The given figure shows the 
shear force diagram for the 
beam ABCD. 

 Bending moment in the portion 
BC of the beam 

[IES-1996]
 (a) Is a non-zero constant    (b) Is zero  
 (c) Varies linearly from B to C   (d) Varies parabolically from B to C  
IES-36. Ans. (a) 

IES-37. Figure shown above represents the 
BM diagram for a simply supported 
beam. The beam is subjected to 
which one of the following? 

 (a) A concentrated load at its mid-
length 

 (b) A uniformly distributed load over 
its length 

 (c) A couple at its mid-length 
 (d) Couple at 1/4 of the span from each 

end

[IES-2006]
IES-37. Ans. (c) 

IES-38. If the bending moment diagram for 
a simply supported beam is of the 
form given below. 
Then the load acting on the beam 
is:

 (a) A concentrated force at C  
 (b) A uniformly distributed load over 

the whole length of the beam 
 (c) Equal and opposite moments 

applied at A and B   
 (d) A moment applied at C [IES-1994]
IES-38. Ans. (d) A vertical line in centre of B.M. diagram is possible when a moment is applied 

there. 

IES-39. The figure given below shows a bending moment diagram for the beam CABD: 
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Load diagram for the above beam will be: [IES-1993] 

IES-39. Ans. (a) Load diagram at (a) is correct because B.M. diagram between A and B is parabola 
which is possible with uniformly distributed load in this region. 

IES-40. The shear force diagram shown in the following figure is that of a [IES-1994] 
 (a) Freely supported beam with symmetrical point load about mid-span. 
 (b) Freely supported beam with symmetrical uniformly distributed load about mid-

span
 (c) Simply supported beam with positive and negative point loads symmetrical about 

the mid-span 
 (d) Simply supported beam with symmetrical varying load about mid-span 

IES-40. Ans. (b) The shear force diagram is possible on simply supported beam with symmetrical 
varying load about mid span. 

Previous 20-Years IAS Questions 

Shear Force (S.F.) and Bending Moment (B.M.) 
IAS-1. Assertion (A): A beam subjected only to end moments will be free from shearing 

force. [IAS-2004] 
 Reason (R): The bending moment variation along the beam length is zero.  
 (a) Both A and R are individually true and R is the correct explanation of A 
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 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-1. Ans. (a) 
IAS-2. Assertion (A): The change in bending moment between two cross-sections of a 

beam is equal to the area of the shearing force diagram between the two 
sections. [IAS-1998]
Reason (R): The change in the shearing force between two cross-sections of 
beam due to distributed loading is equal to the area of the load intensity 
diagram between the two sections. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-2. Ans. (b) 

IAS-3. The ratio of the area under the bending moment diagram to the flexural 
rigidity between any two points along a beam gives the change in [IAS-1998]

 (a) Deflection  (b) Slope (c) Shear force (d) Bending moment 
IAS-3. Ans. (b) 

Cantilever
IAS-4. A beam AB of length 2 L having a 

concentrated load P at its mid-span 
is hinge supported at its two ends A 
and B on two identical cantilevers as 
shown in the given figure. The 
correct value of bending moment at 
A is 

 (a) Zero (b) PLl2  
 (c) PL (d) 2 PL  [IAS-1995]
IAS-4. Ans. (a) Because of hinge support between beam AB and cantilevers, the bending moment 

can't be transmitted to cantilever. Thus bending moment at points A and B is zero. 

IAS-5. A load perpendicular to the plane of the handle is applied at the free end as 
shown in the given figure. The values of Shear Forces (S.F.), Bending Moment 
(B.M.) and torque at the fixed end of the handle have been determined 
respectively as 400 N, 340 Nm and 100  by a student. Among these values, those 
of [IAS-1999]

 (a) S.F., B.M. and torque are correct 
 (b) S.F. and B.M. are correct 
 (c) B.M. and torque are correct 
 (d) S.F. and torque are correct 

IAS-5. Ans. (d)
S.F 400N and BM 400 0.4 0.2 240Nm
Torque 400 0.25 100Nm

Cantilever with Uniformly Distributed Load 
IAS-6. If the SF diagram for a beam is a triangle with length of the beam as its base, 

the beam is: [IAS-2007]  
 (a) A cantilever with a concentrated load at its free end 
 (b) A cantilever with udl over its whole span 
 (c) Simply supported with a concentrated load at its mid-point 
 (d) Simply supported with a udl over its whole span 
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IAS-6. Ans. (b) 

IAS-7. A cantilever carrying a uniformly distributed load is shown in Fig. I. 
 Select the correct R.M. diagram of the cantilever. [IAS-1999]

IAS-7. Ans. (c) 
2

x
x wxM wx
2 2

IAS-8. A structural member ABCD is loaded 
as shown in the given figure. The 
shearing  force at any section on the 
length BC of the member is: 

 (a) Zero (b) P  
 (c) Pa/k (d) Pk/a 

[IAS-1996] 
IAS-8. Ans. (a) 

Cantilever Carrying load Whose Intensity varies 
IAS-9. The beam is loaded as shown in Fig. I. Select the correct B.M. diagram 

[IAS-1999]
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IAS-9. Ans. (d) 

Simply Supported Beam Carrying Concentrated Load 
IAS-10. Assertion (A): In a simply supported beam carrying a concentrated load at mid-

span, both the shear force and bending moment diagrams are triangular in 
nature without any change in sign. [IAS-1999]
Reason (R): When the shear force at any section of a beam is either zero or 
changes sign, the bending moment at that section is maximum. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-10. Ans. (d) A is false.  

IAS-11. For the shear force to be uniform throughout the span of a simply supported 
beam, it should carry which one of the following loadings? [IAS-2007]

 (a) A concentrated load at mid-span 
 (b) Udl over the entire span 
 (c) A couple anywhere within its span 
 (d) Two concentrated loads equal in magnitude and placed at equal distance from each 

support
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IAS-11. Ans. (d)  It is a case of pure bending. 

IAS-12. Which one of the following figures represents the correct shear force diagram 
for the loaded beam shown in the given figure I? [IAS-1998; IAS-1995]

IAS-12. Ans. (a) 

Simply Supported Beam Carrying a Uniformly 
Distributed Load 
IAS-13. For a simply supported beam of length fl' subjected to downward load of 

uniform intensity w, match List-I with List-II and select the correct answer 
using the codes given below the Lists: [IAS-1997] 
List-I List-II 

A. Slope of shear force diagram 1.
45

384
w
E I

B. Maximum shear force  2.  w 

C. Maximum deflection  3.
4

8
w

D. Magnitude of maximum bending moment 4.
2
w

 Codes: A B C D  A B C D 
  (a) 1 2 3 4 (b) 3 1 2 4 
  (c) 3 2 1 4 (d) 2 4 1 3 Page 179 of 429
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IAS-13. Ans. (d) 

Simply Supported Beam Carrying a Load whose 
Intensity varies Uniformly from Zero at each End to w 
per Unit Run at the MiD Span 
IAS-14. A simply supported beam of length 'l' is subjected to a symmetrical uniformly 

varying load with zero intensity at the ends and intensity w (load per unit 
length) at the mid span. What is the maximum bending moment? [IAS-2004]

 (a) 
23

8
wl

   (b)
2

12
wl

   (c) 
2

24
wl

  (d) 
25

12
wl

IAS-14. Ans. (b)  

Simply Supported Beam carrying a Load whose 
Intensity varies 
IAS-15. A simply supported beam of span l is subjected to a uniformly varying load 

having zero intensity at the left support and w N/m at the right support. The 
reaction at the right support is: [IAS-2003] 

 (a)
2
wl

   (b) 
5
wl

   (c) 
4
wl

   (d) 
3
wl

IAS-15. Ans. (d) 

Simply Supported Beam with Equal Overhangs and 
carrying a Uniformly Distributed Load 
IAS-16. Consider the following statements for a simply supported beam subjected to a 

couple at its mid-span: [IAS-2004]
1. Bending moment is zero at the ends and maximum at the centre  
2. Bending moment is constant over the entire length of the beam 
3. Shear force is constant over the entire length of the beam 
4. Shear force is zero over the entire length of the beam 

 Which of the statements given above are correct? 
 (a) 1, 3 and 4   (b) 2, 3 and 4  (c) 1 and 3   (d) 2 and 4 
IAS-16. Ans. (c) 
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IAS-17. Match List-I (Beams) with List-II (Shear force diagrams) and select the correct 
answer using the codes given below the Lists: [IAS-2001]

 Codes: A  B  C  D   A  B  C  D 
  (a)  4 2 5 3  (b)  1 4 5 3 
  (c) 1 4 3 5  (d) 4 2 3 5 
IAS-17. Ans. (d)  

The Points of Contraflexure 
IAS-18. A point, along the length of a beam subjected to loads, where bending moment 

changes its sign, is known as the point of [IAS-1996]
 (a) Inflexion (b) Maximum stress (c) Zero shear force (d) Contra flexure 
IAS-18. Ans. (d) 

IAS-19. Assertion (A): In a loaded beam, if the shear force diagram is a straight line 
parallel to the beam axis,  then the bending moment is a straight line inclined 
to the beam axis. [IAS 1994] 
Reason (R): When shear force at any section of a beam is zero or changes sign, 
the bending moment  at that section is maximum.

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  Page 181 of 429
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 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-19. Ans. (b) 

Loading and B.M. diagram from S.F. Diagram 
IAS-20. The shear force diagram of a 

loaded beam is shown in the 
following figure: 

 The maximum Bending Moment of 
the beam is: 

 (a) 16 kN-m  (b) 11 kN-m
    

 (c) 28 kN-m  (d) 8 kN-m 

[IAS-1997]
IAS-20. Ans. (a) 

IAS-21. The bending moment for a loaded beam is shown below: [IAS-2003]

The loading on the beam is represented by which one of the followings 
diagrams? 

 (a) (b)

 (c) 

   

(d)

IAS-21. Ans. (d) 
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IAS-22. Which one of the given bending moment diagrams correctly represents that of 

the loaded beam shown in figure? [IAS-1997]

IAS-22. Ans. (c) Bending moment does not depends on moment of inertia. 

IAS-23. The shear force diagram is shown 
above for a loaded beam. The 
corresponding bending moment 
diagram is represented by 

[IAS-2003]

               

IAS-23. Ans. (a) 

IAS-24. The bending moment diagram for a simply supported beam is a rectangle over 
a larger portion of the span except near the supports. What type of load does 
the beam carry? [IAS-2007] 

 (a) A uniformly distributed symmetrical load over a larger portion of the span except 
near the supports 

 (b) A concentrated load at mid-span 
 (c) Two identical concentrated loads equidistant from the supports and close to mid-

point of the beam 
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 (d) Two identical concentrated loads equidistant from the mid-span and close to 

supports
IAS-24. Ans. (d) 
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Previous Conventional Questions with Answers 

Conventional Question IES-2005 
Question: A simply supported beam of length 10 m carries a uniformly varying load 

whose intensity varies from a maximum value of 5 kN/m at both ends to zero 
at the centre of the beam. It is desired to replace the beam with another 
simply supported beam which will be subjected to the same maximum 
'bending moment’ and ‘shear force' as in the case of the previous one. 
Determine the length and rate of loading for the second beam if it is 
subjected to a uniformly distributed load over its whole length. Draw the 
variation of 'SF' and 'BM' in both the cases. 

Answer:

10mR A R B

5KN/m 5KN/m
X

X

B

10Total load on beam =5× 25
2

25 12.5
2

 a section X-X from B at a distance x.
For 0 x 5  we get rate of loading

[  lineary varying]
at x=0, =5 /

 at x = 5, 0
These two bounday con

A B

kN

R R kN

Take
m

a bx as
kN m

and
dition gives a = 5 and b = -1 

5 x

2

1

B 1
2

dVWe know that shear force(V), 
dx

   or V = = (5 ) 5
2

 x = 0, F =12.5 kN (R ) so c 12.5

x                = -5x + 12.5
2

  It is clear that maximum S.F = 12.5 kN

xdx x dx x c

at

V
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2 2 3

2

2
2 3

dMFor a beam 
dx

5x, M = Vdx ( 5 12.5) = - 12.5
2 2 6

 x = 0, M = 0 gives C 0

         M = 12.5x - 2.5x / 6

V

x xor x dx x C

at

x

2

2

2 3
max

dMfor Maximum bending moment at 0
dx

x or-5x+ 12.5 0
2

, 10 25 0
, 5 means at centre.

So, M 12.5 2.5 2.5 5 5 / 6 20.83 kNm

or x x
or x

A B

RA RB
L

X

X

KNm

A

Now we consider a simply supported beam carrying uniform  distributed load 
over whole length (  KN/m).

Here R
2B

WLR

max

. .  section X-X

2
12.5

x

S F at
WV x

V kN

2

x

2 2

.  section X-X

M
2 2

20.83 ( )
2 2 2 8

( )& ( ) we get L=6.666m and =3.75kN/m

x

B M at
W Wxx

dM WL L WL ii
dx

Solving i ii
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10m
R

A R
B

5KN/m 5KN/m

X

X

B
-12.5KN/m 12.5KN/m

20.83KNm

Cubic parabola

S.F.D

6.666m

S.F.D

12.5kN 12.5kN

B.M.D

3.75kN/m

Parabola

20.83kNm

Conventional Question IES-1996 
Question: A Uniform beam of length L is carrying a uniformly distributed load w per 

unit length and is simply supported at its ends. What would be the maximum 
bending moment and where does it occur? 

Answer: By symmetry each support 

reaction is equal i.e. RA=RB=
2
W

   B.M at the section x-x is 

  Mx=+
2

2 2
W Wxx

 For the B.M to be maximum we 

have to 0xdM
dx

 that gives. 

 +
0

2
or x=  i.e. at mid point.2

W x Bending Moment Diagram 

 And Mmax=
2 2

22 2 2 8
w

Conventional Question AMIE-1996 
Question: Calculate the reactions at A and D for the beam shown in figure. Draw the 

bending moment and shear force diagrams showing all important values.
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Answer: Equivalent figure below shows an overhanging beam ABCDF supported by a roller 
support at A and a hinged support at D. In the figure, a load of 4 kN is applied through 
a bracket 0.5 m away from the point C. Now apply equal and opposite load of 4 kN at 
C. This will be equivalent to a anticlockwise couple of the value of (4 x 0.5) = 2 kNm 
acting at C together with a vertical downward load of 4 kN at C. Show U.D.L. (1 kN/m) 
over the port AB, a point load of 2 kN vertically downward at F, and a horizontal load 
of 2 3 kN as shown. 

 For reaction and A and D. 
 Let ue assume RA= reaction at roller A. 
 RDV vertically component of the reaction at the hinged support D, and 
 RDH horizontal component of the reaction at the hinged support D. 
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 Obviously   RDH= 2 3 kN ( )

 In order to determine RA, takings moments about D, we get 

A

A

A DV

2R 6 2 1 1 2 2 2 2 4 2
2

or R 3kN
Also R R 1 2 4 2 8

DV

222 2
D DV DH

1 0

or R 5kNvetricallyupward

Reaction at D, R R R 5 2 3 6.08kN

5Inclination with horizontal tan 55.3
2 3

F

D

C

B

A

S.F.Calculation :
V 2kN
V 2 5 3kN
V 3 4 1kN
V 1kN
V 1 1 2 3kN

F

D

C

B.M.Calculation :
M 0
M 2 1 2kNm

M 2 1 2 5 2 2 6kNm

B

P

A

The bending moment increases from 4kNm in i,e., 2 1 2 5 2

to 6kNm as shown
M 2 1 2 2 5 2 4 2 2 4kNm

2 1M 2 1 2 2 5 2 2 1 4 2 1 2 1 1
2 2

2.5kNm
M 0

Conventional Question GATE-1997 
Question: Construct the bending moment and shearing force diagrams for the beam 

shown in the figure. 

Answer:
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Calculation:  First find out reaction at B and E.
 Taking moments, about B, we get 

E

E

B E

B E

0.5R 4.5 20 0.5 100 50 3 40 5
2

or R 55kN
Also, R R 20 0.5 50 40
or R 45kN R 55kN

F

E

D

B

S.F. Calculation : V 40kN
V 40 55 15kN
V 15 50 35kN
V 35 45 10kN

G

F

E

D

C

B.M.Calculation : M 0
M 0
M 40 0.5 20kNm
M 40 2 55 1.5 2.5kNm

M 40 4 55 3.5 50 2 67.5kNm

B

The bending moment increases from 62.5kNm to 100.
0.5M 20 0.5 2.5kNm
2

Conventional Question GATE-1996 
Question: Two bars AB and BC are connected by a frictionless hinge at B. The assembly 

is supported and loaded as shown in figure below. Draw the shear force and 
bending moment diagrams for the combined beam AC. clearly labelling the 
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important values. Also indicate your sign convention.    
   

Answer: There shall be a vertical reaction at hinge B and we can split the problem in two parts. 
Then the FBD of each part is shown below 

 Calculation: Referring the FBD, we get, 
y 1 2F 0, and R R 200kN

B 2

2

From M 0,100 2 100 3 R 4 0
500or R 125kN

4
1

3 1

R 200 125 75kN
Again, R R 75kN
and M 75 1.5 112.5kNm.

Conventional Question IES-1998 
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Question: A tube 40 mm outside diameter; 5 mm thick and 1.5 m long simply supported 

at 125 mm from each end carries a concentrated load of 1 kN at each extreme 
end.

 (i) Neglecting the weight of the tube, sketch the shearing force and bending 
moment diagrams; 

 (ii) Calculate the radius of curvature and deflection at mid-span. Take the 
modulus of elasticity of the material as 208 GN/m2    
   

Answer: (i) Given, 0 i 0d 40mm 0.04m; d d 2t 40 2 5 30mm 0.03m;
2 2 2W 1kN; E 208GN / m 208 10 N / m ; l 1.5; a 125mm 0.125m

 Calculation: 
 (ii) Radius of coordinate R 
 As per bending equation: 

3

4 4
0 1

4 4 8 4

M E
I y R

EIor R i
M

Here,M W a 1 10 0.125 125Nm

I d d
64

0.04 0.03 8.59 10 m
64

8 8

2

x2

Substituting the values in equation i ,we get

208 10 8.59 10R 142.9m
125

Deflection at mid span :

d yEI M Wx W x a Wx Wx Wa Wa
dx Page 192 of 429
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1

1 1

Integrating,we get
dyEI Wax C
dx

1 dyWhen, x , 0
2 dx

1 Wal0 Wa C or C
2 2

dy WalEI Wax
dx 2

2

2

3 2

2

3 2

2

Integrating again, we get
x WalEIy Wa x C
2 2

When x a,y 0
Wa Wa l0 C

2 2
Wa Wa lor C

2 2
2 3 2

2 2

Wax Walx Wa Wa lEIy
2 2 2 2

Wa x lx a alor y
EI 2 2 2 2

2 2

2 2

2 2

9 8

At mid span,i,e., x l / 2

l / 2 l l / 2Wa a aly
EI 2 2 2 2

Wa l a al
EI 8 2 2

1 1000 0.125 1.5 0.125 0.125 1.5
8 2 2208 10 8.59 10

0.001366m 1.366mm
 It will be in upward direction 

Conventional Question IES-2001 
Question: What is meant by point of contraflexure or point of inflexion in a beam? Show 

the same for the beam given below: 

4M 4M 2m

A C B D

20kN17.5kN/m

Answer: In a beam if the bending moment changes sign at a point, the point itself having zero 
bending moment, the beam changes curvature at this point of zero bending moment 
and this point is called the point of contra flexure. 
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4M 4M 2M

A C B D

20kN17.5kN/m

BMD
 From the bending moment diagram we have seen that it is between A & C. 
 [If marks are more we should calculate exact point.] 
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 5.  Deflection of Beam 

Theory at a Glance (for IES, GATE, PSU)
5.1 Introduction 

We know that the axis of a beam deflects from its initial position under action of applied 
forces.  
In this chapter we will learn how to determine the elastic deflections of a beam.  

Selection of co-ordinate axes 
We will not introduce any other co-ordinate system. 
We use general co-ordinate axis as shown in the 
figure. This system will be followed in deflection of 
beam and in shear force and bending moment 
diagram. Here downward direction will be negative 
i.e. negative Y-axis. Therefore downward deflection of 
the beam will be treated as negative.  
To determine the value of deflection of beam 
subjected to a given loading where we will use the 

formula, 
2

2 x
d yEI M
dx

.

We use above Co-ordinate system 

Some books fix a co-ordinate axis as shown in the 
following figure. Here downward direction will be 
positive i.e. positive Y-axis. Therefore downward 
deflection of the beam will be treated as positive. As 
beam is generally deflected in downward directions 
and this co-ordinate system treats downward 
deflection is positive deflection.  
To determine the value of deflection of beam 
subjected to a given loading where we will use the 

formula, 
2

2 x
d yEI M
dx

.

Some books use above co-ordinate system 

Why to calculate the deflections? 

To prevent cracking of attached brittle materials  

To make sure the structure not deflect severely and to “appear” safe for its occupants 

To help analyzing statically indeterminate structures 
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Information on deformation characteristics of members is essential in the study of vibrations 
of machines 

Several methods to compute deflections in beam 
Double integration method (without the use of singularity functions) 

Macaulay’s Method (with the use of singularity functions) 

Moment area method 

Method of superposition 

Conjugate beam method 

Castigliano’s theorem 

Work/Energy methods 

Each of these methods has particular advantages or disadvantages.  

Assumptions in Simple Bending Theory 
Beams are initially straight 

The material is homogenous and isotropic i.e. it has a uniform composition and its 
mechanical properties are the same in all directions 

The stress-strain relationship is linear and elastic 

Young’s Modulus is the same in tension as in compression 

Sections are symmetrical about the plane of bending 

Sections which are plane before bending remain plane after bending 

Non-Uniform Bending
In the case of non-uniform bending of a beam, where bending moment varies from section to 
section, there will be shear force at each cross section which will induce shearing stresses 

Also these shearing stresses cause warping (or out-of plane distortion) of the cross section so 
that  plane cross sections do not remain plane even after bending 

Methods to find 
deflection

Double integration Geometrical Energy Method 

Moment area 
method

Conjugate 
beam method 

Castiglian’s 
theorem

Virtual
Work
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5.2 Elastic line or Elastic curve 
We have to remember that the differential equation of the elastic line is 

2

2

d =M
dx x
yEI

Proof: Consider the following simply supported beam with UDL over its length. 

From elementary calculus we know that curvature of a line (at point Q in figure) 
2

2

3/22

2

2

d y
1 dx where R radius of curvature
R dy1

dx

dyFor small deflection, 0
dx

1 d yor
R dx
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x
x

x
x

x

2
x

2

2

x2

Bending stress of the beam (at point Q)
M .y

                      
EI

From strain relation we get
1              and
R E
M1

R EI
Md yTherefore
EIdx

d yor EI  M
dx

x

y

5.3 General expression 

From the equation 
2

2 x
d yEI M
dx

 we may easily find out the following relations.  

4

4

d yEI
dx

  Shear force density (Load) 

3

3 x
d yEI V
dx

  Shear force 

2

2 x
d yEI M
dx

  Bending moment 

dy =  = slope
dx

 y =  = Deflection, Displacement 
 Flexural rigidity = EI

5.4 Double integration method (without the use of singularity functions) 

Vx = dx

Mx = xV dx

2

2 x
d yEI M
dx

1
xSlope M dx

EI

Deflection dx

4-step procedure to solve deflection of beam problems by double integration method 
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Step 1: Write down boundary conditions (Slope boundary conditions and displacement boundary 
conditions), analyze the problem to be solved 

Step 2: Write governing equations for, 
2

2 x
d yEI M
dx

Step 3: Solve governing equations by integration, results in expression with unknown integration 
constants  
Step 4: Apply boundary conditions (determine integration constants)  

Following table gives boundary conditions for different types of support. 

Types of support and Boundary Conditions Figure 

Clamped or Built in support or Fixed end :
( Point A)

, 0

, 0

Deflection y

Slope

, 0 . .A finite valueMoment M i e

Free end: (Point B)

, 0 . .A finite value

, 0 . .A finite value

Deflection y i e

Slope i e
, 0Moment M

Roller (Point B) or Pinned Support (Point A) or
Hinged or Simply supported. 

, 0Deflection y

, 0 . .A finite valueSlope i e

, 0Moment M

End restrained against rotation but free to 
deflection

, 0 . .A finite valueDeflection y i e

, 0Slope

, 0Shear force V

Flexible support 
, 0 . .A finite valueDeflection y i e

, 0 . .A finitevalueSlope i e
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, r
dyMoment M k
dx

, .Shear force V k y

Using double integration method we will find the 
deflection and slope of the following loaded 
beams one by one.

(i) A Cantilever beam with point load at the free end.  
(ii) A Cantilever beam with UDL (uniformly distributed load) 
(iii) A Cantilever beam with an applied moment at free end. 
(iv) A simply supported beam with a point load at its midpoint. 
(v) A simply supported beam with a point load NOT at its midpoint. 
(vi) A simply supported beam with UDL (Uniformly distributed load) 
(vii) A simply supported beam with triangular distributed load (GVL) gradually varied load.  
(viii) A simply supported beam with a moment at mid span. 
(ix) A simply supported beam with a continuously distributed load the intensity of which at 

any point ‘x’ along the beam is sinx
xw w

L

(i) A Cantilever beam with point load at the free end.  
We will solve this problem by double integration method. For that at first we have to calculate (Mx).
Consider any section XX at a distance ‘x’ from free end which is left end as shown in figure. 

  Mx = - P.x 
We know that differential equation of elastic line 

2

2

d yEI .
dx xM P x

Integrating both side we get Page 200 of 429
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2

2

2

d yEI  P x dx
dx

dy xor EI P. A .............(i) 
dx 2

2

3

Again integrating both side we get

xEI dy = P A  dx
2

Pxor  EIy = - Ax +B ..............(ii)
6

Where A and B is integration constants.

Now apply boundary condition at fixed end which is at a distance x = L from free end and we also 
know that at fixed end 

at   x = L,    y = 0 

at   x = L,   dy 0
dx

from equation (ii) EIL = - 
3PL + AL+B ..........(iii)

6

from equation (i) EI.(0) = -
2PL

2
+ A                 …..(iv) 

Solving (iii) & (iv) we get   A = 
2PL

2
  and  B = - 

3PL
3

Therefore,    y = -
3 2 3Px PL x PL

6EI 2EI 3EI
The slope as well as the deflection would be maximum at free end hence putting x = 0 we get 

ymax = -
3PL

3EI
   (Negative sign indicates the deflection is downward) 

(Slope)max = max = 
2PL

2EI
Remember for a cantilever beam with a point load at free end.  

Downward deflection at free end, 

3PL
3EI

And slope at free end, 

2PL
2EI
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(ii) A Cantilever beam with UDL (uniformly distributed load) 

We will now solve this problem by double integration method, for that at first we have to calculate 
(Mx).
Consider any section XX at a distance ‘x’ from free end which is left end as shown in figure. 

2

x
x wxM w.x .
2 2

We know that differential equation of elastic line  
2 2

2

d y wxEI
dx 2

Integrating both sides we get 
2 2

2

3

d y wxEI dx
2dx

dy wxEI A ......(i)
dx 6

or

3

4

Again integrating both side we get

wxEI dy A  dx
6

wxor   EIy = - Ax B.......(ii) 
24

where A and B are integration constants

Now apply boundary condition at fixed end which is at a distance x = L from free end and we also 
know that at fixed end. 
 at  x = L,    y = 0 

 at  x = L,    dy
dx

= 0 

from equation (i) we get     EI (0) = 
3-wL

6
+ A or A = 

3+wL
6

from equation (ii) we get EI.y = - 
4wL

24
+ A.L + B 

       or    B = - 
4wL

8
The slope as well as the deflection would be maximum at the free end hence putting x = 0, we get 
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4

max

3

maxmax

wLy Negative sign indicates the deflection is downward
8EI

wLslope
6EI

Remember: For a cantilever beam with UDL over its whole length,  

Maximum deflection at free end 

4wL
8EI

Maximum slope, 

3wL
6EI

(iii) A Cantilever beam of length ‘L’ with an applied moment ‘M’ at free end. 

Consider a section XX at a distance ‘x’ from free end, the bending moment at section XX is  
(Mx) = -M 

We know that differential equation of elastic line  

2

2

d yor  EI M  
dx

2

2

Integrating both side we get
d yor  EI M dx

dyor   EI Mx + A ...(i)  

dx

dx

Page 203 of 429



Chapter-5 Deflection of Beam S K Mondal’s 

2

Again integrating both side we get

EI dy = M x +A dx

Mxor  EI y Ax + B  ...(ii) 
2

Where A and B are integration constants.

2 2
2

2 2

applying boundary conditions in equation (i) &(ii) 
dyat   x = L,  0 gives  A = ML
dx

ML MLat   x = L, y = 0  gives   B = ML
2 2

Mx MLx MLTherefore deflection equation is   y = -
2EI EI 2EI

Which is the equation of elastic curve.

Maximum deflection at free end 

2ML=
2EI

    (It is downward) 

Maximum slope at free end 
ML
EI

Let us take a funny example: A cantilever beam AB of length ‘L’ and uniform flexural rigidity EI 
has a bracket BA (attached to its free end. A vertical downward force P is applied to free end C of the 
bracket. Find the ratio a/L required in order that the deflection of point A is zero. 
                      [ISRO – 2008]

We may consider this force ‘P’ and a moment (P.a) act on free end A of the cantilever beam. 
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Due to point load ‘P’ at free end ‘A’ downward deflection 
3PL

3EI

Due to moment M = P.a at free end ‘A’ upward deflection 
2 2ML (P.a)L

2EI 2EI
For zero deflection of free end A 

3PL
3EI

=
2(P.a)L

2EI

or a 2
L 3

(iv) A simply supported beam with a point load P at its midpoint. 
A simply supported beam AB carries a concentrated load P at its midpoint as shown in the figure. 

We want to locate the point of maximum deflection on the elastic curve and find its value. 
In the region 0 < x < L/2 
Bending moment at any point x (According to the shown co-ordinate system) 

 Mx = P .x
2

and In the region L/2 < x < L 

 Mx = 
P x L / 2
2

We know that differential equation of elastic line  
2

2

d y P .x  In the region 0 < x < L/2
2dx

EI

Integrating both side we get

2

2

2

d y Por EI x dx 
2dx

dy P xor  EI . A  (i)  
dx 2 2

Again integrating both side we get
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2

3

P EI dy = x A dx
4

Pxor EI y = Ax + B (ii)  
12

Where A and B are integrating constants

Now applying boundary conditions to equation (i) and (ii) we get

2

at  x = 0,      y = 0
dyat  x = L/2, 0
dx

PLA = -   and B = 0
16

3 12Px PL Equation of elastic line, y = - x
12 16

Maximum deflection at mid span (x = L/2)

3PL=
48EI

and maximum slope at each end

2PL
16EI

(v) A simply supported beam with a point load ‘P’ NOT at its midpoint. 
A simply supported beam AB carries a concentrated load P as shown in the figure. 

 We have to locate the point of maximum deflection on the elastic curve and find the value of this 
deflection. 
Taking co-ordinate axes x and y as shown below 

Page 206 of 429



Chapter-5 Deflection of Beam S K Mondal’s 

For the bending moment we have  

In the region  x
P.a0 x  a,  M .x
L

And, In the region a x  L,        x
P.aM L - x
L

2

2

2

2

So we obtain two differential equation for the elastic curve.
d y P.aEI .x     for  0 x  a

Ldx
d y P.aand  EI . L - x for  a x  L

Ldx
Successive integration of these equations gives 

2

1

2
2

3

1 1

2 3

2 2

dy P.a xEI . + A ......(i) for  o x a
dx L 2
dy P.aEI P.a x - x A ......(ii) for a x L
dx L

P.a xEI y . +A x+B ......(iii) for  0 x
L 6

x P.a xEI y P.a . A x + B .....(iv) for a x L
2 L 6

a

Where A1, A2, B1, B2 are constants of Integration. 
Now we have to use Boundary conditions for finding constants: 
BCS     (a)  at  x = 0, y = 0 
 (b) at x = L, y = 0 

 (c) at x = a, dy
dx

= Same for equation (i) & (ii) 

 (d) at x = a, y = same from equation (iii) & (iv) 

We get 2 2 2 2
1 2

Pb P.aA L b ; A 2L a
6L 6L

3
1 2B 0; B Pa / 6EIand

Therefore we get two equations of elastic curve 
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2 2 2

3 2 2 3

PbxEI y = - L b x ..... (v) for  0 x a
6L

Pb LEI y = x - a L b x - x . ...(vi)  for  a x L
6L b

For a > b, the maximum deflection will occur in the left portion of the span, to which equation (v) 
applies. Setting the derivative of this expression equal to zero gives 

2 2a(a+2b) (L-b)(L+b) L bx = 
3 3 3

at that point a horizontal tangent and hence the point of maximum deflection substituting this value 

of x into equation (v), we find,   
2 2 3/2

max
P.b(L b )y

9 3. EIL

Case –I:  if a = b = L/2 then 

Maximum deflection will be at x =
22L L/2

L/2
3

i.e.  at mid point 

and

3/222
3

max

P. L/2 L L/2 PLy
48EI9 3 EIL

(vi) A simply supported beam with UDL (Uniformly distributed load) 
A simply supported beam AB carries a uniformly distributed load (UDL) of intensity w/unit length 
over its whole span L as shown in figure. We want to develop the equation of the elastic curve and 
find the maximum deflection  at the middle of the span. 

Taking co-ordinate axes x and y as shown, we have for the bending moment at any point x 
2

x
wL xM .x - w.
2 2

Then the differential equation of deflection becomes 
2 2

x2

d y wL xEI M .x - w.
2 2dx

Integrating both sides we get 
2 3dy wL x xEI . . A                .....(i)

dx 2 2 2 3
w Page 208 of 429
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Again Integrating both side we get 

3 4wL x xEI y . . Ax + B           .....(ii)
2 6 2 12

w

Where A and B are integration constants. To evaluate these constants we have to use boundary 
conditions.  

at  x = 0, y = 0              gives    B = 0 

at   x = L/2,   0dy
dx

    gives
3

24
wLA

Therefore the equation of the elastic curve 
3

3 4 3 2 3wL wL wxy . . .x  = 2 . x
12EI 24EI 12EI 24EI 

wx x L L x

The maximum deflection at the mid-span, we have to put x = L/2 in the equation and obtain  

Maximum deflection at mid-span,  

45
384

wL
EI

   (It is downward)  

And Maximum slope A B at the left end A and at the right end b is same putting x = 0 or x = L 

Therefore we get Maximum slope 

3

24
wL

EI
(vii) A simply supported beam with triangular distributed load (GVL) 

gradually varied load.  
A simply supported beam carries a triangular distributed load (GVL) as shown in figure below. We 

have to find equation of elastic curve and find maximum deflection .
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4

4

d y wEI .x .....(i)
Ldx

load

Separating variables and integrating we get 
3 2

x3

d y wxEI V + A .....(ii) 
2Ldx

Again integrating thrice we get 
2 3

x2

d y wxEI M + Ax +B .....(iii)
6Ldx

4 2dy wx AxEI + +Bx +C .....(iv)
dx 24L 2

5 3 2wx Ax BxEI y + + +Cx +D .....(v)
120L 6 2

Where A, B, C and D are integration constant. 
Boundary conditions  at x = 0,  Mx = 0,   y = 0 
   at x = L,  Mx = 0,  y = 0  gives 

wLA = ,
6

B = 0, 
37wLC = - ,

360
 D = 0 

Therefore 4 2 2 4wxy = - 7L 10L x 3x
360EIL

   (negative sign indicates downward deflection)

To find maximum deflection , we have dy
dx

 = 0 

And it gives x = 0.519 L and maximum deflection = 0.00652
4wL

EI

(viii) A simply supported beam with a moment at mid-span 
A simply supported beam AB is acted upon by a couple M applied at an intermediate point distance 
‘a’ from the equation of elastic curve and deflection at point where the moment acted. 

Considering equilibrium we get A
MR
L

 and B
MR
L

Taking co-ordinate axes x and y as shown, we have for bending moment 

 In the region   x
M0 x a, M .x
L

 In the region   x
Ma x L, M x - M
L

So we obtain the difference equation for the elastic curve 
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2

2

2

2

d y MEI .x for 0 x a
Ldx

d y Mand EI .x M for a x L
Ldx

Successive integration of these equation gives 
2

1

2

2

3

1 1

3 2

2 2

dy M xEI . A  ....(i) for 0 x a
dx L 2
dy M xEI - Mx+ A .....(ii)  for a x L
dx L 2

M xand EI y = . A x + B ......(iii)  for 0 x a
L
M x Mx  EI y =  A x + B ......(iv)  for a x L   
L 2

Where A1, A2, B1 and B2 are integration constants. 
To finding these constants boundary conditions 
 (a)  at  x = 0,  y = 0 
 (b)  at  x = L,  y = 0 

 (c)  at  x = a, 
dy
dx

= same form equation (i) & (ii) 

 (d)  at  x = a, y = same form equation (iii) & (iv) 
2 2

1 2

2

1 2

ML Ma ML MaA M.a + + ,  A
3 2L 3 2L

MaB 0, B
2

With this value we get the equation of elastic curve 

2 2 2

2 2

Mxy = - 6aL - 3a x 2L for 0 x a
6L

 deflection of x = a,
Ma                y = 3aL - 2a L

3EIL

(ix) A simply supported beam with a continuously distributed load the 

intensity of which at any point ‘x’ along the beam is sinx
xw w

L

At first we have to find out the bending moment at any point ‘x’ according to the shown co-ordinate 
system.
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xd V xw sin

dx L

Integrating both sides we get 

x

x

xd V w sin dx +A
L

wL xor V .cos A
L

and we also know  that

x
x

d M wL xV cos A
dx L

Again integrating both sides we get

x

2

x 2

wL xd M cos A dx
L

wL xor  M sin Ax+B
L

Where A and B are integration constants, to find out the values of A and B. We have to use boundary 
conditions    

at  x = 0,  Mx = 0 
and  at x = L,  Mx = 0 

From these we get  A = B = 0. Therefore 
2

x 2

wL xM sin
L

So the differential equation of elastic curve 
2 2

x2 2

d y wL xEI M sin
Ldx

Successive integration gives 
3

3

4

4

dy wL xEI cos C .......(i)
dx L

wL xEIy sin Cx D .....(ii)
L

Where C and D are integration constants, to find out C and D we have to use boundary conditions 
  at  x = 0,     y = 0 
  at   x = L,    y = 0 

and that give  C = D = 0 

Therefore slope equation   
3

3

dy wL xEI cos
dx L

and Equation of elastic curve  
4

4

wL xy sin
LEI

  (-ive sign indicates deflection is downward) 

Deflection will be maximum if xsin
L

is maximum 
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        xsin
L

= 1    or    x = L/2 

and Maximum downward deflection =
4

4

WL
EI

(downward). 

5.5 Macaulay's Method (Use of singularity function) 

When the beam is subjected to point loads (but several loads) this is very convenient method 
for determining the deflection of the beam. 

In this method we will write single moment equation in such a way that it becomes 
continuous for entire length of the beam in spite of the discontinuity of loading.  

After integrating this equation we will find the integration constants which are valid for 
entire length of the beam. This method is known as method of singularity constant.

Procedure to solve the problem by Macaulay’s method 
Step – I:  Calculate all reactions and moments 
Step – II: Write down the moment equation which is valid for all values of x. This must contain 
brackets. 
Step – III: Integrate the moment equation by a typical manner. Integration of (x-a) will be 

2 2x-a x not ax
2 2

 and integration of (x-a)2 will be 
3x-a

3
 so on. 

Step – IV: After first integration write the first integration constant (A) after first terms and after 
second time integration write the second integration constant (B) after A.x . Constant A and B are 
valid for all values of x. 
Step – V: Using Boundary condition find A and B at a point x = p if any term in Macaulay’s method, 
(x-a) is negative (-ive) the term will be neglected. 

(i) Let us take an example: A simply supported beam AB length 6m with a point load of 30 kN is 
applied at a distance 4m from left end A. Determine the equations of the elastic curve between each 
change of load point and the maximum deflection of the beam. 

Answer: We solve this problem using Macaulay’s method, for that first writes the general 
momentum equation for the last portion of beam BC of the loaded beam. 

2

x2

d yEI M 10x  -30 x - 4 .m ....(i)
dx

N

By successive integration of this equation (using Macaulay’s integration rule  
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e.g
2x a

a dx )
2

x

We get 
22 2

3 3 3

dyEI 5x A -15 x-4 N.m ..... ii
dx

5and  EI y = x Ax + B - 5 (x - 4) N.m ..... iii
3

Where A and B are two integration constants. To evaluate its value we have to use following 
boundary conditions. 

 at x = 0,  y = 0 
and  at x = 6m,  y = 0 

Note: When we put x = 0, x - 4 is negativre (–ive) and this term will not be considered for x = 0 , so  

our equation will be EI y = 35 x Ax +B,
3

 and at x = 0 , y = 0 gives B = 0 

But when we put x = 6, x-4 is positive (+ive) and this term will be considered for x = 6, y = 0 so our 

equation will be EI y = 35 x
3

+ Ax + 0 – 5 (x – 4)3

This gives 

 EI .(0) = 3 35 .6 A.6 0 5(6 4)
3

or  A = - 53
So our slope and deflection equation will be 

22

33

dyEI 5x  - 53 - 15 x - 4
dx

5 and EI y x - 53x + 0 - 5 x - 4
3

Now we have two equations for entire section of the beam and we have to understand how we use 
these equations. Here if x < 4 then x – 4 is negative so this term will be deleted. That so why in the 

region o x 4m  we will neglect (x – 4) term and our slope and deflection equation will be 

2dyEI 5x -53
dx

and 35EI y x - 53x
3

But in the region 4 x 6mm , (x – 4) is positive so we include this term and our slope and 

deflection equation will be 

22dyEI 5x - 53 - 15 x - 4
dx

335EI y x - 53x - 5 x - 4
3

Now we have to find out maximum deflection, but we don’t know at what value of ‘x’ it will be 

maximum. For this assuming the value of ‘x’ will be in the region 0 x 4m .
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Deflection (y) will be maximum for that  dy
dx

 = 0 or 25x - 53 = 0 or x = 3.25 m as our calculated x is 

in the region 0 x 4m ; at  x = 3.25 m deflection will be maximum 

 or  EI ymax = 5
3

3.253 – 53 3.25

 or   ymax = - 
115
EI

  (-ive sign indicates downward deflection) 

But if you have any doubt that Maximum deflection may be in the range of 4 x 6m , use EIy = 

5x2 – 53x – 5 (x – 4)3 and find out x. The value of x will be absurd that indicates the maximum 

deflection will not occur in the region 4 x 6m .

Deflection (y) will be maximum for that  dy
dx

 = 0 

 or  225x -53 - 15 x - 4 = 0 

 or 10x2 -120x + 293 = 0 
 or x = 3.41 m or 8.6 m  

Both the value fall outside the region 4 x 6m  and in this region 4 x 6m  and in this region 

maximum deflection will not occur. 

(ii) Now take an example where Point load, UDL and Moment applied simultaneously in 
a beam:

Let us consider a simply supported beam AB (see Figure) of length 3m is subjected to a point load 10 
kN, UDL = 5 kN/m and a bending moment M = 25 kNm. Find the deflection of the beam at point D if 
flexural rigidity (EI) = 50 KNm2.

Answer: Considering equilibrium 

A

B

B

A B A

M 0 gives

-10 1 - 25 - 5 1 1 1 1/ 2 R 3 0
or R 15.83kN

 R  R 10 5 1 gives R 0.83kN

We solve this problem using Macaulay’s method, for that first writing the general momentum 
equation for the last portion of beam, DB of the loaded beam. 

22
0

x2

5 x-2d yEI M 0.83x   -10 x-1 25 x-2
dx 2Page 215 of 429
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By successive integration of this equation (using Macaulay’s integration rule  

e.g
2x a

a dx )
2

x

We get 
2 32

3 2 43

dy 0.83 5EI .x A -5 x 1 25 x 2 x 2
dx 2 6

0.83 5 25 5and EIy = x Ax +B - x 1 x 2 x 2
6 3 2 24

Where A and B are integration constant we have to use following boundary conditions to find out A 
& B.
  at x = 0,   y = 0 

 at x = 3m,  y = 0 
Therefore B = 0 

3 3 2 40.83 5 5and  0 = - 3 A 3 + 0 - 2 12.5 1 1
6 3 24

or A = 1.93

3 2 43EIy = - 0.138x 1.93x -1.67 x 1 12.5 x 2 0.21 x 2

3 3
D

D 3

Deflextion atpoint D at x = 2m
EIy 0.138 2 1.93 2 1.67 1 8.85

8.85 8.85or  y m ive sign indicates deflection downward
EI 50 10

0.177mm downward .

(iii) A simply supported beam with a couple M at a distance ‘a’ from left end 
If a couple acts we have to take the distance in 
the bracket and this should be raised to the 
power zero. i.e.  M(x – a)0. Power is zero because 
(x – a)0 = 1 and unit of M(x – a)0 = M but we 
introduced the distance which is needed for 
Macaulay’s method. 

2
0

A.2

d yEI M R x M x-a
dx

Successive integration gives
2

1

2
3

dy M xEI . A - M x-a
dx L 2

M x-aMEI x Ax + B - 
6L 2

y

Where A and B are integration constants, we have to use boundary conditions to find out A & B. 
at  x = 0, y = 0   gives  B = 0 

at  x = L, y = 0   gives  A = 
2M L-a ML

2L 6
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8. Moment area method 
This method is used generally to obtain displacement and rotation at a single point on a 
beam.

The moment area method is convenient in case of beams acted upon with point loads in 
which case bending moment area consist of triangle and rectangles.  

A C B

M
B

Loading

B.M.diag

Deflection

L

M
n

M
c

X

θ

2θ
y

max

A
tÎ

ABθ
ADθ

OA

A

B

t
BA

C

D

Angle between the tangents drawn at 2 points A&B on the elastic line, AB

AB =
1 Area of the bending moment diagram between A&B
EI

i.e. slope B.M.A
EIAB

Deflection of B related to 'A' 

yBA = Moment of 
M
EI

 diagram between B&A taking about B (or w.r.t. B)

i.e. deflection B.MA
EI BA

xy

Important Note 

If 1A  = Area of shear force (SF) diagram  

2A = Area of bending moment (BM) diagram, 

Then, Change of slope over any portion of the loaded beam = 1 2A A
EI
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Some typical bending moment diagram and their area (A) and distance of 
C.G from one edge x  is shown in the following table. [Note the distance 

will be different from other end] 
Shape BM Diagram Area Distance from C.G 

1. Rectangle 

A bh 2
bx

2. Triangle 

3
bx

3. Parabola 

4
bx

4. Parabola  

5.Cubic Parabola  

6. y = k xn

7. Sine curve  

Determination of Maximum slope and deflection 
by Moment Area- Method 
(i) A Cantilever beam with a point load at free end 
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Area of BM (Bending moment diagram) 

2

2

2

3

1 PLA L PL
2 2

Therefore
A PLMaximum slope (at free end)
EI 2EI

AxMaximum deflection 
EI

PL 2 L
2 3 PL (at free end)

EI 3EI

(ii) A cantilever beam with a point load not at free end 

Area of BM diagram 
21 PaA a Pa

2 2
Therefore 

2A PaMaximum slope
EI 2EI

         ( at free end) 

2

2

AxMaximum deflection 
EI

Pa L-
2 3 Pa . L- (at free end)

EI 2EI 3

a
a

(iii) A cantilever beam with UDL over its whole length 

Area of BM diagram
2 31 wL wLA L

3 2 6
Therefore 

3A wLMaximum slope
EI 6EI

 (at free end) 

AxMaximum deflection 
EI

           

3

4

wL 3 L
6 4 wL

EI 8EI
 (at free end)

(iv) A simply supported beam with point load at mid-spam 
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Area of shaded BM diagram 

21 L PL PLA
2 2 4 16

Therefore 
2A PLMaximum slope

EI 16EI
   (at each ends) 

AxMaximum deflection 
EI

           

2

3

PL L
16 3 PL

EI 48EI
            (at mid point) 

 (v) A simply supported beam with UDL over its whole length 
Area of BM diagram (shaded) 

2 32 L wL wLA
3 2 8 24

Therefore 
3A wLMaximum slope

EI 24EI
      (at each ends) 

AxMaximum deflection 
EI

3

4

wL 5 L
24 8 2 5 wL

EI 384 EI
            (at mid point) 

9. Method of superposition 
Assumptions: 

Structure should be linear 

Slope of elastic line should be very small. 

The deflection of the beam should be small such that the effect due to the shaft or rotation of 
the line of action of the load is neglected. 

Principle of Superposition: 
• Deformations of beams subjected to combinations of loadings may be obtained as the linear 

combination of the deformations from the individual loadings 
• Procedure is facilitated by tables of solutions for common types of loadings and supports. 

Example: 

For the beam and loading shown, determine 
the slope and deflection at point B.
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Superpose the deformations due to Loading I and Loading II as shown. 

10. Conjugate beam method 
In the conjugate beam method, the length of the conjugate beam is the same as the length of the 
actual beam, the loading diagram (showing the loads acting) on the conjugate beam is simply the 
bending-moment diagram of the actual beam divided by the flexural rigidity EI of the actual beam, 
and the corresponding support condition for the conjugate beam is given by the rules as shown 
below.

Corresponding support condition for the conjugate beam 
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Conjugates of Common Types of Real Beams 
Conjugate beams for statically determinate 
real beams 

Conjugate beams for Statically 
indeterminate real beams 

By the conjugate beam method, the slope and deflection of the actual beam can be found by 

using the following two rules: 

The slope of the actual beam at any cross section is equal to the shearing force at the 
corresponding cross section of the conjugate beam. 

The deflection of the actual beam at any point is equal to the bending moment of the 
conjugate beam at the corresponding point. 

Procedure for Analysis 

Construct the M / EI diagram for the given (real) beam subjected to the specified (real) 
loading. If a combination of loading exists, you may use M-diagram by parts 

Determine the conjugate beam corresponding to the given real beam 

Apply the M / EI diagram as the load on the conjugate beam as per sign convention 

Calculate the reactions at the supports of the conjugate beam by applying equations of 
equilibrium and conditions 

Determine the shears in the conjugate beam at locations where slopes is desired in the 
real beam, Vconj = real

Determine the bending moments in the conjugate beam at locations where deflections is
desired in the real beam, Mconj = yreal
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The method of double integration, method of superposition, moment-area theorems, and 
Castigliano’s theorem are all well established methods for finding deflections of beams, but they 
require that the boundary conditions of the beams be known or specified. If not, all of them 
become helpless. However, the conjugate beam method is able to proceed and yield a solution for the 
possible deflections of the beam based on the support conditions, rather than the boundary 
conditions, of the beams. 

(i) A Cantilever beam with a point load ‘P’ at its free end.

For Real Beam: At a section a distance ‘x’ from free end 
consider the forces to the left. Taking moments about the 
section gives (obviously to the left of the section)  Mx = -P.x

(negative sign means that the moment on the left hand side 
of the portion is in the anticlockwise direction and is 
therefore taken as negative according to the sign convention) 
so that the maximum bending moment occurs at the fixed 
end i.e. Mmax = - PL ( at x = L)

Considering equilibrium we get, 
2

A A
wL wLM and Reaction R
3 2

Considering any cross-section XX which is at a distance of x from the fixed end. 

At this point load W(W ) .x
Lx

Shear force AR area of triangle ANMxV

2

x max

x

wL 1 w wL wx- . .x .x = +  - 
2 2 L 2 2L

The shear force variation is parabolic.
wL wLat x 0, V i.e. Maximum shear force, V
2 2

at x L, V 0

Bending moment 
2

A A
wx 2x= R .x - .  - M
2L 3xM
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3 2

2 2

max

x

wL wx wL= .x -  - 
2 6L 3

The bending moment variation is cubic
wL wLat  x = 0,  M i.e.Maximum B.M. M .
3 3

at x L,  M 0

x
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Beam Deflection 
GATE-1. A lean elastic beam of given flexural 

rigidity, EI, is loaded by a single force F 
as shown in figure. How many boundary 
conditions are necessary to determine 
the deflected centre line of the beam? 

 (a) 5     (b) 4   
 (c) 3    (d) 2

                           [GATE-1999]

GATE-1. Ans. (d)
2

2

d yEI M
dx

. Since it is second order differential equation so we need two boundary 

conditions to solve it.  

Double Integration Method 
GATE-2. A simply supported beam carrying a concentrated load W at mid-span deflects 

by 1 under the load. If the same beam carries the load W such that it is 
distributed uniformly over entire length and undergoes a deflection 2 at the 
mid span. The ratio 1: 2 is: [IES-1995; GATE-1994] 

 (a) 2: 1    (b) 2 : 1   (c) 1: 1    (d) 1: 2  

GATE-2. Ans. (d) 
3

1
Wl
48EI

and

4
3

2

W5 l
5Wll

384EI 384EI
 Therefore 1: 2 = 5: 8 

GATE-3. A simply supported laterally loaded beam was found to deflect more than a 
specified value. [GATE-2003] 

 Which of the following measures will reduce the deflection? 
 (a) Increase the area moment of inertia 
 (b) Increase the span of the beam 
 (c) Select a different material having lesser modulus of elasticity 
 (d) Magnitude of the load to be increased 

GATE-3. Ans. (a) Maximum deflection ( ) = 
3Wl

48EI
 To reduce, , increase the area moment of Inertia. 
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Previous 20-Years IES Questions 

Double Integration Method 
IES-1. Consider the following statements: [IES-2003] 
 In a cantilever subjected to a concentrated load at the free end 
 1. The bending stress is maximum at the free end 
 2. The maximum shear stress is constant along the length of the beam 
 3. The slope of the elastic curve is zero at the fixed end 

Which of these statements are correct? 
 (a) 1, 2 and 3  (b) 2 and 3  (c) 1 and 3  (d) 1 and 2 
IES-1. Ans. (b) 

IES-2. A cantilever of length L, moment of inertia I. Young's modulus E carries a 
concentrated load W at the middle of its length. The slope of cantilever at the 
free end is: [IES-2001] 

 (a) 
2

2
WL
EI

   (b) 
2

4
WL
EI

  (c) 
2

8
WL
EI

  (d) 
2

16
WL
EI

IES-2. Ans. (c) 

2

22
2 8

LW
WL

EI EI

IES-3. The two cantilevers A 
and B shown in the 
figure have the same 
uniform cross-section 
and the same material. 
Free end deflection of 
cantilever 'A' is . [IES-2000]

 The value of mid- span deflection of the cantilever ‘B’ is:  
1 2a                   b              c                  d  2         
2 3

IES-3. Ans. (c)
3 2 3WL WL 5WLL

3EI 2EI 6EI
2 3 3

mid
at x L

W 2Lx x 5WLy
EI 2 6 6EI

IES-4. A cantilever beam of rectangular cross-section is subjected to a load W at its 
free end. If the depth of the beam is doubled and the load is halved, the 
deflection of the free end as compared to original deflection will be: [IES-1999]

 (a) Half   (b) One-eighth   (c) One-sixteenth   (d) Double 

IES-4. Ans. (c) 
3 3 3

3 3

12 4Deflectionin cantilever  
3 3
Wl Wl Wl
EI Eah Eah

3 3

3 3

4 1 4If h is doubled,  and W is halved,  New deflection  =
162 2

Wl Wl
EahEa h

IES-5. A simply supported beam of constant flexural rigidity and length 2L carries a 
concentrated load 'P' at its mid-span and the deflection under the load is . If a 
cantilever beam of the same flexural rigidity and length 'L' is subjected to load 
'P' at its free end, then the deflection at the free end will be: [IES-1998]

1a                  b              c    2              d  4         
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IES-5. Ans. (c)
3 32

for simply supported beam
48 6
W L WL

EI EI
3

and deflection for Cantilever 2
3
WL
EI

IES-6. Two identical cantilevers are 
loaded as shown in the 
respective figures. If slope at 
the free end of the cantilever in 
figure E is , the slope at free 
and of the cantilever in figure 
F will be: 

   Figure E                                          Figure F 

[IES-1997]

  (a)
1
3

   (b) 
1
2

       (c) 
2
3

    (d) 

IES-6. Ans. (d) When a B. M is applied at the free end of cantilever, 
2/ 2

2
PL LML PL

EI EI EI

  When a cantilever is subjected to a single concentrated load at free end, then 
2

2
PL
EI

IES-7. A cantilever beam carries a load W uniformly distributed over its entire length. 
If the same load is placed at the free end of the same cantilever, then the ratio 
of maximum deflection in the first case to that in the second case will be: 

[IES-1996]
 (a) 3/8    (b) 8/3   (c) 5/8    (d) 8/5 

IES-7. Ans. (a)
3 3 3

8 3 8
Wl Wl
EI EI

IES-8. The given figure shows a 
cantilever of span 'L' subjected to 
a concentrated load 'P' and a 
moment 'M' at the free end. 
Deflection at the free end is 
given by      

[IES-1996]

 (a) 
2 2

2 3
PL ML
EI EI

 (b) 
2 3

2 3
ML PL
EI EI

 (c) 
2 3

3 2
ML PL
EI EI

  (d) 
2 3

2 48
ML PL
EI EI

IES-8. Ans. (b)  

IES-9. For a cantilever beam of length 'L', flexural rigidity EI and loaded at its free 
end by a concentrated load W, match List I with List II and select the correct 
answer. [IES-1996]
List I List II 

 A. Maximum bending moment 1. Wl 
 B. Strain energy  2. Wl2/2EI
 C. Maximum slope  3. Wl3/3EI
 D. Maximum deflection  4. W2l2/6EI
 Codes: A  B  C  D   A  B  C  D 
  (a)  1  4  3  2  (b)  1  4  2  3 
  (c)  4  2  1  3  (d)  4  3  1  2 

IES-9. Ans. (b) 

IES-10. Maximum deflection of a cantilever beam of length ‘l’ carrying uniformly 
distributed load w per unit length will be: [IES- 2008]Page 227 of 429
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 (a) wl4/ (EI)  (b) w l4/ (4 EI)  (c) w l4/ (8 EI)  (d) w l4/ (384 EI) 
 [Where E = modulus of elasticity of beam material and I = moment of inertia of beam 

cross-section]
IES-10. Ans. (c) 

IES-11. A cantilever beam of length ‘l’ is subjected to a concentrated load P at a 
distance of l/3 from the free end. What is the deflection of the free end of the 
beam? (EI is the flexural rigidity) [IES-2004]

 (a) 
32

81
Pl
EI

  (b) 
33

81
Pl
EI

   (c) 
314

81
Pl
EI

   (d) 
315

81
Pl
EI

IES-11. Ans. (d) 

A

3 3

2

2

max

3

3

Moment Area method gives us
1 2Pl 2l l 4 l

Area 2 3 3 3 9x
EI EI

Pl 2 7 14 Pl
EI 9 9 81 EI

2lW
Wa l a l 2l / 33Alternatively Y
EI 2 6 EI 2 6

9 2Wl 4
EI 9 18

14 Wl
81 EI

IES-12. A 2 m long beam BC carries a single 
concentrated load at its mid-span 
and is simply supported at its ends 
by two cantilevers AB = 1 m long and 
CD = 2 m long as shown in the figure.

 The shear force at end A of the 
cantilever AB will be 

 (a) Zero        (b) 40 kg 
 (c) 50 kg              (d) 60 kg [IES-1997]

IES-12. Ans. (c) Reaction force on B and C is same 100/2 = 50 kg. And we know that shear force is 
same throughout its length and equal to load at free end.  

IES-13. Assertion (A): In a simply supported beam subjected to a concentrated load P at 
mid-span, the elastic curve slope becomes zero under the load. [IES-2003]

 Reason (R): The deflection of the beam is maximum at mid-span. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-13. Ans. (a) 

IES-14. At a certain section at a distance 'x' from one of the supports of a simply 
supported beam, the intensity of loading, bending moment and shear force arc 
Wx,  Mx and Vx respectively. If the intensity of loading is varying continuously 
along the length of the beam, then the invalid relation is: [IES-2000]

2

2a  Slope    b c      dx x x x
x x x x

x

M dM d M dVQ V W W
V dx dx dx

IES-14. Ans. (a) 
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IES-15. The bending moment equation, as a function of distance x measured from the 

left end, for a simply supported beam of span L m carrying a uniformly 
distributed load of intensity w N/m will be given by [IES-1999]

3 2

2 3 2

wL w wL wa  M= L-x - L-x Nm           b M= x - x Nm   
2 2 2 2

wL w wL wLxc  M= L-x - L-x Nm          d M= x - Nm   
2 2 2 2

IES-15. Ans. (b) 

IES-16. A simply supported beam with width 'b' and depth ’d’ carries a central load W 
and undergoes deflection  at the centre. If the width and depth are 
interchanged, the deflection at the centre of the beam would attain the value 

[IES-1997]
2 3 3/2

a             b              c              d          d d d d
b b b b

IES-16. Ans. (b) Deflection at center 
3 3

3

Wl Wl
48EI bd48E

12
3 3 3 2 2

2 23 3
In second case,deflection

48
48 48

12 12

Wl Wl Wl d d
EI b bdb bdE E

IES-17. A simply supported beam of rectangular section 4 cm by 6 cm carries a mid-
span concentrated load such that the 6 cm side lies parallel to line of action of 
loading; deflection under the load is . If the beam is now supported with the 4 
cm side parallel to line of action of loading, the deflection under the load will 
be: [IES-1993]

 (a) 0.44     (b) 0.67    (c) 1.5    (d) 2.25 
IES-17. Ans. (d) Use above explanation 

IES-18. A simply supported beam carrying a concentrated load W at mid-span deflects 
by 1 under the load. If the same beam carries the load W such that it is 
distributed uniformly over entire length and undergoes a deflection 2 at the 
mid span. The ratio 1: 2 is: [IES-1995; GATE-1994] 

 (a) 2: 1   (b) 2 : 1   (c) 1: 1    (d) 1: 2  

IES-18. Ans. (d) 
3

1
Wl
48EI

and

4
3

2

W5 l
5Wll

384EI 384EI
 Therefore 1: 2 = 5: 8 

Moment Area Method 
IES-19. Match List-I with List-II and select the correct answer using the codes given 

below the Lists: [IES-1997]
         List-I List-II  

A. Toughness 1. Moment area method 
B. Endurance strength 2. Hardness
C. Resistance to abrasion 3. Energy absorbed before fracture in 

a tension test 
D. Deflection in a beam 4. Fatigue loading 
Code: A B C D  A B C D 

  (a) 4 3 1 2 (b) 4 3 2 1 
  (c) 3 4 2 1 (d) 3 4 1 2 
IES-19. Ans. (c) 
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Previous 20-Years IAS Questions 

Slope and Deflection at a Section 
IAS-1. Which one of the following is represented by the area of the S.F diagram from 

one end upto a given location on the beam? [IAS-2004]
 (a) B.M. at the location    (b) Load at the location 
 (c) Slope at the location   (d) Deflection at the location 
IAS-1. Ans. (a) 

Double Integration Method 
IAS-2. Which one of the following is the correct statement? [IAS-2007] 

 If for a beam 0dM
dx

for its whole length, the beam is a cantilever: 

 (a) Free from any load  (b) Subjected to a concentrated load at its free end 
 (c) Subjected to an end moment (d) Subjected to a udl over its whole span 
IAS-2. Ans. (c) udl or point load both vary with x. But 

if we apply Bending Moment (M) = const. 

and 0dM
dx

IAS-3. In a cantilever beam, if the length is doubled while keeping the cross-section 
and the concentrated load acting at the free end the same, the deflection at the 
free end will increase by [IAS-1996] 

 (a) 2.66 times   (b) 3 times  (c) 6 times   (d) 8 times  
IAS-3. Ans. (d)  

33
3 2 2

1 1

LPL L 8
3EI L

Conjugate Beam Method 
IAS-4. By conjugate beam method, the slope at any section of an actual beam is equal 

to: [IAS-2002] 
 (a) EI times the S.F. of the conjugate beam (b) EI times the B.M. of the conjugate beam 
 (c) S.F. of conjugate beam (d) B.M. of the conjugate beam
IAS-4. Ans. (c) 

IAS-5. I = 375 × 10-6 m4; l = 0.5 m 
 E = 200 GPa 
 Determine the stiffness of the 

beam shown in the above figure
 (a) 12 × 1010 N/m
 (b) 10 × 1010 N/m 
 (c) 4 × 1010 N/m
 (d) 8 × 1010 N/m 

[IES-2002]
IAS-5. Ans. (c) Stiffness means required load for unit deformation. BMD of the given beam 
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 Loading diagram of conjugate beam 

 The deflection at the free end of the actual beam = BM of the at fixed point of conjugate 
beam

31 2 1 2 3
2 3 2 2 2 2 3 2

ML L WL L WL L WLy L L L L L
EI EI EI EI

 Or stiffness = 
9 6

10
3 3

2 200 10 375 102 4 10 /
3 3 0.5

W EI N m
y L
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Previous Conventional Questions with Answers 

Conventional Question GATE-1999 
Question: Consider the signboard mounting shown in figure below. The wind load 

acting perpendicular to the plane of the figure is F = 100 N. We wish to limit 
the deflection, due to bending, at point A of the hollow cylindrical pole of 
outer diameter 150 mm to 5 mm. Find the wall thickness for the pole. [Assume 
E = 2.0 X 1011 N/m2]

Answer: Given: F = 100 N; d0 = 150 mm, 0.15 my = 5 mm; E = 2.0 X 1O11 N/m2

 Thickness of pole, t 
 The system of signboard mounting can be considered as a cantilever loaded at A i.e. W 

= 100 N and also having anticlockwise moment of M = 100 x 1 = 100 Nm at the free 
end. Deflection of cantilever having concentrated load at the free end, 

3 2

3 3
3

11 11

3 3
6 4

3 11 11

WL MLy
3EI 2EI

100 5 100 55 10
3 2.0 10 I 2 2.0 10 I

1 100 5 100 5or I 5.417 10 m
5 10 3 2.0 10 2 2.0 10

4 4
0 i

6 4 4
i

But I d d
64

5.417 10 0.15 d
64

i

0 i

or d 0.141m or 141 mm
d d 150 141t 4.5mm

2 2

Conventional Question IES-2003 
Question: Find the slope and deflection at the free end of a cantilever beam of length 

6m as loaded shown in figure below, using method of superposition. Evaluate 
their numerical value using E = 200 GPa, I = 1×10-4 m4 and W = 1 kN. 
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Answer: We have to use superposition 

theory.
1st consider 

33

2 2

(3 ) 2 8
3 3

(3 ).2 6
2 2

c

c

WPL W
EI EI EI

PL W W
EI EI EI

1 c
8W 6 32 at A due to this load( ) = .(6 2) = 4
EIc

W WDeflection
EI EI

2

nd

3

B

2

2  consider:
2 4 128

3 3
(2 ) 4 16

2
 at A due to this load( )

224W               = (6 4)=
3EI

B

B B

W W
EI EI

W W
EI EI

Deflection

.

3

3

2

A

6 72( )
3

6 18    
2

rd3 consider :

A
W W

EI EI
W W

EI EI

1

3

A 9 4

2 3

3

9 4

Apply superpositioning formula

40 106 16 18 40=
200 10 10

32 224 72 40 563×W=
3 3EI

563×(10 )                        = 8.93 m m
3 (200 10 ) 10

B c
W W W W
EI EI EI EI

W W W W
EI EI EI EI

Conventional Question IES-2002 
Question: If two cantilever beams of identical dimensions but made of mild steel and 

grey cast iron are subjected to same point load at the free end, within elastic 
limit, which one will deflect more and why? 

Answer: Grey cost iron will deflect more. 

 We know that a cantilever beam of length 'L' end load 'P' will deflect at free end  

 ( ) = 
3

3
PL
EI
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Mild steel 

1

125   and E 200 Cast Iron

E
E GPa GPa

Conventional Question IES-1997 
Question: A uniform cantilever beam (EI = constant) of length L is carrying a 

concentrated load P at its free end. What would be its slope at the (i) Free end 
and (ii) Built in end 

Answer: (i) Free end, =
2PL

2EI
 (ii) Built-in end, 0

L

P
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 6.  Bending Stress in Beam 

Theory at a Glance (for IES, GATE, PSU)
6.1 Euler Bernoulli’s Equation or (Bending stress formula) or Bending 

Equation 

M E
y I R

Where     = Bending Stress  

               M = Bending Moment 
               I    = Moment of Inertia 
               E   = Modulus of elasticity  
               R  = Radius of curvature  
               y = Distance of the fibre from NA (Neutral axis) 

6.2 Assumptions in Simple Bending Theory 
All of the foregoing theory has been developed for the case of pure bending i.e. constant B.M along 
the length of the beam. In such case 

The shear force at each c/s is zero. 

Normal stress due to bending is only produced. 

Beams are initially straight 

The material is homogenous and isotropic i.e. it has a uniform composition and its 
mechanical properties are the same in all directions 

The stress-strain relationship is linear and elastic 

Young’s Modulus is the same in tension as in compression 

Sections are symmetrical about the plane of bending 

Sections which are plane before bending remain plane after bending 

6.3
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1
max t

Mc
I

   2
min c

Mc
I

   (Minimum in sense of sign) 

6.4 Section Modulus (Z) 

IZ = 
y

Z is a function of beam c/s only 

Z is other name of the strength of the beam 

The strength of the beam sections depends mainly on the section modulus 

The flexural formula may be written as, 
M
Z

Rectangular c/s of width is "b" & depth "h" with sides horizontal, Z =  
2

6
bh

Square beam with sides horizontal, Z = 
3

6
a

Square c/s with diagonal horizontal, Z = 
3

6 2
a

Circular c/s of diameter "d", Z =  
3

32
d
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A log diameter "d" is available. It is proposed to cut out a strongest beam 
from it. Then

                  Z =  
2 2( )
6

b d b

Therefore, Zmax =
3 dfor b = 

9 3
bd

6.5 Flexural Rigidity (EI)   
Reflects both  

Stiffness of the material (measured by E) 
Proportions of the c/s area (measured by I ) 

6.6 Axial Rigidity = EA 

6.7 Beam of uniform strength  
It is one is which the maximum bending stress is same in every section along the longitudinal axis. 

For it  2  bhM
Where b = Width of beam  
            h = Height of beam 

To make Beam of uniform strength the section of the beam may be varied by 
Keeping the width constant throughout the length and varying the depth, (Most widely used)
Keeping the depth constant throughout the length and varying the width 
By varying both width and depth suitably.  

6.8 Bending stress due to additional Axial thrust (P). 
A shaft may be subjected to a combined bending and axial thrust. This type of situation arises in 
various machine elements. 

If P = Axial thrust 

Then direct stress ( d ) = P / A (stress due to axial thrust) 

This direct stress ( d ) may be tensile or compressive depending upon the load P is tensile or 

compressive.  
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And the bending stress ( b ) = 
My
I

 is varying linearly from zero at centre and extremum (minimum 

or maximum) at top and bottom fibres.  

 If P is compressive then 

At top fibre   
P My
A I

         (compressive) 

At mid fibre    
P
A

    (compressive) 

At bottom fibre  
P
A

 – 
My
I

  (compressive) 

6.9 Load acting eccentrically to one axis 

max

P e yP
A I

 where ‘e’ is the eccentricity at which ‘P’ is act. 

min

P e yP
A I

 Condition for No tension in any section 

For no tension in any section, the eccentricity must not exceed 
22k

d

 [Where d = depth of the section; k = radius of gyration of c/s] 

For rectangular section (b x h) , 
6
he i.e load will be 2

3
he of the middle section. 

For circular section of diameter ‘d’ , 
8
de i.e. diameter of the kernel, 2

4
de

For hollow circular section of diameter ‘d’ , 
2 2

8
D de

D
i.e. diameter of the kernel, 

2 2

2 .
4

D de
D
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Bending equation 
GATE-1. A cantilever beam has the 

square cross section 10mm × 
10 mm. It carries a transverse 
load of 10 N. Considering only 
the bottom fibres of the beam, 
the correct representation of 
the longitudinal variation of 
the bending stress is:       [GATE-2005]

GATE-1. Ans. (a) x 4

10 x 0.005M MyM P.x or 60.(x) MPa
I y I 0.01

12
At x 0; 0
At x 1m; 60MPa

 And it is linear as x

GATE-2. Two beams, one having square cross section and another circular cross-section, 
are subjected to the same amount of bending moment. If the cross sectional 
area as well as the material of both the beams are the same then [GATE-2003]

 (a) Maximum bending stress developed in both the beams is the same 
 (b) The circular beam experiences more bending stress than the square one 
 (c) The square beam experiences more bending stress than the circular one 
 (d) As the material is same both the beams will experience same deformation 

GATE-2. Ans. (b) M E My; or ;
I y I

2
2

sq cir3 4 3 3 3
3

a dM M
6M 32M 4 M 22.27M d2 2; a

1 4a d d a aa.a
12 64

sq cir

Section Modulus 
GATE-3. Match the items in Columns I and II. [GATE-2006]

Column-I Column-II 
P. Addendum 1. Cam 
Q. Instantaneous centre of velocity 2. Beam Page 239 of 429
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R. Section modulus 3. Linkage 
S. Prime circle 4. Gear 

 (a) P – 4, Q – 2, R – 3, S – l (b) P – 4, Q – 3, R – 2, S – 1 
 (c) P – 3, Q – 2, R – 1, S – 4 (d) P – 3, Q – 4, R – 1, S – 2 
GATE-3. Ans. (b) 

Combined direct and bending stress 
GATE-4. For the component loaded with a force F as shown in the figure, the axial 

stress at the corner point P is: [GATE-2008]

 (a) 34
)3(

b
bLF

 (b) 34
)3(

b
bLF

 (c) 34
)43(

b
bLF

 (d) 34
)23(

b
bLF

GATE-4. Ans. (d) Total Stress = Direct stress + Stress due to Moment 

  = 2 3

( )
4 2 ( )

12

P My F F L b b
A I b b b

Previous 20-Years IES Questions 

Bending equation 
IES-1. Beam A is simply supported at its ends and carries udl of intensity w over its 

entire length. It is made of steel having Young's modulus E. Beam B is 
cantilever and carries a udl of intensity w/4 over its entire length. It is made of 
brass having Young's modulus E/2. The two beams are of same length and have 
same cross-sectional area. If A and B denote the maximum bending stresses 
developed in beams A and B, respectively, then which one of the following is 
correct? [IES-2005] 

 (a) A/ B     (b) A/ B < 1.0 
 (c) A/ B > 1.0    (d) A/ B depends on the shape of cross-section 

IES-1. Ans. (d) Bending stress My , y and I both depends on the
I

A

B

Shape of cross sec tion so depends on the shape of cross sec tion

IES-2. If the area of cross-section of a circular section beam is made four times, 
keeping the loads, length, support conditions and material of the beam 
unchanged, then the qualities (List-I) will change through different factors 
(List-II). Match the List-I with the List-II and select the correct answer using 
the code given below the Lists: [IES-2005]
List-I List-II 
A. Maximum BM  1. 8 
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B. Deflection 2. 1 
C. Bending Stress 3. 1/8 
D. Section Modulus 4. 1/16 
Codes: A B C  D  A B  C  D 

  (a)  3  1  2  4  (b)  2  4  3  1 
  (c)  3  4  2  1  (d)  2  1  3  4 
IES-2. Ans. (b) Diameter will be double, D = 2d. 
  A. Maximum BM will be unaffected  

  B. deflection ratio 
4

1

2

EI d 1
EI 4 16

  C. Bending stress  
3

2
4

1

M d / 2My d 1or Bending stress ratio
I D 8d

64

  D. Selection Modulus ratio
3

2 2 1

1 1 1

Z I y D 8
Z y I d

IES-3. Consider the following statements in case of beams: [IES-2002] 
 1. Rate of change of shear force is equal to the rate of loading at a particular 

section 
 2. Rate of change of bending moment is equal to the shear force at a 

particular suction. 
 3. Maximum shear force in a beam occurs at a point where bending moment 

is either zero or bending moment changes sign 
Which of the above statements are correct? 

 (a) 1 alone    (b) 2 alone  (c) 1 and 2   (d) 1, 2 and 3 
IES-3. Ans. (c) 

IES-4. Match List-I with List-II and select the correct answer using the code given 
below the Lists: [IES-2006]
List-I (State of Stress)   List-II (Kind of Loading) 

1. Combined bending and torsion of circular 
shaft

2. Torsion of circular shaft 

3. Thin cylinder subjected to internal 
pressure

4. Tie bar subjected to tensile force 

 Codes: A  B  C  D   A  B  C  D 
  (a)  2 1  3  4  (b)  3  4  2  1 
  (c)  2  4  3  1  (d)  3  1  2  4 
IES-4. Ans. (c) 
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Section Modulus 
IES-5. Two beams of equal cross-sectional area are subjected to equal bending 

moment. If one beam has square cross-section and the other has circular 
section, then [IES-1999]

 (a) Both beams will be equally strong 
 (b) Circular section beam will be stronger 
 (c) Square section beam will be stronger 
 (d) The strength of the beam will depend on the nature of loading 

IES-5. Ans. (b) If D is diameter of circle and 'a' the side of square section, 2 2 4
4
d a or d a

  Z for circular section = 
2 3 3

; and Z for square section =
32 64
d a a

IES-6. A beam cross-section is used in 
two different orientations as 
shown in the given figure:  

 Bending moments applied to the 
beam in both cases are same. The 
maximum bending stresses 
induced in cases (A) and (B) are 
related as: 

 (a) 4A B          (b) 2A B

 (c) 
2
B

A           (d) 
4
B

A [IES-1997]

IES-6. Ans. (b) Z for rectangular section is 
2

6
bd

,

2

2
3 32 2,

6 24 6 12A B

b bb bb bZ Z

3 3

. . , 2
24 12A A B B A B A B
b bM Z Z or or

IES-7. A horizontal beam with square cross-section is simply supported with sides of 
the square horizontal and vertical and carries a distributed loading that 
produces maximum bending stress a in the beam. When the beam is placed 
with one of the diagonals horizontal the maximum bending stress will be: 

[IES-1993]
1(a) (b) (c) 2 (d) 2
2

IES-7. Ans. (c) Bending stress = 
M
Z

 For rectangular beam with sides horizontal and vertical, Z = 
3

6
a

 For same section with diagonal horizontal, Z =
3

6 2
a

        

 Ratio of two stresses = 2
IES-8. Which one of the following combinations of angles will carry the maximum 

load as a column? [IES-1994]
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IES-8. Ans. (a) 

IES-9. Assertion (A): For structures steel I-beams preferred to other shapes. [IES-1992]
Reason (R): In I-beams a large portion of their cross-section is located far from 
the neutral axis. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-9. Ans. (a) 

Combined direct and bending stress 
IES-10. Assertion (A): A column subjected to eccentric load will have its stress at 

centroid independent of the eccentricity. [IES-1994]
Reason (R): Eccentric loads in columns produce torsion. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-10. Ans. (c) A is true and R is false. 
IES-11. For the configuration of loading shown in the given figure, the stress in fibre 

AB is given by: [IES-1995] 

 (a) P/A (tensile)    (b) 
. .5

xx

P P e
A I

(Compressive) 

 (c) 
. .5

xx

P P e
A I

(Compressive)  (d) P/A (Compressive) 

IES-11. Ans. (b) (compressive), (tensile)d x
x x

P My Pky
A I I
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IES-12. A column of square section 40 mm × 40 

mm, fixed to the ground carries an 
eccentric load P of 1600 N as shown in 
the figure. 

 If the stress developed along the edge 
CD is –1.2 N/mm2, the stress along the 
edge AB will be: 

 (a) –1.2 N/mm2

 (b) +1 N/mm2    
 (c) +0.8 N/mm2   
 (d) –0.8 N/mm2

[IES-1999]

IES-12. Ans. (d) Compressive stress at CD = 1.2 N/mm2 = 
6 1600 61 1

1600 20
P e e
A b

26 1600or 0.2. Sostressat 1 0.2 0.8 N/mm (com)
20 1600
e AB

IES-13. A short column of symmetric cross-
section made of a brittle material is 
subjected to an eccentric vertical load P 
at an eccentricity e. To avoid tensile 
stress in the short column, the 
eccentricity e should be less than or equal 
to:

 (a) h/12 (b) h/6   
 (c) h/3   (d) h/2 

[IES-2001]
IES-13. Ans. (b) 

IES-14. A short column of external diameter D and internal diameter d carries an 
eccentric load W. Toe greatest eccentricity which the load can have without 
producing tension on the cross-section of the column would be: [IES-1999]

2 2 2 2 2 2

(a) (b) (c) (d)
8 8 8 8

D d D d D d D d
d D

IES-14. Ans. (c) 
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Previous 20-Years IAS Questions 

Bending equation 
IAS-1. Consider the cantilever loaded as shown below: [IAS-2004]

 What is the ratio of the maximum compressive to the maximum tensile stress? 
 (a) 1.0    (b) 2.0   (c) 2.5    (d) 3.0 

IAS-1. Ans. (b) = compressive, Max
2 at lower end of A.
3

My M h
I I

    tensile, max = at upper end of
3

M h B
I

IAS-2. A 0.2 mm thick tape goes over a frictionless pulley of 25 mm diameter. If E of 
the material is 100 GPa, then the maximum stress induced in the tape is: 

[IAS 1994]
(a) 100 MPa  (b) 200 MPa  (c) 400 MPa  (d) 800 MPa 

IAS-2. Ans. (d)
R
E

y
 Here y = 1.0

2
2.0

 mm = 0.1 x 10-3 m, R = 
2
25

mm = 12.5 x 10-3 m

  or 3

33

105.12
101.010100

MPa = 800MPa 

Section Modulus 
IAS-3. A pipe of external diameter 3 cm and internal diameter 2 cm and of length 4 m 

is supported at its ends. It carries a point load of 65 N at its centre. The 
sectional modulus of the pipe will be: [IAS-2002] Page 245 of 429
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 (a) 365
64
cm   (b) 365

32
cm    (c) 365

96
cm   (d) 365

128
cm

IAS-3. Ans. (c)

4 4

3
3 2

64Section modulus (z) cm3
2

I
y

365
96
cm

IAS-4. A Cantilever beam of rectangular cross-section is 1m deep and 0.6 m thick. If 
the beam were to be 0.6 m deep and 1m thick, then the beam would. [IAS-1999] 

 (a) Be weakened 0.5 times 
 (b) Be weakened 0.6 times 
 (c) Be strengthened 0.6 times  
 (d) Have the same strength as the original beam because the cross-sectional area 

remains the same 

IAS-4. Ans. (b) 
3

3
1

I 0.6 1z 1.2m
y 0.5

3
3

2
I 1 0.6and z 0.72m
y 0.3

2

1

z 0.72 0.6 times
z 1.2

IAS-5. A T-beam shown in the given figure is 
subjected to a bending moment such that 
plastic hinge forms. The distance of the 
neutral axis from D is (all dimensions are 
in mm)  

 (a) Zero  
 (b) 109 mm  
 (c) 125 mm  
 (d) 170 mm  

[IAS-2001]
IAS-5. Ans. (b) 

IAS-6. Assertion (A): I, T and channel sections are preferred for beams. [IAS-2000] 
Reason(R): A beam cross-section should be such that the greatest possible 
amount of area is as far away from the neutral axis as possible.  

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-6. Ans. (a) Because it will increase area moment of inertia, i.e. strength of the beam. Page 246 of 429
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IAS-7. If the T-beam cross-section 
shown in the given figure has 
bending stress of 30 MPa in the 
top fiber, then the stress in the 
bottom fiber would be (G is 
centroid)  

 (a) Zero 
 (b) 30 MPa 
 (c) –80 MPa 
 (d) 50 Mpa 

[IAS-2000]

IAS-7. Ans. (c)
1 1

1 2 1
2 2

2

30110 30 80
30

M or y MPa
I y y y

  As top fibre in tension so bottom fibre will be in compression.  
IAS-8. Assertion (A): A square section is more economical in bending than the circular 

section of same area of cross-section. [IAS-1999]
Reason (R): The modulus of the square section is less than of circular section of 
same area of cross-section. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-8. ans. (c) 

Bimetallic Strip 
IAS-9. A straight bimetallic strip of copper and steel is heated. It is free at ends. The 

strip, will: [IAS-2002] 
 (a) Expand and remain straight   (b) Will not expand but will bend 
 (c) Will expand and bend also   (d) Twist only
IAS-9. Ans. (c) As expansion of copper will be more than steel. 

Combined direct and bending stress 
IAS-10. A short vertical column having a 

square cross-section is subjected to 
an axial compressive force, centre 
of pressure of which passes 
through point R as shown in the 
above figure. Maximum 
compressive stress occurs at point 

 (a) S   
 (b) Q 
 (c) R 
 (d) P 

[IAS-2002]
IAS-10. Ans. (a) As direct and bending both the stress is compressive here.  

IAS-11. A strut's cross-sectional area A is subjected to load P a point S (h, k) as shown 
in the given figure. The stress at the point Q (x, y) is: [IAS-2000]
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  (a) 
x y

P Phy Pkx
A I I

 (b) 
y x

P Phx Pky
A I I

 (c) 
y x

P Phy Pkx
A I I

 (d) 
y x

P Phx Pky
A I I

IAS-11. Ans. (b) All stress are compressive, direct stress,  

(compressive), (compressive)d x
x x

P My Pky
A I I

and (compressive)y
y y

Mx Phx
I I
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Previous Conventional Questions with Answers 

Conventional Question IES-2008 
Question: A Simply supported beam AB of span length 4 m supports a uniformly 

distributed load of intensity q = 4 kN/m spread over the entire span and a 
concentrated load P = 2 kN placed at a distance of 1.5 m from left end A. The 
beam is constructed of a rectangular cross-section with width b = 10 cm and 
depth d = 20 cm. Determine the maximum tensile and compressive stresses 
developed in the beam to bending. 

Answer:

A
B

R
A R

B

X

1.5

4m

2KN
4kN/M

X

C/s

B=10cm

NA

A BR + R = 2 + 4×4.........(i)

A-R ×4 + 2×(4-1.5) + (4×4)×2=0.......(ii)

A B Aor R = 9.25 kN, R =18-R = 8.75 kN

if 0 x 2.5 m

x B
x     M =R ×x - 4x. -2(x-2.5)2

2 2=8.75x - 2x  - 2x + 5 = 6.75x - 2x  + 5      ...(ii)

From (i) & (ii) we find out that bending movment at x = 2.1875 m in(i)
gives maximum bending movement

2
max

dM[Just find  for both the casses]
dx

M 8.25 2.1875 2 1875 9.57 7K kNm

 Area movement of Inertia (I) = 
3 3

5 40.1 0.2 6.6667 10
12 12
bh m

Maximum distance from NA is y = 10 cm = 0.1m
3

2max 5

(9.57 10 ) 0.1 14.355
6.6667 10

My N MPamI
 Therefore maximum tensile stress in the lowest point in the beam is 14.355 MPa and 

maximum compressive stress in the topmost fiber of the beam is -14.355 MPa. 

Conventional Question IES-2007 
Question: A simply supported beam made of rolled steel joist (I-section: 450mm × 

200mm) has a span of 5 m and it carriers a central concentrated load W. The 
flanges are strengthened by two 300mm × 20mm plates, one riveted to each 
flange over the entire length of the flanges. The second moment of area of the 
joist about the principal bending axis is 35060 cm4. Calculate  Page 249 of 429
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 (i) The greatest central load the beam will carry if the bending stress in the 

300mm/20mm plates is not to exceed 125 MPa. 
 (ii) The minimum length of the 300 mm plates required to restrict the 

maximum bending stress is the flanges of the joist to 125 MPa. 
Answer:

 Moment of Inertia of the total section about X-X  
 (I) = moment of inertia of I –section + moment of inertia of the plates about X-X axis. 

2330 2 45 235060 2 30 2
12 2 2

4101370 cm

6 8

(i) Greatest central point load(W):
For a simply supported beam a concentrated load at centre.

WL 5M = 1.25
4 4

125 10 101370 10. 517194
0.245

 1.25W = 517194 or W = 413.76 kN

W W

IM Nm
y

 (ii) Suppose the cover plates are absent for a distance of x-meters from each support. 
Then at these points the bending moment must not exceed moment of resistance of 
‘I’ section alone i.e 

8
6

35060 10. 125 10 178878
0.245

I Nm
y

 moment at x metres from each support Bending

Page 250 of 429



Chapter-6 Bending Stress in Beam S K Mondal’s 
W= 178878
2
41760, 178878

2
 0.86464

 leaving 0.86464 m from each support, for the
middle 5 - 2×0.86464 = 3.27 m the cover plate should be
provided.

x

or x

or x m
Hence

Conventional Question IES-2002
Question: A beam of rectangular cross-section 50 mm wide and 100 mm deep is simply 

supported over a span of 1500 mm. It carries a concentrated load of 50 kN, 500 
mm from the left support. 

Calculate: (i) The maximum tensile stress in the beam and indicate where it occurs: 
 (ii) The vertical deflection of the beam at  a point 500 mm from the right 

support. E for the material of the beam = 2 × 105 MPa.
Answer: Taking moment about L

RR 1500 50 500
, 16.667
, 50

50 16.667=33.333 kN

R

L R

L

or R kN
or R R

R
Take a section from right R, 
x-xat a distance x.

xBending moment (M ) .RR x

 Therefore maximum bending moment will occur at 'c' Mmax=16.667×1 KNm 
 (i) Moment of Inertia of beam cross-section 

33
4 6 40.050 (0.100)( ) = 4.1667×10

12 12
bhI m m

3

2
max 6

Applying bending equation
0.00116.67 10

M 2or, / 200MPa
I 4.1667 10

E My N m
y I

It will occure where M is maximum at point 'C'

2

x 2

(ii) Macaulay's method for determing the deflection
of the beam will be convenient as there is point load.

  M 33.333 50 ( 0.5)d yEI x x
dx
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2 2
2

1 22

2

3 3
1

1

Integrate both side we get
d 50           EI 33.333 ( 0.5)

2 2
 x=0, y=0 gives c 0
 x=1.5, y=0 gives 

0=5.556×(1.5) 8.333 1 1.5
, 6.945

y x x c x c
dx

at
at

c
or c

3 3

5 6 6

5.556 8.333( 0.5) 6.945 1 2.43

2.43, m  = -2.9167 mm[downward so -ive]
(2×10 10 ) (4.1667 10 ) 

EIy x x

or y

Conventional Question AMIE-1997
Question: If the beam cross-section is rectangular having a width of 75 mm, determine 

the required depth such that maximum bending stress induced in the beam 
does not exceed 40 MN/m2

Answer: Given: b =75 mm =0·075 m, max  =40 MN/m2

 Depth of the beam, d: Figure below shows a rectangular section of width b = 0·075 m 
and depth d metres. The bending is considered to take place about the horizontal 
neutral axis N.A. shown in the figure. The maximum bending stress occurs at the outer 

fibres of the rectangular section at a distance d
2

 above or below the neutral axis. Any 

fibre at a distance y from N.A. is subjected to a bending stress, My
I

, where I 

denotes the second moment of area of the rectangular section about the N.A. i.e.
3bd

12
.

 At the outer fibres, y = d
2

 , the maximum bending stress there becomes 

max 3 2

2

max

dM
M2 i

bd bd
12 6
bdor M . (ii)
6

 For the condition of maximum strength i.e. maximum moment M, the product bd2 must 
be a maximum, since max is constant for a given material. To maximize the quantity 
bd2 we realise that it must be expressed in terms of one independent variable, say, b, 
and we may do this from the right angle triangle relationship. 
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2 2 2

2 2 2

b d D
or d D b

 Multiplying both sides by b, we get 2 2 3bd bD b
 To maximize bd2 we take the first derivative of expression with respect to b and set it 

equal to zero, as follows: 
2 2 3 2 2 2 2 2 2 2d dbd bD b D 3b b d 3b d 2b 0

db db
 Solving, we have, depth d 2  b   ...(iii) 
 This is the desired radio in order that the beam will carry a maximum moment M. 
 It is to be noted that the expression appearing in the denominator of the right side of 

eqn. (i) i. e. 
2bd

6
is the section modulus (Z) of a rectangular bar. Thus, it follows; the 

section modulus is actually the quantity to be maximized for greatest strength of the 
beam.

 Using the relation (iii), we have 
 d = 2 x 0·075 = 0·0106 m 

 Now, M = max  x Z = max x
2bd

6
 Substituting the values, we get 

 M = 40 × 
20.075 0.106

6
 = 0.005618 MNm 

2
max

M 0.005618 40MN / m
Z 0.075 0.106 2 / 6

 Hence, the required depth d = 0·106 m = 106 mm 
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 7.  Shear Stress in Beam 

Theory at a Glance (for IES, GATE, PSU)
1. Shear stress in bending ( )

  = 
vQ
Ib

Where, V = Shear force =  
dM
dx

 Q = Statical moment =  
1

1

c

y

ydA

 I = Moment of inertia  
 b = Width of beam c/s.

2. Statical Moment (Q) 

 Q=
1

1

c

y

ydA= Shaded Area × distance of the centroid of the shaded area from the neutral axis of 

the c/s. 

3.  Variation of shear stress
Section Diagram Position of 

max

max

Rectangular  N.A
max =

3
2
V
A

max 1.5 mean

           NA

Circular N.A

max
4
3 mean
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Triangular

6
h

 from N.A max 1.5 mean

NA  = 1.33 mean

Trapezoidal 

6
h

 from N.A 

Section  Diagram 
max

Uni form 
I-Section  

In Flange, 

( max )
2

1
1

2 1
max

2 8
h

hy

V h
I

1 2
max hy

o

In Web

1

2 2 2
max 1 1 1( )

8y o

v b h h th
It

1

22
1m 1

2 8
him y

vb h h
It

4. Variation of shear stress for some more section [Asked in different examinations] 
Non uniform I-Section Diagonally placed square section 

L-section Hollow circle 

T-section Cross 
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5. Rectangular section 

Maximum shear stress for rectangular beam: max =
3
2
V
A

For this, A is the area of the entire cross section 

Maximum shear occurs at the neutral axis 

Shear is zero at the top and bottom of beam 

6. Shear stress in beams of thin walled profile section. 
Shear stress at any point in the wall distance "s" from the free edge 

B

Shearing occurs here

A

Vx

O

        force 
             = Thickness of the section 
           I   = Moment of inrertia about NA

s
x

o

x

V ydA
It

where V Shear

Shear Flow (q)

               q  = 

s
x

NA o

Vt ydA
I

Shear Force (F)               
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F= qds

Shear Centre (e) 
 Point of application of shear stress resultant 
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions 

Shear Stress Variation 
GATE-1. The transverse shear stress acting 

in a beam of rectangular cross-
section, subjected to a transverse 
shear load, is: 

 (a) Variable with maximum at the 
bottom of the beam  

 (b) Variable with maximum at the 
top of the beam  

 (c) Uniform  
 (d) Variable with maximum on the 

neutral axis  

[IES-1995, GATE-2008]

GATE-1. Ans (d) mean2
3

max

GATE-2. The ratio of average shear stress to the maximum shear stress in a beam with a 
square cross-section is: [GATE-1994, 1998]

2 3(a) 1 (b) (c) (d) 2
3 2

GATE-2. Ans. (b) 

max mean
3
2

Previous 20-Years IES Questions 

Shear Stress Variation 
IES-1. At a section of a beam, shear force is F with zero BM. The cross-section is 

square with side a. Point A lies on neutral axis and point B is mid way between 
neutral axis and top edge, i.e. at distance a/4 above the neutral axis. If A and 

B denote shear stresses at points A and B, then what is the value of A / B?
[IES-2005]

 (a) 0    (b) ¾   (c) 4/3    (d) None of above 

IES-1. Ans. (c)

2
2 2

3
2 2 A

4 3 2
B 2

3

a a 3 VV y .a2 4VAy 3 V 42 aa 4y or
Ib 2 3a a 3 V aa . . a 412 2 4aPage 258 of 429
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IES-2. A wooden beam of rectangular cross-section 10 cm deep by 5 cm wide carries 
maximum shear force of 2000 kg. Shear stress at neutral axis of the beam 
section is: [IES-1997] 

 (a) Zero   (b) 40 kgf/cm2   (c) 60 kgf/cm2   (d) 80 kgf/cm2

IES-2. Ans. (c) Shear stress at neutral axis = 23 3 2000 60kg/cm
2 2 10 5

F
bd

IES-3. In case of a beam of circular cross-section subjected to transverse loading, the 
maximum shear stress developed in the beam is greater than the average shear 
stress by: [IES-2006; 2008] 

 (a) 50%   (b) 33%   (c) 25%   (d) 10% 
IES-3. Ans. (b) In the case of beams with circular cross-section, the ratio of the maximum shear 

stress to average shear stress 4:3

IES-4. What is the nature of distribution of shear stress in a rectangular beam? 
[IES-1993, 2004; 2008] 

 (a) Linear   (b) Parabolic     (c) Hyperbolic    (d) Elliptic 
IES-4. Ans. (b) 

2
2
1

V h y
4I 4

 indicating a parabolic distribution of shear stress across the cross-

section.

IES-5. Which one of the following statements is correct? [IES 2007] 
 When a rectangular section beam is loaded transversely along the length, shear 

stress develops on
 (a) Top fibre of rectangular beam    (b) Middle fibre of rectangular beam 
 (c) Bottom fibre of rectangular beam  (d) Every horizontal plane 
IES-5. Ans. (b) 

IES-6. A beam having rectangular cross-section is subjected to an external loading. 
The average shear stress developed due to the external loading at a particular Page 259 of 429
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cross-section is avgt . What is the maximum shear stress developed at the same 

cross-section due to the same loading? [IES-2009] 

 (a) 
1
2 avgt                         (b) avgt                         (c) 

3
2 avgt                       (d) 2 avgt

IES-6. Ans. (c) 

 Shear stress in a rectangular 
beam, maximum shear stress, 

max (average)
3F 1.5

2b. h

Shear stress in a circular beam, the 
maximum shear stress, 

max (average)
2

4F 4
33 d

4

IES-7. The transverse shear stress 
acting in a beam of rectangular 
cross-section, subjected to a 
transverse shear load, is: 

 (a) Variable with maximum at the 
bottom of the beam  

 (b) Variable with maximum at the 
top of the beam  

 (c) Uniform  
 (d) Variable with maximum on the 

neutral axis 

[IES-1995, GATE-2008]

IES-7. Ans (d) mean2
3

max

IES-8.

 A cantilever is loaded by a concentrated load P at the free end as shown. The 
shear stress in the element LMNOPQRS is under consideration. Which of the 
following figures represents the shear stress directions in the cantilever? 

[IES-2002]
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IES-8. Ans. (d) 

IES-9. In I-Section of a beam subjected to transverse shear force, the maximum shear 
stress is developed. [IES- 2008]

 (a) At the centre of the web    (b) At the top edge of the top flange 
 (c) At the bottom edge of the top flange   (d) None of the above 
IES-9. Ans. (a) 

IES-10. The given figure (all 
dimensions are in mm) shows 
an I-Section of the beam. The 
shear stress at point P (very 
close to the bottom of the 
flange) is 12 MPa. The stress at 
point Q in the web (very close 
to the flange) is: 

 (a) Indeterminable due to 
incomplete data 

 (b) 60MPa 
 (c) 18 MPa    
 (d) 12 MPa 

[IES-2001]
IES-10. Ans. (b) 
IES-11. Assertion (A): In an I-Section beam subjected to concentrated loads, the 

shearing force at any section of the beam is resisted mainly by the web portion. 
Reason (R): Average value of the shearing stress in the web is equal to the 
value of shearing stress in the flange. [IES-1995] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-11. Ans. (c)  

Shear stress distribution for different section 
IES-12. The shear stress distribution over a beam cross-

section is shown in the figure above. The beam is of 
 (a) Equal flange I-Section 
 (b) Unequal flange I-Section 
 (c) Circular cross-section 
 (d) T-section 

[IES-2003]
IES-12. Ans. (b) 
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Previous 20-Years IAS Questions 

Shear Stress Variation 
IAS-1. Consider the following statements: [IAS-2007] 
 Two beams of identical cross-section but of different materials carry same 

bending moment at a particular section, then 
1. The maximum bending stress at that section in the two beams will be 

same. 
 2. The maximum shearing stress at that section in the two beams will be 

same. 
 3. Maximum bending stress at that section will depend upon the elastic 

modulus of the beam material. 
 4. Curvature of the beam having greater value of E will be larger. 
 Which of the statements given above are correct? 
 (a) 1 and 2 only (b) 1, 3 and 4  (c) 1, 2 and 3  (d) 2, 3 and 4  

IAS-1. Ans. (a) Bending stress =
My
I

 and shear stress ( ) =
VAy
Ib

both of them does not depends 

on material of beam. 

IAS-2. In a loaded beam under bending [IAS-2003]
 (a) Both the maximum normal and the maximum shear stresses occur at the skin 

fibres 
 (b) Both the maximum normal and the maximum shear stresses occur the neutral axis 
 (c) The maximum normal stress occurs at the skin fibres while the maximum shear 

stress occurs at the neutral axis 
 (d) The maximum normal stress occurs at the neutral axis while the maximum shear 

stress occurs at the skin fibres 
IAS-2. Ans. (c) 

2
2
1

V h y
4I 4

 indicating a parabolic distribution of shear stress across the cross-

section.

Shear stress distribution for different section 
IAS-3. Select the correct shear stress distribution diagram for a square beam with a 

diagonal in a vertical position: [IAS-2002]
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IAS-3. Ans. (d) 

IAS-4. The distribution of shear stress of a beam is shown in the given figure. The 
cross-section of the beam is: [IAS-2000] 

IAS-4. Ans. (b) 
IAS-5. A channel-section of the beam shown in the given figure carries a uniformly 

distributed load. [IAS-2000] 

Assertion (A): The line of action of the load passes through the centroid of the 
cross-section. The beam twists besides bending.  

 Reason (R): Twisting occurs since the line of action of the load does not pass 
through the web of the beam. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
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 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-5. Ans. (c) Twisting occurs since the line of action of the load does not pass through the shear. 
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Previous Conventional Questions with Answers 

Conventional Question IES-2009 
Q.  (i)A cantilever of circular solid cross-section is fixed at one end and carries a 

concentrated load P at the free end. The diameter at the free end is 200 mm 
and increases uniformly to 400 mm at the fixed end over a length of 2 m. At 
what distance from the free end will the bending stresses in the cantilever be 
maximum? Also calculate the value of the maximum bending stress if the 
concentrated load P = 30 kN        [15-Marks]  

Ans.  We have M       .... (i)
y I

   Taking distance x from the free end we have  

    

3

4

M = 30x kN.m = 30x × 10  N.m
xy = 100 +  200 100
2

100 50x mm
dand  I = 
64

  Let d be the diameter at x from free end. 

    

4

4
4

400 200
200 x

2
64

200 100x
 mm

64
   From equation (i), we have 

   

3

3

4 12

3 12

100 50x 10

30x 10

200 100x 10
64

960x 200 100x 10     ...... (ii)

    

3 12960x 200 100x 10

dFor max ,  0
dx

    
1210 960

    4 3x 3 100 200 100x 1. 200 100x 0

    
 - 300x + 200 + 100x = 0
 x = 1m  
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30kN

2000mm
(2m)

200

400

 Hence maximum bending stress occurs at the midway and from equation (ii), maximum 
bending stress 

3 12

12

3

960 1 200 100 10

960 10 11.32 MPa
300

Conventional Question IES-2006 
Question: A timber beam 15 cm wide and 20 cm deep carries uniformly distributed load 

over a span of 4 m and is simply supported. 
 If the permissible stresses are 30 N/mm2 longitudinally and 3 N/mm2

transverse shear, calculate the maximum load which can be carried by the 
timber beam. 

N
m

ω

20cmN/A

Answer:
33

4 40.15 0.20
Moment of inertia (I) 10 m

12 12
bh

2 2

20Distance of neutral axis from the top surface  10cm  0.1 m
2

We know that  or   

Where maximum bending moment due to uniformly
4distributed load in simply supported beam ( ) 2

8 8
Cons

y

M My
I y I

M

6
4

idering longitudinal stress
2 0.1

30 10
10

or, 15 kN/m
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mean

max

6

Now consideng Shear 
. .4Maximum shear force 2
2 2

2Therefore average shear stress ( ) 66.67
0.15 0.2

For rectangular cross-section
3 3Maximum shear stress( ) . 66.67 100
2 2

Now 3 10 100 ;

L

30 kN/m
So maximum load carring capacity of the beam = 15 kN/m (without fail).
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 8.  Fixed and Continuous Beam 

Theory at a Glance (for IES, GATE, PSU)
What is a beam? 
A (usually) horizontal structural member that is subjected to a load that tends to bend it. 

Types of Beams 

Simply supported beam Cantilever beam

Simply Supported Beams Cantilever Beam

Continuous Beam 
Single Overhang Beam

Double Overhang Beam Single Overhang Beam with internal hinge

Fixed Beam Continuous beam

Continuous beams 
Beams placed on more than 2 supports are called continuous beams. Continuous beams are used 
when the span of the beam is very large, deflection under each rigid support will be equal zero. 

Analysis of Continuous Beams 
(Using 3-moment equation) 

Stability of structure 

If the equilibrium and geometry of structure is maintained under the action of forces than the 

structure is said to be stable. 
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External stability of the structure is provided by the reaction at the supports. Internal stability is 

provided by proper design and geometry of the member of the structure. 

Statically determinate and indeterminate structures 

Beams for which reaction forces and internal forces can be found out from static equilibrium 

equations alone are called statically determinate beam. 

Example:

R
A

R
B

P

i A .0, 0 and M 0  is sufficient to calculate R &i i BX Y R

Beams for which reaction forces and internal forces cannot be found out from static equilibrium 

equations alone are called statically indeterminate beam. This type of beam requires deformation 

equation in addition to static equilibrium equations to solve for unknown forces. 

Example:

RA RB Rc
RD

P P
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Advantages of fixed ends or fixed supports 
Slope at the ends is zero. 

Fixed beams are stiffer, stronger and more stable than SSB. 

In case of fixed beams, fixed end moments will reduce the BM in each section. 

The maximum deflection is reduced. 

Bending moment diagram for fixed beam
Example:

BMD for Continuous beams 
BMD for continuous beams can be obtained by superimposing the fixed end moments diagram over 
the free bending moment diagram. 
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Three - moment Equation for continuous beams OR 
Clapeyron’s Three Moment Equation
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years IES Questions 

Overhanging Beam 
IES-1. An overhanging beam ABC is supported at points A and B, as shown in the 

above figure. Find the maximum bending moment and the point where it 
occurs. [IES-2009] 

 (a) 6 kN-m at the right support 
 (b) 6 kN-m at the left support 
 (c) 4.5 kN-m at the right support 
 (d) 4.5 kN-m at the midpoint 

between the supports

IES-1. Ans. (a) Taking moment about A 

B

B

B

A B

A

V 2 = 2 1 6 3
2V 2 18

V 10 kN
V V 2 6 8kN

V 8 10 2 kN
 Maximum Bending Moment = 

6 kN-m at the right support 

IES-2. A beam of length 4 L is simply supported on two supports with equal overhangs 
of L on either sides and carries three equal loads, one each at free ends and the 
third at the mid-span. Which one of the following diagrams represents correct 
distribution of shearing force on the beam? [IES-2004] 

IES-2. Ans. (d)  
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 They use opposite sign conversions but for correct sign remember S.F & B.M of cantilever 
is (-) ive.  

IES-3. A horizontal beam carrying 
uniformly distributed load is 
supported with equal 
overhangs as shown in the 
given figure 

 The resultant bending moment at the mid-span shall be zero if a/b is: [IES-2001]
 (a) 3/4    (b) 2/3    (c) 1/2    (d) 1/3 
IES-3. Ans. (c) 

Previous 20-Years IAS Questions 

Overhanging Beam 
IAS-1.

 If the beam shown in the given figure is to have zero bending moment at its 
middle point, the overhang x should be: [IAS-2000]

 (a) 2 / 4wl P   (b) 2 / 6wl P   (c) 2 / 8wl P   (d) 2 /12wl P

IAS-1. Ans. (c)
2c D
wlR R P

 Bending moment at mid point (M) = 
2

0
2 4 2 2 8D
wl l l l wlR P x gives x

P

IAS-2. A beam carrying a uniformly distributed load rests on two supports 'b' apart 
with equal overhangs 'a' at each end. The ratio b/a for zero bending moment at 
mid-span is: [IAS-1997] 

 (a) 
1
2

    (b)  1   (c) 
3
2

   (d) 2 
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IAS-2. Ans. (d) 

 (i) By similarity in the B.M diagram a must be b/2 

 (ii) By formula 
2

2bM a 0
2 4

gives a = b/2 

IAS-3. A beam carries a uniformly distributed load and is supported with two equal 
overhangs as shown in figure 'A'. Which one of the following correctly shows 
the bending moment diagram of the beam? [IAS 1994]

IAS-3. Ans. (a) 
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Previous Conventional Questions with Answers 

Conventional Question IES-2006 
Question: What are statically determinate and in determinate beams? Illustrate each 

case through examples. 
Answer: Beams for which reaction forces and internal forces can be found out from static 

equilibrium equations alone are called statically determinate beam. 
Example:   

                                              R
A

R
B

P

i

A .

0, 0 and M 0  is sufficient 

to calculate R &
i i

B

X Y

R

 Beams for which reaction forces and internal forces cannot be found out from static 
equilibrium equations alone are called statically indeterminate beam. This type of 
beam requires deformation equation in addition to static equilibrium equations to solve 
for unknown forces. 

Example: 

RA RB Rc
RD

P P
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 9.   Torsion 

Theory at a Glance (for IES, GATE, PSU)  
• In machinery, the general term “shaft” refers to a member, usually of circular cross-

section, which supports gears, sprockets, wheels, rotors, etc., and which is subjected to 

torsion and to transverse or axial loads acting singly or in combination. 

• An “axle” is a rotating/non-rotating member that supports wheels, pulleys,… and 

carries no torque. 

• A “spindle” is a short shaft. Terms such as lineshaft, headshaft, stub shaft, transmission 

shaft, countershaft, and flexible shaft are names associated with special usage. 

 

Torsion of circular shafts  

1. Equation for shafts subjected to torsion "T" 

T G=  =
J L

τ θ
R

        Torsion Equation 

Where   J = Polar moment of inertia  

             τ = Shear stress induced due to torsion T. 

             G = Modulus of rigidity 

            θ  = Angular deflection of shaft 

             R, L = Shaft radius & length respectively 

Assumptions 

• The bar is acted upon by a pure torque. 

• The section under consideration is remote from the point of application of the load and from 

a change in diameter. 

• Adjacent cross sections originally plane and parallel remain plane and parallel after 

twisting, and any radial line remains straight. 

• The material obeys Hooke’s law 

• Cross-sections rotate as if rigid, i.e. every diameter rotates through the same angle 
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2. Polar moment of inertia  

 

• Solid shaft “J” = 
4d

32
π

 

• Hollow shaft, "J” = 4 4( )
32
π

−o id d  

 

3. The polar section modulus 

Zp= J / c, where c = r = D/2 

• For a solid circular cross-section, Zp = π D3 / 16 

• For a hollow circular cross-section, Zp = π (Do4   - Di4 ) / (16Do) 

• Then,  maxτ  = T / Zp  

• If design shears stress, dτ  is known, required polar section modulus can be calculated from: 

Zp = T / dτ      

 

4. Power Transmission (P) 

• P  (in Watt )   = 
2

60
NTπ

 

  As stated above, the polar second moment of area, J is defined as   
 
  
                           J     =   2 3

0
π r dr

Rz  

 
 

For a solid shaft              J  =   2
4

2
4 32

4

0

4 4

π π πr R D
RL

NM
O
QP

= =             (6) 

 
 
For a hollow shaft of internal radius r: 
 

 J  =   2 3

0
π r dr

Rz    =  2
4 2 32

4
4 4 4 4π π πr R r D d

r

RL
NM
O
QP

= − = −( ) c h                   (7) 

 
Where D is the external and d is the internal diameter. 
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• P (in hp)         = 
2
4500

NTπ
                   (1 hp = 75 Kgm/sec). 

[Where N = rpm; T = Torque in N-m.] 

5. Safe diameter of Shaft (d) 
• Stiffness consideration  

                               
θ

=
T G
J L

 

• Shear Stress consideration  

                                
T
J R

τ
=  

We take higher value of diameter of both cases above for overall safety if other parameters are given. 

 

6. In twisting 

• Solid shaft,  maxτ  = 3

16T
dπ

 

• Hollow shaft,  maxτ  = o
4 4

16Td
( )π −o id d

 

• Diameter of a shaft to have a maximum deflection "α "            d = 4.9 × 4
α

TL
G

 

  [Where T in N-mm, L in mm, G in N/mm2] 

 

7. Comparison of solid and hollow shaft 
• A Hollow shaft will transmit a greater torque than a solid shaft of the same weight & same 

material because the average shear stress in the hollow shaft is smaller than the average 

shear stress in the solid shaft  

  •  max

max

( )  shaft 16
( )  shaft 15
τ
τ

=
holloow

solid
     

o i

If  solid shaft dia = D
DHollow shaft, d  = D, d  = 
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

• Strength comparison (same weight, material, length and maxτ ) 

 
2

2

1
1

h

s

T n
T n n

+
=

−
  Externaldiameter of hollow shaftWhere, n=

Internaldiameter of hollow shaft
                 [ONGC-2005] 

• Weight comparison (same Torque, material, length and maxτ ) 

 
( )
( )

2 2/3

2/34

1

1
h

s

n nW
W n

−
=

−
  Externaldiameter of hollow shaftWhere, n=

Internaldiameter of hollow shaft
         [WBPSC-2003] 

• Strain energy comparison (same weight, material, length and maxτ ) 

 
2

2

1h

s

U n
U n

+
=  2

11
n

= +  
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8. Shaft in series 

1 2θ θ θ= +  

Torque (T) is same in all section 

Electrical analogy gives torque(T) = Current (I) 

 
 

9. Shaft in parallel 

1 2θ θ= and 1 2T T T= +  

Electrical analogy gives torque(T) = Current (I) 

 
 

10. Combined Bending and Torsion 
• In most practical transmission situations shafts which carry torque are also subjected to 

bending, if only by virtue of the self-weight of the gears they carry. Many other practical 

applications occur where bending and torsion arise simultaneously so that this type of 

loading represents one of the major sources of complex stress situations. 

 

• In the case of shafts, bending gives rise to tensile stress on one surface and compressive 

stress on the opposite surface while torsion gives rise to pure shear throughout the shaft.  

 

• For shafts subjected to the simultaneous application of a bending moment M and torque T 

the principal stresses set up in the shaft can be shown to be equal to those produced by an 

equivalent bending moment, of a certain value Me acting alone. 

 

• Figure 

 
 

• Maximum direct stress ( xσ ) & Shear stress ( ( )xyτ  in element A 

                   
3

3

32

16

σ
π

τ
π

= +

=

x

xy

M P
d A
T
d

 

 

• Principal normal stresses ( 1,2σ ) & Maximum shearing stress ( maxτ ) Page 279 of 429
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   1,2σ  = 
2

2

2 2
σ σ τ⎛ ⎞± +⎜ ⎟

⎝ ⎠
x x

xy  

                                    
2

21 2
max ( )

2 2
σσ στ τ− ⎛ ⎞= = ± +⎜ ⎟
⎝ ⎠

x
xy  

 

• Maximum Principal Stress ( maxσ ) & Maximum shear stress ( maxτ ) 

   maxσ  = 2 2
3

16
π

⎡ ⎤+ +⎣ ⎦M M T
d

 

                                          

                                    maxτ  = 2 2
3

16
π

+M T
d

 

 

• Location of Principal plane (θ ) 

                   θ  = 11 tan
2

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

T
M

 

 

• Equivalent bending moment (Me) & Equivalent torsion (Te). 

                           
2 2

2

⎡ ⎤+ +
= ⎢ ⎥
⎢ ⎥⎣ ⎦

e
M M TM  

                           2 2= +eT M T  

• Important Note  

o Uses of the formulas are limited to cases in which both M & T are known. Under any 

other condition Mohr’s circle is used. 
 

• Safe diameter of shaft (d) on the basis of an allowable working stress. 

o wσ  in tension , d = 3
32 e

w

M
πσ

 

o wτ  in shear , d= 3
16 e

w

T
πτ

 

 

11. Shaft subjected to twisting moment only 
• Figure 

 
 

Page 280 of 429



Chapter-9 Torsion S K Mondal’s 

 

• Normal force ( nF ) & Tangential for ( tF ) on inclined plane AB 

   
[ ]
[ ]

sin  + AC cos

 × BC cos  - AC sin

τ θ θ

τ θ θ

= − ×

=
n

t

F BC

F
 

 

• Normal stress ( nσ ) & Tangential stress (shear stress) ( tσ ) on inclined plane AB. 

          nσ  = sin 2τ θ−  

          tσ  = 2τ θcos  
 

• Maximum normal & shear stress on AB 

θ  ( nσ )max τ max 

0 0 +τ  

45° –τ  0 

90 0 –τ  

135 +τ  0 
 

 • Important Note  

  •   Principal stresses at a point on the surface of the shaft = +τ , -τ , 0 

            i.e 1,2  sin2σ τ θ= ±  
 

  •  Principal strains   

                      1 2 3(1 ); (1 ); 0τ τμ μ∈ = + ∈ = − + ∈ =
E E

 

 

  •  Volumetric strain, 

                      1 2 3 0∈ =∈ +∈ +∈ =v  
 

  •  No change in volume for a shaft subjected to pure torque. 

 

12. Torsional Stresses in Non-Circular Cross-section Members 
• There are some applications in machinery for non-circular cross-section members and shafts 

where a regular polygonal cross-section is useful in transmitting torque to a gear or pulley 

that can have an axial change in position. Because no key or keyway is needed, the 

possibility of a lost key is avoided. 
 

• Saint Venant (1855) showed that maxτ  in a rectangular b × c section bar occurs in the middle 

of the longest side b and is of magnitude formula 

    max 2 2
1.83

/
T T

b cbc bc
τ

α
⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 

  Where b is the longer side and α  factor that is function of the ratio b/c. 

 The angle of twist is given by Page 281 of 429
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3
Tl
bc G

θ
β

=  

  Where β  is a function of the ratio b/c 
 

Shear stress distribution in different cross-section 

   
Rectangular c/s Elliptical c/s Triangular c/s 

 

13. Torsion of thin walled tube  
• For a thin walled tube  

Shear stress,
02

τ = T
A t

 

Angle of twist, 
2 O

sL
A G
τφ =  

  [Where S = length of mean centre line, OA = Area enclosed by mean centre line] 

• Special Cases 

o For circular c/s 

             3 22 ; ; 2π π π= = =oJ r t A r S r  

             [r = radius of mean Centre line and t = wall thickness] 

                                  2

. =
2 r 2

τ
π

∴ = =
o

T T r T
t J A t

 

                                    32
τϕ

π
= = =

o

TL L TL
GJ A JG r tG

    

o For square c/s of length of each side ‘b’ and thickness ‘t’ 

                            
2

0

 =4b 
A b
S

=  

o For elliptical c/s ‘a’ and ‘b’ are the half axis lengths. 

                                     
0

3 ( )
2

A ab

S a b ab

π

π

=

⎡ ⎤≈ + −⎢ ⎥⎣ ⎦
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Torsion Equation 
GATE-1. A solid circular shaft of 60 mm diameter transmits a torque of 1600 N.m. The 

value of maximum shear stress developed is: [GATE-2004] 
 (a) 37.72 MPa  (b) 47.72 MPa  (c) 57.72 MPa  (d) 67.72 MPa 

GATE-1. Ans. (a) 3

16T
d

τ
π

=  

 
GATE-2. Maximum shear stress developed on the surface of a solid circular shaft under 

pure torsion is 240 MPa. If the shaft diameter is doubled then the maximum 
shear stress developed corresponding to the same torque will be: [GATE-2003] 

 (a) 120 MPa  (b) 60 MPa  (c) 30 MPa  (d) 15 MPa 

GATE-2. Ans. (c) 
( )3 3 3

16T 16T 16T 240, 240 if diameter doubled d 2d, then 30MPa
8d d 2d

τ τ
π π π

′ ′= = = = = =  

 
GATE-3. A steel shaft 'A' of diameter 'd' and length 'l' is subjected to a torque ‘T’ Another 

shaft 'B' made of aluminium of the same diameter 'd' and length 0.5l is also 
subjected to the same torque 'T'. The shear modulus of steel is 2.5 times the 
shear modulus of aluminium. The shear stress in the steel shaft is 100 MPa. The 
shear stress in the aluminium shaft, in MPa, is: [GATE-2000]                  

 (a) 40    (b) 50    (c) 100   (d) 250 

GATE-3. Ans. (c) 3

16T
d

τ
π

=  as T & d both are same τ is same 

 
GATE-4. For a circular shaft of diameter d subjected to torque T, the maximum value of 

the shear stress is: [GATE-2006] 

 3 3 3 3

64 32 16 8(a) (b) (c) (d)T T T T
d d d dπ π π π

 

GATE-4. Ans. (c) 

Power Transmitted by Shaft 
GATE-5. The diameter of shaft A is twice the diameter or shaft B and both are made of 

the same material. Assuming both the shafts to rotate at the same speed, the 
maximum power transmitted by B is: [IES-2001; GATE-1994] 

 (a) The same as that of A (b) Half of A  (c) 1/8th of A  (d) 1/4th of A 

GATE-5. Ans. (c) 
3

3

2 N 16T dPower, P T and or T
60 16d
π τπτ

π
= × = =  

 
3

3d 2 Nor P orP d
16 60
τπ π α= ×  

Combined Bending and Torsion 
GATE-6. A solid shaft can resist a bending moment of 3.0 kNm and a twisting moment of 

4.0 kNm together, then the maximum torque that can be applied is: [GATE-1996] 
 (a) 7.0 kNm  (b) 3.5 kNm  (c)4.5 kNm  (d) 5.0 kNm 
GATE-6.  Ans. (d) Equivalent torque ( ) 2 2 2 2

eT M T 3 4 5kNm= + = + =  
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Comparison of Solid and Hollow Shafts 
GATE-7. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of 

its torque carrying capacity to that of a solid shaft of the same material and the 
same outside diameter is: [GATE-1993;  IES-2001] 

 (a) 
15
16

   (b) 
3
4

    (c) 
1
2

   (d) 
1

16
      

GATE-7. Ans. (a) T G Jor T if is const. T J
J L R R

θ τ τ τ α= = =  

 

4
4

h h

4

DD
32 2T J 15

T J 16D
32

π

π

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦= = =  

Shafts in Series 
GATE-8. A torque of 10 Nm is transmitted through a stepped shaft as shown in figure. 

The torsional stiffness of individual sections of lengths MN, NO and OP are 20 
Nm/rad, 30 Nm/rad and 60 Nm/rad respectively. The angular deflection between 
the ends M and P of the shaft is: [GATE-2004] 

 
 (a) 0.5 rad  (b) 1.0 rad  (c) 5.0 rad  (d) 10.0 rad 

GATE-8. Ans. (b) TLWe know that or T k. [let k tortional stiffness]
GJ

θ θ= = =  

 NO OPMN
MN NO OP

MN NO OP

T TT 10 10 10 1.0 rad
k k k 20 30 60

θ θ θ θ∴ = + + = + + = + + =  

Shafts in Parallel 
GATE-9. The two shafts AB and BC, of equal 

length and diameters d and 2d, are 
made of the same material. They are 
joined at B through a shaft coupling, 
while the ends A and C are built-in 
(cantilevered). A twisting moment T is 
applied to the coupling. If TA and TC 
represent the twisting moments at the 
ends A and C, respectively, then 

 
 

[GATE-2005]
 (a) TC = TA     (b) TC =8 TA             (c) TC =16 TA     (d) TA=16 TC 

GATE-9. Ans. (c) 
( )

C C C CA A A
AB BC A4 4

A A C C

T L T TT L T
or or or T

G J G J 16d 2d
32 32

θ θ
π π

= = = =  

Previous 20-Years IES Questions 

Torsion Equation 
IES-1. Consider the following statements: [IES- 2008] 
 Maximum shear stress induced in a power transmitting shaft is: 
 1. Directly proportional to torque being transmitted. 
 2. Inversely proportional to the cube of its diameter. 
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 3. Directly proportional to its polar moment of inertia. 
 Which of the statements given above are correct? 
 (a) 1, 2 and 3 (b) 1 and 3 only  (c) 2 and 3 only  (d) 1 and 2 only 

IES-1. Ans. (d) 3

T r 16T
J d

τ
π

×
= =  

 
IES-2. A solid shaft transmits a torque T. The allowable shearing stress is τ .  What is 

the diameter of the shaft? [IES-2008] 

 3 3 3 3
16T 32T 16T T(a) (b) (c) (d)
πτ πτ τ τ

 

IES-2. Ans. (a) 
 
IES-3. Maximum shear stress developed on the surface of a solid circular shaft under 

pure torsion is 240 MPa. If the shaft diameter is doubled, then what is the 
maximum shear stress developed corresponding to the same torque? [IES-2009] 

 (a) 120 MPa                 (b) 60 MPa                   (c) 30 MPa                           (d) 15 MPa 

IES-3. Ans. (c) Maximum shear stress = 3

16T
dπ

= 240 MPa = τ 

 Maximum shear stress developed when diameter is doubled 

 
( )

τ τ⎛ ⎞= = = = =⎜ ⎟π⎝ ⎠π
3 3

16 1 16T 240 30MPa
8 d 8 82d

 

 
IES-4. The diameter of a shaft is increased from 30 mm to 60 mm, all other conditions 

remaining unchanged. How many times is its torque carrying capacity 
increased? [IES-1995; 2004] 

 (a) 2 times    (b) 4 times  (c) 8 times   (d) 16 times 

IES-4. Ans. (c) 
3

3

16T dor T for same material const.
16d
τπτ τ

π
= = =  

 
3 3

3 2 2

1 1

T d 60T d or 8
T d 30

α
⎛ ⎞ ⎛ ⎞∴ = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
IES-5. A circular shaft subjected to twisting moment results in maximum shear stress 

of 60 MPa. Then the maximum compressive stress in the material is: [IES-2003] 
 (a) 30 MPa   (b) 60 MPa  (c) 90 MPa   (d) 120 MPa 
IES-5. Ans. (b) 
 
IES-6. Angle of twist of a shaft of diameter ‘d’ is inversely proportional to [IES-2000] 
 (a) d                  (b) d2              (c) d3                        (d) d4          
IES-6. Ans. (d) 
 
IES-7. A solid circular shaft is subjected to pure torsion. The ratio of maximum shear 

to maximum normal stress at any point would be: [IES-1999] 
 (a) 1 : 1   (b) 1: 2    (c) 2: 1    (d) 2: 3 

IES-7. Ans. (a) 3 3

16 32Shear stress   and normal stress  T T
d dπ π

= =  

 ∴  Ratio of shear stress and normal stress = 1: 2 
 
IES-8. Assertion (A): In a composite shaft having two concentric shafts of different 

materials, the torque shared by each shaft is directly proportional to its polar 
moment of inertia. [IES-1999] 

 Reason (R): In a composite shaft having concentric shafts of different 
materials, the angle of twist for each shaft depends upon its polar moment of 
inertia. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
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IES-8. Ans. (c) 
 
IES-9. A shaft is subjected to torsion as shown. [IES-2002] 

 
 Which of the following figures represents the shear stress on the element 

LMNOPQRS ? 
 

 
 

 
 

IES-9. Ans. (d) 
IES-10. A round shaft of diameter 'd' and 

length 'l' fixed at both ends 'A' and 
'B' is subjected to a twisting moment 
'T’ at 'C', at a distance of 1/4 from A 
(see figure). The torsional stresses in 
the parts AC and CB will be: 

 (a) Equal 
 (b) In the ratio 1:3                 
 (c) In the ratio 3 :1                  
 (d) Indeterminate  

 

 
 

[IES-1997]

IES-10. Ans. (c) T G GR 1or
J R L L L

τ θ θτ τ= = = ∴ ∞  

Hollow Circular Shafts 
IES-11. One-half length of 50 mm diameter steel rod is solid while the remaining half is 

hollow having a bore of 25 mm. The rod is subjected to equal and opposite 
torque at its ends. If the maximum shear stress in solid portion is τ or, the 
maximum shear stress in the hollow portion is: [IES-2003]                      

 (a) 
15
16

τ    (b) τ    (c) 
4
3
τ    (d) 

16
15

τ  

IES-11. Ans. (d) 
τ τ

= =
T JorT
J r r

 

 ;
2

τ τ ⎡ ⎤= = =⎢ ⎥⎣ ⎦
s h h

s h
s h

J J Dor r r
r r

 Page 286 of 429



Chapter-9 Torsion S K Mondal’s 

 

 
( )

4

4 4

32

32

π

τ τ τ π= × = ×
−

s
h

h

DJor
J D d

4 4

1 1 16
15251 1

50

τ τ τ ⎛ ⎞= × = × = ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎝ ⎠⎛ ⎞ ⎛ ⎞− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

d
D

 

Power Transmitted by Shaft 
IES-12. In power transmission shafts, if the polar moment of inertia of a shaft is 

doubled, then what is the torque required to produce the same angle of twist? 
[IES-2006] 

 (a) 1/4 of the original value    (b) 1/2 of the original value 
 (c) Same as the original value   (d) Double the original value 
IES-12. Ans. (d) 

 T G T.Lor Q if is const. T J if J is doubled then T is also doubled.
J L R G.J

θ τ θ α= = =  

 
IES-13. While transmitting the same power by a shaft, if its speed is doubled, what 

should be its new diameter if the maximum shear stress induced in the shaft 
remains same? [IES-2006] 

 (a)  
1
2

of the original diameter  (b) 
1
2

 of the original diameter 

 (c)  2 of the original diameter  (d)  
( )

1
3

1

2
of the original diameter 

IES-13. Ans. (d) ( ) ( )Power (P) torque T angular speed ω= ×  

 
( )

( )
( )3 3 3

1 T 1if P is const.T if or T T / 2
T 2

16 T / 216T d 1or
dd 2d

ωα
ω ω

σ
π π

′
′= = =

′
′⎛ ⎞= = =⎜ ⎟

′ ⎝ ⎠

 

 
IES-14. For a power transmission shaft transmitting power P at N rpm, its diameter is 

proportional to: [IES-2005]                 

 (a)
1/3P

N
⎛ ⎞
⎜ ⎟
⎝ ⎠

   (b) 
1/2P

N
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (c) 
2/3P

N
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (d) 
P
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

IES-14. Ans. (a) 
3

3

2 N 16T dPower, P T and or T
60 16d
π τπτ

π
= × = =  

 
1/33

3
2

d 2 N 480 P Por P or d or d
16 60 NJ N
τπ π α

π
⎛ ⎞= × = ⎜ ⎟
⎝ ⎠

 

 
IES-15. A shaft can safely transmit 90 kW while rotating at a given speed. If this shaft 

is replaced by a shaft of diameter double of the previous one and rotated at 
half the speed of the previous, the power that can be transmitted by the new 
shaft is: [IES-2002] 

  (a) 90 kW   (b) 180 kW   (c) 360 kW   (d) 720 kW 
IES-15. Ans. (c) 
 
IES-16. The diameter of shaft A is twice the diameter or shaft B and both are made of 

the same material. Assuming both the shafts to rotate at the same speed, the 
maximum power transmitted by B is: [IES-2001; GATE-1994] 

 (a) The same as that of A (b) Half of A (c) 1/8th of A (d) 1/4th of A 

IES-16. Ans. (c) 
3

3

2 N 16T dPower, P T and or T
60 16d
π τπτ

π
= × = =  

 
3

3d 2 Nor P orP d
16 60
τπ π α= ×  
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IES-17. When a shaft transmits power through gears, the shaft experiences [IES-1997] 
 (a) Torsional stresses alone 
 (b) Bending stresses alone 
 (c) Constant bending and varying torsional stresses    
 (d) Varying bending and constant torsional stresses 
IES-17. Ans. (d) 

Combined Bending and Torsion 
IES-18. The equivalent bending moment under combined action of bending moment M 

and torque T is: [IES-1996; 2008; IAS-1996] 

 (a) 2 2M T+  (b) 2 21
2

M M T⎡ ⎤+ +
⎣ ⎦

 

 (c) [ ]1
2

M T+  (d) 2 21
4

M T⎡ ⎤+
⎣ ⎦

 

IES-18. Ans. (b) 
 
IES-19. A solid circular shaft is subjected to a bending moment M and twisting moment 

T. What is the equivalent twisting moment Te which will produce the same 
maximum shear stress as the above combination? [IES-1992; 2007] 

  (a)  M2 + T2  (b) M + T  (c) +2 2M T   (d) M – T 

IES-19. Ans. (c) Te = 22 TM +  
 
IES-20. A shaft is subjected to fluctuating loads for which the normal torque (T) and 

bending moment (M) are 1000 N-m and 500 N-m respectively. If the combined 
shock and fatigue factor for bending is 1.5 and combined shock and fatigue 
factor for torsion is 2, then the equivalent twisting moment for the shaft is: 

[IES-1994] 
 (a) 2000N-m   (b) 2050N-m   (c) 2100N-m   (d) 2136 N-m 

IES-20. Ans. (d) ( ) ( )2 21.5 500 2 1000 2136 Nm= × + × =eqT  

 
IES-21. A member is subjected to the combined action of bending moment 400 Nm and 

torque 300 Nm. What respectively are the equivalent bending moment and 
equivalent torque? [IES-1994; 2004] 

 (a) 450 Nm and 500 Nm    (b) 900 Nm and 350 Nm 
 (c) 900 Nm and 500 Nm    (d) 400 Nm and 500 Nm 

IES-21. Ans. (a) ( )
2 2 2 2

e
M M T 400 400 300Equivalent Bending Moment M 450N.m

2 2
+ + + +

= = =  

 ( ) 2 2 2 2
eEquivalent torque T M T 400 300 500N.m= + = + =  

 
IES-22. A shaft was initially subjected to bending moment and then was subjected to 

torsion. If the magnitude of bending moment is found to be the same as that of 
the torque, then the ratio of maximum bending stress to shear stress would be: 

[IES-1993] 
 (a) 0.25   (b) 0.50   (c) 2.0   (d) 4.0 
IES-22. Ans. (c) Use equivalent bending moment formula,  
 1st case: Equivalent bending moment (Me) = M  

 2nd case: Equivalent bending moment (Me) = 
2 20 0

2 2
T T+ +

=  
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IES-23. A shaft is subjected to simultaneous action of a torque T, bending moment M 
and an axial thrust F. Which one of the following statements is correct for this 
situation? [IES-2004] 

 (a) One extreme end of the vertical diametral fibre is subjected to maximum 
compressive stress only  

 (b) The opposite extreme end of the vertical diametral fibre is subjected to 
tensile/compressive stress only 

 (c) Every point on the surface of the shaft is subjected to maximum shear stress only 
 (d) Axial longitudinal fibre of the shaft is subjected to compressive stress only 
IES-23. Ans. (a) 
IES-24. For obtaining the 

maximum shear stress 
induced in the shaft 
shown in the given 
figure, the torque 
should be equal to 

 ( )
1

2 2
2

1
2 22

2

(a) (b)

(c)
2

(d)
2

T Wl T

wLWl

wLWl T

+

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎧ ⎫
⎢ ⎥+ +⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

  

[IES-1999]

 IES-24. Ans. (d)  Bending Moment, M = 
2

2
+

wLWl  

 
IES-25. Bending moment M and torque is applied on a solid circular shaft. If the 

maximum bending stress equals to maximum shear stress developed, them M is 
equal to: [IES-1992] 

 (a)  (b)  (c)  2 (d)  4
2
T T T T  

IES-25. Ans. (a) 3

32 M
d

σ
π
×

= and  3

16T
d

τ
π

=  

 
IES-26. A circular shaft is subjected to the combined action of bending, twisting and 

direct axial loading. The maximum bending stress σ, maximum shearing force 
3σ  and a uniform axial stress σ(compressive) are produced. The maximum 

compressive normal stress produced in the shaft will be: [IES-1998] 
 (a) 3 σ    (b) 2 σ    (c) σ    (d) Zero 
IES-26. Ans. (a) Maximum normal stress = bending stress σ + axial stress (σ) =  2 σ 
 We have to take maximum bending stress σ is (compressive) 

 The maximum compressive normal stress = 
2

2

2 2
σ σ τ⎛ ⎞− +⎜ ⎟

⎝ ⎠
b b

xy  

  ( )
2

22 2 3 3
2 2
σ σ σ σ− −⎛ ⎞= − + = −⎜ ⎟

⎝ ⎠
 

 
IES-27. Which one of the following statements is correct? Shafts used in heavy duty 

speed reducers are generally subjected to: [IES-2004] 
 (a) Bending stress only 
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 (b) Shearing stress only 
 (c) Combined bending and shearing stresses  
 (d) Bending, shearing and axial thrust simultaneously 
IES-27. Ans. (c) 

Comparison of Solid and Hollow Shafts 
IES-28. The ratio of torque carrying capacity of a solid shaft to that of a hollow shaft is 

given by: [IES-2008] 
 ( ) ( ) 14 4 4 4(a) 1 K (b) 1 K (c)K (d)1/ K

−
− −  

 Where K = i

o

D
D

; Di = Inside diameter of hollow shaft and Do = Outside diameter of hollow 

shaft. Shaft material is the same. 
IES-28. Ans. (b) τ should be same for both hollow and solid shaft 

 ( )
( )

144
s s o sh i

4 44 4 4 h h oo io o i

14s

h

T T D TT D
1

T T DD DD D D
32 32

T
1 k

T

−

−

⎛ ⎞⎛ ⎞⎜ ⎟= ⇒ = ⇒ = − ⎜ ⎟π π ⎜ ⎟− ⎝ ⎠− ⎝ ⎠

∴ −

 

 
IES-29. A hollow shaft of outer dia 40 mm and inner dia of 20 mm is to be replaced by a 

solid shaft to transmit the same torque at the same maximum stress. What 
should be the diameter of the solid shaft? [IES 2007] 

 (a)  30 mm (b) 35 mm (c) 10× (60)1/3 mm (d) 10× (20)1/3 mm 
IES-29. Ans. (c) Section modules will be same 

 H

H

J
R

 = s

s

J
R

 or 

2
40

)2040(
64

44 −
π

 = 
64
π

×
2

4

d
d

 

 or, d3 = (10)3 ×60   or    d = 10 3 60 mm 
 
IES-30. The diameter of a solid shaft is D. The inside and outside diameters of a hollow 

shaft of same material and length are 
3

D
 and 

3
2D

 respectively. What is the 

ratio of the weight of the hollow shaft to that of the solid shaft? [IES 2007] 
 (a) 1:1   (b) 1: 3    (c) 1:2   (d) 1:3 

IES-30. Ans. (a) 
S

H

W
W

 = 1

4

33
4

4
2

22

=
×××

×××⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

gLD

gLDD

ρπ

ρπ

 

 
IES-31. What is the maximum torque transmitted by a hollow shaft of external radius R 

and internal radius r? [IES-2006] 

 (a) ( )3 3

16 sR r fπ
−  (b) ( )4 4

2 sR r f
R
π

−  (c) ( )4 4

8 sR r f
R
π

−  (d) 
4 4

32 s
R r f

R
π ⎛ ⎞−
⎜ ⎟
⎝ ⎠

 

 ( sf  = maximum shear stress in the shaft material) 

IES-31. Ans. (b) 
( )

( )
4 4

4 4s
s s s

R rfT J 2or T f f R r .f .
J R R R 2R

π
π−

= = × = × = −  

 
IES-32. A hollow shaft of the same cross-sectional area and material as that of a solid 

shaft transmits: [IES-2005] 
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 (a) Same torque     (b) Lesser torque 
 (c) More torque    (d) Cannot be predicted without more data 

IES-32. Ans. (c) 
2

H H

2
S H

T Dn 1 , Where n
T dn n 1

+
= =

−
 

 
IES-33. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of 

its torque carrying capacity to that of a solid shaft of the same material and the 
same outside diameter is: [GATE-1993;  IES-2001] 

 (a) 
15
16

   (b) 
3
4

    (c) 
1
2

   (d) 
1

16
      

IES-33. Ans. (a) T G Jor T if is const. T J
J L R R

θ τ τ τ α= = =  

 

4
4

h h

4

DD
32 2T J 15

T J 16D
32

π

π

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦= = =  

 
IES-34. Two hollow shafts of the same material have the same length and outside 

diameter. Shaft 1 has internal diameter equal to one-third of the outer 
diameter and shaft 2 has internal diameter equal to half of the outer diameter. 
If both the shafts are subjected to the same torque, the ratio of their twists 

1 2/θ θ  will be equal to: [IES-1998] 
 (a) 16/81  (b) 8/27   (c) 19/27  (d) 243/256 

IES-34. Ans. (d) 

4
4 1

1
1

4
42 1

1

21 243
256

3

ddQQ
J Q dd

⎛ ⎞− ⎜ ⎟
⎝ ⎠∞ ∴ = =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

 
IES-35. Maximum shear stress in a solid shaft of diameter D and length L twisted 

through an angle θ is τ.  A hollow shaft of same material and length having 
outside and inside diameters of D and D/2 respectively is also twisted through 
the same angle of twist θ. The value of maximum shear stress in the hollow 
shaft will be: [IES-1994; 1997] 

 ( ) ( ) ( ) ( )16 8 4a                b               c                  d         
15 7 3

τ τ τ τ  

IES-35. Ans. (d) T G G.R.or if is const. R
J L R L

θ τ θτ θ τ α= = =  and outer diameter is same in both 

the cases. 
 Note: Required torque will be different. 
 
IES-36. A solid shaft of diameter 'D' carries a twisting moment that develops maximum 

shear stress τ. If the shaft is replaced by a hollow one of outside diameter 'D' 
and inside diameter D/2, then the maximum shear stress will be: [IES-1994] 

 (a) 1.067 τ    (b) 1.143 τ  (c) 1.333 τ   (d) 2 τ 

IES-36. Ans. (a) T G TR 1or if T is const.
J L R J J

θ τ τ τ α= = =   

 
4

h
4

h 4

J D 16 1.06666
J 15DD

2

τ
τ

= = = =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

 
IES-37. A solid shaft of diameter 100 mm, length 1000 mm is subjected to a twisting 

moment 'T’ The maximum shear stress developed in the shaft is 60 N/mm2. A 
hole of 50 mm diameter is now drilled throughout the length of the shaft. To 
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develop a maximum shear stress of 60 N/mm2 in the hollow shaft, the torque 'T’ 
must be reduced by: [IES-1998] 

 (a) T/4    (b) T/8   (c) T/12   (d)T/16 

IES-37. Ans. (d) 
( )43 4

16 32( / 2) 15or
16/ 2

s
Tr T T d T
J d Td d

τ
π

′ ′
= = = =

−
 

 
1Reduction

16
∴ =  

 
IES-38. Assertion (A): A hollow shaft will transmit a greater torque than a solid shaft of 

the same weight and same material. [IES-1994] 
 Reason (R): The average shear stress in the hollow shaft is smaller than the 

average shear stress in the solid shaft. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-38. Ans. (a)  
 
IES-39. A hollow shaft is subjected to torsion. The shear stress variation in the shaft 

along the radius is given by: [IES-1996] 

  
IES-39. Ans. (c) 

Shafts in Series 
IES-40. What is the total angle of 

twist of the stepped 
shaft subject to torque T 
shown in figure given 
above? 

 (a) 4

16 lT
Gdπ

 (b) 4

38 lT
Gdπ

 

 (c) 4

64 lT
Gdπ

  (d) 4

66 lT
Gdπ

  
[IES-2005]

IES-40. Ans. (d) 
( )

[ ]1 2 4 4 44

T 2l T l Tl 66Tl64 2
d Gd GdG 2dG. 3232

θ θ θ
ππ

× ×
= + = + = + =

× ×
 

Shafts in Parallel 
IES-41. For the two shafts connected in parallel, find which statement is true? 
 (a) Torque in each shaft is the same [IES-1992] 
 (b) Shear stress in each shaft is the same 
 (c) Angle of twist of each shaft is the same 
 (d) Torsional stiffness of each shaft is the same 
IES-41. Ans. (c) 
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IES-42. A circular section rod ABC is fixed at ends A and C. It is subjected to torque T 
at B. AB = BC = L and the polar moment of inertia of portions AB and BC are 2 
J and J respectively. If G is the modulus of rigidity, what is the angle of twist at 
point B? [IES-2005] 

  (a) 
3
TL
GJ

   (b) 
2
TL
GJ

   (c) 
TL
GJ

   (d) 
2TL
GJ

 

IES-42. Ans. (a)  

  

AB BCθ θ=  

BC.AB
AB BC

AB BC BC

B AB

T LT L
or or T 2T

G.2J G.J
T T T or T T / 3

T L TLor Q Q .
3 GJ 3GJ

= =

+ = =

= = =

 

 
IES-43. A solid circular rod AB of diameter D and length L is fixed at both ends. A 

torque T is applied at a section X such that AX = L/4 and BX = 3L/4. What is the 
maximum shear stress developed in the rod? [IES-2004] 

 (a) 3

16T
Dπ

   (b) 3

12T
Dπ

   (c) 3

8T
Dπ

   (d) 3

4T
Dπ

 

IES-43. Ans. (b) 

  

AX XB A B

B
A.

A B A

A
max 4

3

& T T T
3LTT L / 4 4or

GJ GJ
3Tor T 3T or T ,
4

316 T16T 12T4
D3 D3D

θ θ

τ
π ππ

= + =

×
=

= =

× ×
= = =

 

 
 
 

IES-44. Two shafts are shown in 
the above figure. These 
two shafts will be 
torsionally equivalent to 
each other if their 

 (a) Polar moment of inertias 
are the same  

 (b) Total angle of twists are 
the same 

 (c) Lengths are the same 
 (d) Strain energies are the 

same  
 

[IES-1998]
IES-44. Ans. (b) 

Previous 20-Years IAS Questions 

Torsion Equation 
IAS-1. Assertion (A): In theory of torsion, shearing strains increase radically away 

from the longitudinal axis of the bar. [IAS-2001] 
 Reason (R): Plane transverse sections before loading remain plane after the 

torque is applied. 
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 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-1. Ans. (b) 
 
IAS-2. The shear stress at a point in a shaft subjected to a torque is: [IAS-1995] 
 (a) Directly proportional to the polar moment of inertia and to the distance of the point 

form the axis  
 (b) Directly proportional to the applied torque and inversely proportional to the polar 

moment of inertia. 
 (c) Directly proportional to the applied torque and polar moment of inertia 
 (d) inversely proportional to the applied torque and the polar moment of inertia 

IAS-2. Ans. (b) 
RJ

T τ
=   

 
IAS-3. If two shafts of the same length, one of which is hollow, transmit equal torque 

and have equal maximum stress, then they should have equal. [IAS-1994] 
 (a) Polar moment of inertia   (b) Polar modulus of section 
 (c) Polar moment of inertia   (d) Angle of twist 

IAS-3. Ans. (b) 
RJ

T τ
=  Here T & τ are same, so J

R
should be same i.e. polar modulus of section will 

be same. 

Hollow Circular Shafts 
IAS-4. A hollow circular shaft having outside diameter 'D' and inside diameter ’d’ 

subjected to a constant twisting moment 'T' along its length. If the maximum 
shear stress produced in the shaft is sσ  then the twisting moment 'T' is given 
by: [IAS-1999] 

 (a)
4 4

48 s
D d

D
π σ −

 (b)
4 4

416 s
D d

D
π σ −

  (c) 
4 4

432 s
D d

D
π σ −

  (d)
4 4

464 s
D d

D
π σ −

 

IAS-4. Ans. (b) 
( ) ( )4 4 4 4

s

s

D d D dT G J 32gives T
DJ L R R 16 D
2

πσθ τ τ π σ
× − −

= = = = =  

Torsional Rigidity 
IAS-5. Match List-I with List-II and select the correct answer using the codes given 

below the lists: [IAS-1996] 
 List-I (Mechanical Properties) List-II ( Characteristics) 
 A. Torsional rigidity 1. Product of young's modulus and second 

moment of area about the plane of 
bending 

 B. Modulus of resilience 2. Strain energy per unit volume 
 C. Bauschinger effect 3. Torque unit angle of twist 
 D. Flexural rigidity 4. Loss of mechanical energy due to local 

yielding 
 Codes: A B C D  A B C D 
  (a)  1 3 4 2 (b)  3 2 4 1 
  (c)  2 4 1 3 (d) 3 1 4 2 
IAS-5. Ans. (b) 
 
IAS-6. Assertion (A): Angle of twist per unit length of a uniform diameter shaft 

depends upon its torsional rigidity. [IAS-2004] 
  Reason (R): The shafts are subjected to torque only. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
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 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-6. Ans. (c) 

Combined Bending and Torsion 
IAS-7. A shaft is subjected to a bending moment M = 400 N.m alld torque T = 300 N.m 

The equivalent bending moment is: [IAS-2002] 
 (a) 900 N.m  (b) 700 N.m  (c) 500 N.m  (d) 450 N.m 
 

IAS-7. Ans. (d)  
2 2 2 2400 400 300 450

2 2
M M TMe Nm+ + + +

= = =  

Comparison of Solid and Hollow Shafts 
IAS-8. A hollow shaft of length L is fixed at its both ends. It is subjected to torque T at 

a distance of 
3
L

 from one end. What is the reaction torque at the other end of 

the shaft? [IAS-2007] 

 (a) 
2
3
T

   (b) 
2
T

   (c) 
3
T

   (d) 
4
T

 

IAS-8. Ans. (c) 

 
 
IAS-9. A solid shaft of diameter d is replaced by a hollow shaft of the same material 

and length. The outside diameter of hollow shaft 
2

3
d

 while the inside diameter 

is 
3

d
. What is the ratio of the torsional stiffness of the hollow shaft to that of 

the solid shaft? [IAS-2007] 

 (a) 
2
3

   (b) 
3
5

   (c) 
5
3

   (d) 2 

IAS-9. Ans. (c) Torsional stiffness =

4 4

4

2
32 3 3 5

3.
32

H

S

d d

KT GJ or
L K d

π

πθ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪−⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎛ ⎞ ⎩ ⎭= = =⎜ ⎟

⎝ ⎠
 

 
IAS-10. Two steel shafts, one solid of diameter D and the other hollow of outside 

diameter D and inside diameter D/2, are twisted to the same angle of twist per 
unit length. The ratio of maximum shear stress in solid shaft to that in the 
hollow shaft is: [IAS-1998] 

 (a) 
4
9
τ    (b) 

8
7
τ    (c) 

16
15

τ   (d) τ  

 

IAS-10. Ans. (d) T G G Ror
J R L L

τ θ θτ= = =  as outside diameter of both the shaft is D so τ is 

same for both the cases.  
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Shafts in Series 
IAS-11. Two shafts having the same length and material are joined in series. If the 

ratio of the diameter of the first shaft to that of the second shaft is 2, then the 
ratio of the angle of twist of the first shaft to that of the second shaft is: 

[IAS-1995; 2003] 
 (a) 16    (b) 8   (c) 4    (d) 2 

IAS-11. Ans. (a) Angle of twist is proportional to 4

1 1
J d
∞  

 
IAS-12. A circular shaft fixed at A has diameter D for half of its length and diameter 

D/2 over the other half. What is the rotation of C relative of B if the rotation of 
B relative to A is 0.1 radian? [IAS-1994] 

 (a) 0.4 radian  (b) 0.8 radian  (c) 1.6 radian  (d) 3.2 radian 

    
 (T, L and C remaining same in both cases) 
 

IAS-12. Ans. (c) 
L

G
J
T θ
=  or 

J
1

∞θ  or 4
1
d

∞θ  
32

4dJ π
=∵      

 Here 
( )4

4

2/1.0 d
d

=
θ

  or  6.1=θ radian. 

Shafts in Parallel 
IAS-13. A stepped solid circular shaft shown in the given figure is built-in at its ends 

and is subjected to a torque To at the shoulder section. The ratio of reactive 
torque T1 and T2 at the ends is (J1 and J2 are polar moments of inertia): 

 (a) 2 2

1 1

J l
J l
×
×

 (b) 2 1

1 2

J l
J l
×
×

 

 (c) 1 2

2 1

J l
J l
×
×

 (d) 1 1

2 2

J l
J l
×
×

 

 
[IAS-2001] 

IAS-13. Ans. (c) 1 1 2 2 1 1 2
1 2

1 2 2 2 1

or orT l T l T J l
GJ GJ T J l

θ θ
⎛ ⎞

= = = ×⎜ ⎟
⎝ ⎠

 

 
IAS-14. Steel shaft and brass shaft of same length and diameter are connected by a 

flange coupling. The assembly is rigidity held at its ends and is twisted by a 
torque through the coupling. Modulus of rigidity of steel is twice that of brass. 
If torque of the steel shaft is 500 Nm, then the value of the torque in brass shaft 
will be: [IAS-2001] 

 (a) 250 Nm  (b) 354 Nm  (c) 500 Nm  (d) 708 Nm 
IAS-14. Ans. (a) 

  1 2
1 250 Nm
2 2

s s b b s b b b s
b

s s b b s b s s

T l T l T T T G Tor or or or T
G J G J G G T G

θ θ= = = = = = =  

 
IAS-15. A steel shaft with bult-in ends is subjected to the action of a torque Mt applied 

at an intermediate cross-section 'mn' as shown in the given figure. [IAS-1997] 
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 Assertion (A): The magnitude of the twisting moment to which the portion BC 

is subjected is  
+

tM a
a b

 

 Reason(R): For geometric compatibility, angle of twist at 'mn' is the same for 
the portions AB and BC.  

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-15. Ans. (a) 
 
IAS-16. A steel shaft of outside diameter 100 mm is solid over one half of its length and 

hollow over the other half. Inside diameter of hollow portion is 50 mm. The 
shaft if held rigidly at two ends and a pulley is mounted at its midsection i.e., at 
the junction of solid and hollow portions. The shaft is twisted by applying 
torque on the pulley. If the torque carried by the solid portion of the shaft is 
16000kg-m, then the torque carried by the hollow portion of the shaft will be: 

[IAS-1997] 
 (a) 16000 kg-m   (b) 15000 kg-m  (c) 14000 kg-m   (d) 12000 kg-m 

IAS-16. Ans.(b) 
( )

( )

4 4

s H H
s H H S

4s H s

100 50T L T L J 32or or T T 16000 15000kgm
GJ GJ J 100

32

π

θ θ
π

−
= = = × = × =  
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Previous Conventional Questions with Answers 

Conventional Question IES 2010 
Q.  A hollow steel rod 200 mm long is to be used as torsional spring. The ratio of 

inside to outside diameter is 1 : 2. The required stiffness of this spring is 100 
N.m /degree. 

       Determine the outside diameter of the rod. 
 Value of G is 4 28 10  N/mm× .                       [10 Marks] 
 
Ans.  Length of a hollow steel rod = 200mm 
 Ratio of inside to outside diameter = 1 : 2 
 Stiffness of torsional spring = 100 Nm /degree. = 5729.578 N m/rad 
 Rigidity of modulus (G) = 4 28 10 N / mm×  
 Find outside diameter of rod : -  
   We know that 

  
T G. = 
J L

θ
    Where T = Torque 

 
T N MStiffness
θ rad

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

      J = polar moment 

 Stiffness = 
T G.J = 

Lθ
  θ  = twist angle in rad 

      L = length of rod. 
  2 1d 2d=  

   

( )

( )

−

π
×

π
×

π
× ×

× × π
× × ×

× ×
× × π×

×

×

∵

4 4
2 1

4 4 1
1 1

2

4
1

4 6 2
4
1

4
110

3
1

1

2

J = d  - d
32

d 1J = 16d  - d  = 
32 d 2

J = d 15
32

8 10 10 N / m5729.578Nm / rad = d 15
0.2 32

5729.578 .2 32  = d
8 10 15

d  = 9.93 10 m.
d  = 9.93mm.
d  = 2 9.93 = 19.86 mm Ans.

 

 
Conventional Question GATE - 1998 
Question: A component used in the Mars pathfinder can be idealized as a circular bar 

clamped at its ends. The bar should withstand a torque of 1000 Nm. The 
component is assembled on earth when the temperature is 30°C. Temperature 
on Mars at the site of landing is -70°C. The material of the bar has an 
allowable shear stress of 300 MPa and its young's modulus is 200 GPa. Design 
the diameter of the bar taking a factor of safety of 1.5 and assuming a 
coefficient of thermal expansion for the material of the bar as 12 × 10–6/°C. 

Answer: Given:  
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( )

0 0
max E m allowable

6 0

6 4

T 1000Nm; t 30 C; t 70 C; 300MPa

E 200GPa; F.O.S. 1.5; 12 10 / C
Diameter of the bar,D :
Change in length, L L t,where L original length,m.
Change in lengthat Mars L 12 10 30 70 12 10 L meters

τ

α

δ

−

− −

= = = − =

= = = ×

= ∝ Δ =

⎡ ⎤= × × × − − = ×⎣ ⎦

2

4
4

9 4 8
a

22
a

max 3

max

Change in length 12 10 LLinear strain 12 10
original length L

axial stress E linear strain 200 10 12 10 2.4 10 N / m
From max imum shear stress equation,we have

16T
D 2

where,

σ

στ
π

τ

−
−

−

×
= = = ×

= = × = × × × = ×

⎡ ⎤⎛ ⎞⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

( )

allowable

2
216 8

3

8
3

1/3

8

300 200MPa
F.O.S 1.5

Substituting the values, we get

16 10004 10 1.2 10
D

16 1000or 1.6 10
D

16 1000or D 0.03169 m 31.69 mm
1.6 10

τ

π

π

π

= = =

×⎛ ⎞× = + ×⎜ ⎟
⎝ ⎠

×
= ×

×⎛ ⎞= = =⎜ ⎟× ×⎝ ⎠

 

 
Conventional Question IES-2009 
Q.  In a torsion test, the specimen is a hollow shaft with 50 mm external and 30 mm 

internal diameter. An applied torque of 1.6 kN-m is found to produce an 
angular twist of 0.4º measured on a length of 0.2 m of the shaft. The Young’s 
modulus of elasticity obtained from a tensile test has been found to be 200 GPa. 
Find the values of  

  (i) Modulus of rigidity. 
  (ii) Poisson’s ratio.        [10-Marks] 
Ans.   We have  

  
T G         ......... (i)
J r L

τ θ
= =  

    Where J = polar moment of inertia 

     

( )
( )

4 4

4 4 12

7

3

J = D d
32

50 30 10
32
5.338 10

T 1.6 kN m 1.6 10  N-m
= 0.4º

l = 0.2 m

−

−

π
−

π
= − ×

= ×

= − = ×
θ

 

     

9 2E = 200 × 10  N/m
T GFrom equation (i) 
J L

θ
=
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 We also have 

    

 
Conventional Question IAS - 1996 
Question: A solid circular uniformly tapered shaft of length I, with a small angle of 

taper is subjected to a torque T. The diameter at the two ends of the shaft are 
D and 1.2 D. Determine the error introduced of its angular twist for a given 
length is determined on the uniform mean diameter of the shaft. 

Answer: For shaft of tapering's section, we have 

 
2 2 2 2
1 1 2 2 1 1 2 2

3 3 3 3
1 2 1 2

R R R R D D D D2TL 32TL
3G R R 3G D D

θ
π π
⎡ ⎤ ⎡ ⎤+ + + +

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

( ) ( )
( ) ( )

[ ]
2 2

1 23 34

4

1.2 1.2 1 132TL D D and D 1.2D
3G D 1.2 1

32TL 2.1065
3G D

π

π

⎡ ⎤+ × +
= = =⎢ ⎥

×⎢ ⎥⎣ ⎦

= ×

∵
 

 avg
1.2D DNow, D 1.1D

2
+

= =  

 
( )
( ) ( )

2

6 4 44

3 1.1D32TL 32TL 3 32TL' 2.049
3G 3G 3G D1.1D 1.2 .D

θ
π π π

⎡ ⎤
∴ = × = × = ×⎢ ⎥

⎢ ⎥⎣ ⎦
 

  ' 2.1065 2.049Error 0.0273 or 2.73%
2.1065

θ θ
θ
− −

= = =  

 
Conventional Question ESE-2008 
Question: A hollow shaft and a solid shaft construction of the same material have the 

same length and the same outside radius. The inside radius of the hollow 
shaft is 0.6 times of the outside radius. Both the shafts are subjected to the 
same torque. 

 (i) What is the ratio of maximum shear stress in the hollow shaft to that of 
solid shaft? 

 (ii) What is the ratio of angle of twist in the hollow shaft to that of solid shaft? 

Solution: Using 
T Gθ= =
J R L

τ
 

 Given, 
Inside radius (r) 0.6 and T

Out side (R)
= = =h sT T  

 (i) τ =
( )

h
4 4

. . gives ; For hollow shaft ( )

2

τ
π

=
−

T R T R
J R r

 

3

7

3

7

G 0.41.6 10 180
0.25.338 10

1.6 0.2 10 180 G = 
0.4 5.338 10

85.92 GPa

−

−

π⎡ ⎤× ×⎢ ⎥× ⎣ ⎦=
×

× × ×
⇒

× π × ×
=

( )
E = 2 G (1 + v)
 200 = 2 × 85.92 1 v
 1 + v = 1.164
 v = 0.164

∴ +

⇒
⇒
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 and for solid shaft ( τ s)= 
4

.

.
2
π
T R

R
 

 Therefore 
4

44 4 4

1 1 1.15
1 0.6

1

τ
τ

= = = =
− −⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜⎝ ⎠

n

s

R
R r r

R

 

 (ii) 
( )4 4 4

TL . .= gives  
GJ . . .

2 2

θ θ θ
π π

= =
⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜⎝ ⎠

h s
T L T Land

G R r G R
 

 
4

44 4 4

θ 1 1Therefore 1.15
θ 1 0.6

1
= = = =

− −⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜⎝ ⎠

h

s

R
R r r

R

 

Conventional Question ESE-2006: 
Question: Two hollow shafts of same diameter are used to transmit same power. One 

shaft is rotating at 1000 rpm while the other at 1200 rpm. What will be the 
nature and magnitude of the stress on the surfaces of these shafts? Will it be 
the same in two cases of different? Justify your answer. 

Answer: We know power transmitted (P) = Torque (T) ×rotation speed (ω ) 

 And shear stress (τ ) = 
( )4 4

.. 2
2 π
60 32
πω

= =
⎛ ⎞⎟⎜ −⎟⎜ ⎟⎜⎝ ⎠

DPT R PR
NJ J D d

 

 Therefore τ α  
1
N

 as P, D and d are constant. 

 So the shaft rotating at 1000 rpm will experience greater stress then 1200 rpm shaft. 
 
Conventional Question ESE-2002 
Question: A 5 cm diameter solid shaft is welded to a flat plate by 1 cm filled weld. What 

will be the maximum torque that the welded joint can sustain if the 
permissible shear stress in the weld material is not to exceed 8 kN/cm2? 
Deduce the expression for the shear stress at the throat from the basic 
theory. 

Answer: Consider a circular shaft connected to a 
plate by means of a fillet joint as shown in 
figure. If the shaft is subjected to a torque, 
shear stress develops in the weld. 
Assuming that the weld thickness is very 
small compared to the diameter of the 
shaft, the maximum shear stress occurs in 
the throat area. Thus, for a given torque 
the maximum shear stress in the weld is 

 max
2
dT t

J
τ

⎛ ⎞⎟⎜ + ⎟⎜ ⎟⎜⎝ ⎠
=  

 Where T = Torque applied. 
    d = outer diameter of the shaft 
     t = throat thickness 
 J = polar moment of area of the throat 

section 

  = ( )4 4 32
32 4

d t d d tπ π⎡ ⎤+ − = ×⎢ ⎥⎣ ⎦
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 [As t <<d] then max
3

2

4

dT

d t
τ

π
= = 2

2
π

T
td

 

 ( )
π π

2 6 2
max 4 2

2 2 6
max

Given 
          d = 5 cm = 0.05 m         &        t = 1cm = 0.1 m 

80008 / 80 80 10 /
10

0.05 0.01 80 10 3.142
2 2

NkN cm MPa N m
m

d tT kNm

τ

τ

−
= = = = ×

× × × ×
∴ = = =

 

Conventional Question ESE-2000 
Question: The ratio of inside to outside diameter of a hollow shaft is 0.6. If there is a 

solid shaft with same torsional strength, what is the ratio of the outside 
diameter of hollow shaft to the diameter of the equivalent solid shaft. 

Answer: Let D = external diameter of hollow shaft 
 So d = 0.6D internal diameter of hollow shaft 
 And Ds=diameter of solid shaft 
 From torsion equation 

 
( )

π

π
3 2

π Dπ D

4 4

4

33
4

3
4

{ ( 0 . 6 ) }
3 2, f o r h o l lo w s h a f t

/ 2

J T = f o r s o l id s h a f t
R

2

{1 ( 0 . 6 ) }
1 6 1 6

1, 1 . 0 7 2
1 ( 0 . 6 )

s

s

s

s

T
J R

D DJo r T
R D

D
a n d J

D

Do r
D

τ

τ
τ

τ

τ τ

=

−
= = ×

= ×

− =

= =
−

 

 
Conventional Question ESE-2001 
Question: A cantilever tube of length 120 mm is subjected to an axial tension P = 9.0 kN, 

A torsional moment T = 72.0 Nm and a pending Load F = 1.75 kN at the free 
end. The material is aluminum alloy with an yield strength 276 MPa. Find the 
thickness of the tube limiting the outside diameter to 50 mm so as to ensure a 
factor of safety of 4. 

Answer: 3 ππR
3

Polar moment of inertia (J) =2
4
D tt =  
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π π π

σ
π π

σ

3 2 2

1

2

T.R 2 2 72 18335 or, =
2 (0.050)2

4
9000 9000 57296Direct stress ( )

(0.050)

2Maximum bending stress ( ) [ 2 ]

1750                                    

T TD TD T
J R J J tD t D t t

P
A dt t t

dMMy Md J I
I I J

τ
τ

×
= = = = = =

× ×
×

= = = =

= = = =

×
=

( )

π

σ σ σ

σ σ
σ

3

b 1 2

2 2 2 6
2b

1

0.120 0.050 4 106952
(0.050)

164248Total longitudinal stress ( )

Maximum principal stress

164248 164248 18335 276 10
2 2 2 2 4

, 2

b

tt

t

t t t

or t

τ

× ×
=

×

∴ = + =

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ × ⎟⎜⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎟= + + = + + =⎟ ⎟ ⎟ ⎜⎜ ⎜ ⎜ ⎟⎟ ⎟ ⎟ ⎜⎟ ⎜ ⎜⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= 3.4 10 2.4m mm−× =

 

Conventional Question ESE-2000 & ESE 2001 
Question: A hollow shaft of diameter ratio 3/8 required to transmit 600 kW at 110 rpm, 

the maximum torque being 20% greater than the mean. The shear stress is 
not to exceed 63 MPa and the twist in a length of 3 m not to exceed 1.4 
degrees. Determine the diameter of the shaft. Assume modulus of rigidity for 
the shaft material as 84 GN/m2. 

Answer: Let d = internal diameter of the hollow shaft 
 And D = external diameter of the hollow shaft 
 (given) d = 3/8 D = 0.375D 
 Power (P)= 600 kW, speed (N) =110 rpm, Shear stress(τ )= 63 MPa. Angle of twist (θ

)=1.4°, Length ( A ) =3m , modulus of rigidity (G) = 84GPa 

 We know that, (P) = T. ω= T. 
2πN
60

  [T is average torque] 

 or T= 
60
2π

P
N
×

= 
360 (600 10 ) 52087Nm

2 π×110
× ×

=
×

 

 max 1.2 1.2 52087 =62504 Nm∴ = × = ×T T  
 First we consider that shear stress is not to exceed 63 MPa 

 From torsion equation 
τ

=
T
J R

 

 4 4
6

. .
2

π 62504(0.375 )
32 2 (63 10 )

0.1727 172.7 ( )

τ τ
= =

×⎡ ⎤− =⎢ ⎥⎣ ⎦ × ×
= = −−−−

T R T Dor J

Dor D D

or D m mm i

 

 0 17 1.4Second we consider angle of twist is not exceed 1.4  radian
180
×

=  
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4 4

9

T θFrom torsion equation 

θ

62504 3(0.375 )
π 1.532 (84 10 )
180

0.1755 175.5 ( )

π

=

=

×⎡ ⎤− =⎢ ⎥⎣ ⎦ ⎛ ⎞× ⎟⎜× ⎟⎜ ⎟⎜⎝ ⎠

= = −−−−

A

A

G
J

T Gor
J

or D D

or D m mm ii

 

 
 both the condition will satisfy if greater of the two value is adopted 

so D=175.5 mm
So

 

 
Conventional Question ESE-1997 
Question: Determine the torsional stiffness of a hollow shaft of length L and having 

outside diameter equal to 1.5 times inside diameter d. The shear modulus of 
the material is G. 

Answer: Outside diameter (D) =1.5 d 

 Polar modulus of the shaft (J) = ( )4 4 4 4π π (1.5 1)
32 32

D d d− = −  

 π 4 4
4

TWe know that 
J

. (1.5 1) 0.432

G
R L

G dG J G dor T
L L L

τ θ

θθ θ

= =

−
= = =

 

 
Conventional Question AMIE-1996 
Question: The maximum normal stress and the maximum shear stress analysed for a 

shaft of 150 mm diameter under combined bending and torsion, were found 
to be 120 MN/m2 and 80 MN/m2 respectively. Find the bending moment and 
torque to which the shaft is subjected. 

 

 If the maximum shear stress be limited to 100 MN/m2, find by how much the 
torque can be increased if the bending moment is kept constant.  

Answer: Given: 2 2
max max120MN / m ; 80MN / m ;d 150mm 0.15mσ τ= = = =  

 Part 1: M; T−  
 We know that for combined bending and torsion, we have the following expressions: 

 
( )

( )

2 2
max 3

2 2
max 3

16 M M T i
d

16and M T ii
d

σ
π

τ
π

⎡ ⎤= + + − − −
⎣ ⎦

⎡ ⎤= + − − − −
⎣ ⎦

 

 
( )

( )

( )
( )

( ) ( )

2 2
3

2 2
3

3
2 2

Substituting the given values in the above equations, we have
16120 M M T iii
0.15
1680 M T iv
0.15

80 0.15
or M T 0.053 v

16

π

π

π

⎡ ⎤= + + − − − − − −
⎣ ⎦×

⎡ ⎤= + − − − − − − − − −
⎣ ⎦×

× ×
+ = = − − − − − −
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( )

( ) [ ]3

Substituting this values in equation iii ,we get
16120 M 0.053
0.150

M 0.0265MNm

π
= +

×

∴ =

 

 

( )

( )2 2

Substituting for M in equation v ,we have

0.0265 T 0.053

or T 0.0459MNm

+ =

=

 

 

( )

2
maxPart II : [ 100MN / m ]

Increase in torque :
Bending moment M to be kept cons tan t 0.0265MNm

τ =

=

∵
 

 ( ) ( )
23

2 2 100 0.15
or 0.0265 T 0.004391

16
π⎡ ⎤× ×

⎢ ⎥+ = =
⎢ ⎥⎣ ⎦

 

 
T 0.0607 MNm

The increased torque 0.0607 0.0459 0.0148MNm
∴ =
∴ = − =

 

 
Conventional Question ESE-1996 
Question: A solid shaft is to transmit 300 kW at 120 rpm. If the shear stress is not to 

exceed 100 MPa, Find the diameter of the shaft, What percent saving in 
weight would be obtained if this shaft were replaced by a hollow one whose 
internal diameter equals 0.6 of the external diameter, the length, material 
and maximum allowable shear stress being the same?  

Answer: Given P= 300 kW, N = 120 rpm, τ =100 MPa, 0.6H Hd D=  
 Diameter of solid shaft, Ds: 

 We know that P = 
2π

60 1000
NT

×
 or 300 = 

2π 120 or  T=23873 Nm
60 1000
× ×
×

T
 

 We know that 
τ

=
T
J R

 

 or, T=
.τ J
R

 or, 23873 =

6 4π100 10
32

2

× × s

s

D

D  

 or, Ds= 0.1067 m =106.7mm 
 
 Percentage saving in weight: 
 H sT T=  
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( )π

π

4 4 4 4
3 3

343

H

S

2 2 22 2

2
2

    

{ } (0 .6 ), ,

106 .7, 111 .8 m m
1 0.64(1 0 .6 )

WA ga in  
W

(1 0 .6 ) 111 .84 1
106 .7

4

H s

H H H H
s s

H H

s
H

H H H H

s s s s

H H
H H

s s
s

J J
R R

D d D Dor D or D
D D

Dor D

A L g A
A L g A

D dA D
A DD

τ τ

ρ
ρ

⎛ ⎞ ⎛ ⎞× ×⎟ ⎟⎜ ⎜=⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

− −
= =

= = =
−−

= =

− ⎛ ⎞− ⎟⎜= = = −⎟⎜ ⎟⎜⎝ ⎠
( )2

H

s

0 .6 0 .702

WP ercen tage  sav ings in   w e igh t = 1 - 100
W

= (1 -0 .702)×100 = 29 .8%

=

⎛ ⎞⎟⎜ ⎟∴ ×⎜ ⎟⎜ ⎟⎜⎝ ⎠
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 10.   Thin Cylinder 

Theory at a Glance (for IES, GATE, PSU)  
1. Thin Rings 
 Uniformly distributed loading (radial) may be due to 
either 

• Internal pressure or external pressure 

• Centrifugal force as in the case of a rotating ring 
 

Case-I: Internal pressure or external pressure 

• s = qr    Where q = Intensity of loading in kg/cm of Oce  

            r = Mean centreline of radius 

            s = circumferential tension or hoop’s 

                                                  tension  

                                                 (Radial loading ducted outward) 

 

• Unit stress, σ = =
s qr
A A

 

• Circumferential strain, 
Ec

qr
AE

σ
∈ = =  

• Diametral strain, (∈d ) = Circumferential strain, (∈c ) 
 

Case-II: Centrifugal force 

• Hoop's Tension, 
2 2ω

=
w rs

g
 Where w = wt. per unit length of circumferential element 

     ω  = Angular velocity 

• Radial loading, q =
2ω

=
w rs

r g
 

• Hoop's stress, 2 2.σ ω= =
s w r
A Ag

 

 

2. Thin Walled Pressure Vessels 
For thin cylinders whose thickness may be considered small compared to their diameter.  

iInner dia of the cylinder (d ) 15 or 20
wall thickness (t)

>  
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3. General Formula 

          1 2

1 2

σ σ
+ =

p
r r t

 

 Where  1σ =Meridional stress at A 

  2σ =Circumferential / Hoop's stress 

   P = Intensity of internal gas pressure/ fluid pressure 
   t = Thickness of pressure vessel. 
 
4. Some cases: 

• Cylindrical vessel 

 1 2=      
2 4 2

σ σ= = =
pr pD pr pD
t t t t 1 2           ,r r r⎡ ⎤→∞ =⎣ ⎦  

 1 2
max 2 4 8

σ στ −
= = =

pr pD
t t

 

• Spherical vessel 

  1 2 2 4
σ σ= = =

pr pD
t t

                    [r1 = r2 = r] 

• Conical vessel 

 1 1
tan [ ]

2 cos
py r
t

ασ
α

= →∞  and  2
tan

cos
py
t

ασ
α

=  

Notes: 

• Volume 'V' of the spherical shell, 3V=
6
π

iD

1/36
π

⎛ ⎞⇒ = ⎜ ⎟
⎝ ⎠

i
VD  

• Design of thin cylindrical shells is based on hoop's stress 
 
 

5. Volumetric Strain (Dilation) 

• Rectangular block, 
0

x y z
V

V
Δ

=∈ +∈ +∈   

• Cylindrical pressure vessel 

   ∈1=Longitudinal strain = [ ]1 2 1 2
2
pr

E E Et
σ σμ μ− = −  

  2∈ =Circumferential strain = [ ]2 1 1 2
2

σ σμ μ− = −
pr

E E Et
 

  Volumetric Strain, 1 22 [5 4μ] [5 4μ]
2 4

Δ
=∈ + ∈ = − = −

o

V pr pD
V Et Et

 

i.e. ( ) ( ) ( )1 2, 2vVolumetric strain longitudinal strain circumferential strain∈ = ∈ + × ∈  

• Spherical vessels 

  1 2 [1 ]
2
pr
Et

μ∈=∈ =∈ = −  

α

α α

α

1σ

2σ
2σ
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0

33 [1 ]
2

V pr
V Et

μΔ
= ∈= −  

 

6. Thin cylindrical shell with hemispherical end 
Condition for no distortion at the junction of cylindrical and hemispherical portion 

  2

1

1
2

t
t

μ
μ

−
=

−
  Where, t1= wall thickness of cylindrical portion 

       t2 = wall thickness of hemispherical portion 
 
 

7. Alternative method 
Consider the equilibrium of forces in the z-direction acting on the part 

cylinder shown in figure.  

Force due to internal pressure p acting on area π D2/4 = p. π D2/4 

Force due to longitudinal stress sL acting on area π Dt =  1σ π Dt 

Equating:     p. π D2/4 = 1σ π Dt 

          or     1 4 2
pd pr

t t
σ = =  

 

Now consider the equilibrium of forces in the x-direction acting on the 

sectioned cylinder shown in figure. It is assumed that the 

circumferential stress 2σ  is constant through the thickness of the 

cylinder. 

Force due to internal pressure p acting on area Dz = pDz 

Force due to circumferential stress 2σ  acting on area 2tz = 2σ 2tz 

Equating: pDz = 2σ 2tz 

               or 2 2
pD pr

t t
σ = =  
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Longitudinal stress 
GATE-1. The maximum principal strain in a thin cylindrical tank, having a radius of 25 

cm and wall thickness of 5 mm when subjected to an internal pressure of 1MPa, 
is (taking Young's modulus as 200 GPa and Poisson's ratio as 0.2) [GATE-1998] 

 (a) 2.25 × 10–4  (b) 2.25   (c) 2.25 × 10–6  (d) 22.5 

GATE-1. Ans. (a) Circumferential or Hoop stress ( )c
pr 1 250 50MPa
t 5

σ ×
= = =  

 Longitudinal stress ( )l
pr 25MPa
2t

σ = =  

 
6 6

4c l
c 9 9

50 10 25 10e 0.2 2.25 10
E E 200 10 200 10
σ σ

μ −× ×
= − = − × = ×

× ×
 

Maximum shear stress 
GATE-2. A thin walled cylindrical vessel of well thickness, t and diameter d is fitted 

with gas to a gauge pressure of p. The maximum shear stress on the vessel wall 
will then be: [GATE-1999] 

 (a) (b) (c) (d) 
2 4 8

pd pd pd pd
t t t t

 

GATE-2. Ans. (d) c l
c l

pd pd pd, , Maximum shear stress
2t 4t 2 8t

σ σ
σ σ

−
= = = =  

Change in dimensions of a thin cylindrical shell due to an internal 
pressure 
Statement for Linked Answers and Questions 3 and 4 
A cylindrical container of radius R = 1 m, wall 
thickness 1 mm is filled with water up to a depth 
of 2 m and suspended along its upper rim. The 
density of water is 1000 kg/m3 and acceleration 
due to gravity is 10 m/s2. The self-weight of the 
cylinder is negligible. The formula for hoop 
stress in a thin-walled cylinder can be used at all 
points along the height of the cylindrical 
container. 

 
[GATE-2008] 

 
GATE-3. The axial and circumferential stress ( ), ca σσ  experienced by the cylinder wall 

at mid-depth (1 m as shown) are 
 (a) (10,10) MPa  (b) (5,10) MPa  (c) (10,5) MPa  (d) (5,5)MPa 
GATE-3. Ans. (a) Pressure (P) = h ρ g = 1×1000×10 = 10 kPa 

 Axial Stress ( aσ ) LRgRta
22 πρπσ ×=×⇒  

 or ρσ
−

× × ×
= = =

× 3
1000 10 1 1 10MPa

1 10a
gRL
t

 

 Circumferential Stress( cσ )=
−

×
= =

× 3
10 1 10 MPa

1 10
PR
t
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GATE-4. If the Young's modulus and Poisson's ratio of the container material are 100 

GPa and 0.3, respectively, the axial strain in the cylinder wall at mid-depth is: 
 (a) 2 × 10–5   (b) 6 × 10–5  (c) 7 × 10–5  (d) 1.2 × 10–5 

GATE-4. Ans. (c) 5
33 107

10100
103.0

10100
10 −

−− ×=
×

×−
×

=−=
EE

ca
a

σμσε  

Previous 20-Years IES Questions 

Circumferential or hoop stress 
IES-1. Match List-I with List-II and select the correct answer: [IES-2002] 
  List-I   List-II 
 (2-D Stress system loading) (Ratio of principal stresses) 
 A. Thin cylinder under internal pressure 1. 3.0 
 B. Thin sphere under internal pressure 2. 1.0 
 C. Shaft subjected to torsion 3. –1.0 
   4. 2.0 
 Codes: A B C   A B C 
  (a)  4  2  3  (b)  1  3  2 
  (c)  4  3  2  (d)  1  2  3 
IES-1. Ans. (a) 
 
IES-2. A thin cylinder of radius r and thickness t when subjected to an internal 

hydrostatic pressure P causes a radial displacement u, then the tangential 
strain caused is: [IES-2002] 

  (a) 
du
dr

   (b) 
1 . du
r dr

  (c) 
u
r

   (d) 
2u
r

 

IES-2. Ans. (c) 
 
IES-3. A thin cylindrical shell is subjected to internal pressure p. The Poisson's ratio 

of the material of the shell is 0.3. Due to internal pressure, the shell is subjected 
to circumferential strain and axial strain. The ratio of circumferential strain to 
axial strain is: [IES-2001] 

 (a) 0.425   (b) 2.25   (c) 0.225   (d) 4.25  

IES-3. Ans. (d) Circumferential strain, ( )c l
c

pre 2
E E 2Et
σ σ

μ μ= − = −  

 Longitudinal strain, ( )cl
l

pre 1 2
E E 2Et

σσ
μ μ= − = −  

IES-4. A thin cylindrical shell of diameter d, length ‘l’ and thickness t is subjected to 
an internal pressure p. What is the ratio of longitudinal strain to hoop strain in 
terms of Poisson's ratio (1/m)? [IES-2004] 

 (a) 
2

2 1
m
m
−
+

   (b) 
2

2 1
m
m
−
−

  (c) 
2 1

2
m

m
−
−

   (d) 
2 2

1
m
m
+
−

 

IES-4. Ans. (b) ( )l
Prlongitudinal stress
2t

σ =   
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( )c

cl

l

c lc

Prhoop stress
t

1 1 1
m 2E m E 2 m

11 2m 11
2mE m E

σ

σσ

σ σ

=

− −∈ −
∴ = = =
∈ −−−

 

 
IES-5. When a thin cylinder of diameter 'd' and thickness 't' is pressurized with an 

internal pressure of 'p', (1/m = μ  is the Poisson's ratio and E is the modulus of 
elasticity), then [IES-1998] 

 (a) The circumferential strain will be equal to 
1 1

2 2
pd
tE m

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 (b) The longitudinal strain will be equal to 
11

2 2
pd
tE m

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 (c) The longitudinal stress will be equal to
2
pd

t
 

 (d) The ratio of the longitudinal strain to circumferential strain will be equal to 
2

2 1
m
m
−
−

 

IES-5. Ans. (d) Ratio of longitudinal strain to circumferential strain  

 = 
{ }

{ }

1 1 2
2

1 1 2 12

l c l l

c l l l

mm m
m

m m

σ σ σ σ

σ σ σ σ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠= =
−⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 Circumferential strain, ( )c l
c

pre 2
E E 2Et
σ σ

μ μ= − = −  

 Longitudinal strain, ( )cl
l

pre 1 2
E E 2Et

σσ
μ μ= − = −  

 
IES-6. A thin cylinder contains fluid at a pressure of 500 N/m2, the internal diameter 

of the shell is 0.6 m and the tensile stress in the material is to be limited to 9000 
N/m2. The shell must have a minimum wall thickness of nearly [IES-2000] 

 (a) 9 mm   (b) 11 mm   (c) 17 mm   (d) 21 mm 
IES-6. Ans. (c) 
IES-7. A thin cylinder with closed 

lids is subjected to internal 
pressure and supported at 
the ends as shown in figure. 

 The state of stress at point 
X is as represented in 

    
[IES-1999]
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IES-7. Ans. (a) Point 'X' is subjected to circumferential and longitudinal stress, i.e. tension on all 
faces, but there is no shear stress because vessel is supported freely outside. 

 
IES-8. A thin cylinder with both ends closed is subjected to internal pressure p. The 

longitudinal stress at the surface has been calculated as σo. Maximum shear 
stress at the surface will be equal to: [IES-1999] 

 ( ) ( ) ( ) ( )a 2  b  1.5  c   d  0.5o o o oσ σ σ σ  
IES-8. Ans. (d) 

  
2Longitudinal stress hoop stress 2  Max. shear stress 

2 2
o o o

o oand σ σ σσ σ −
= = = =  

 
IES-9. A metal pipe of 1m diameter contains a fluid having a pressure of 10 kgf/cm2. lf 

the permissible tensile stress in the metal is 200 kgf/cm2, then the thickness of 
the metal required for making the pipe would be: [IES-1993] 

 (a) 5 mm   (b) 10 mm  (c) 20 mm (d) 25 mm 

IES-9. Ans. (d) 
10 100 1000Hoop stress  200 2.5

2 2 400
pd or or t cm

t t
×

= = = =
×

 

 
IES-10. Circumferential stress in a cylindrical steel boiler shell under internal 

pressure is 80 MPa. Young's modulus of elasticity and Poisson's ratio are 
respectively 2 × 105 MPa and 0.28. The magnitude of circumferential strain in 
the boiler shell will be: [IES-1999] 

 (a) 3.44 × 10–4   (b) 3.84 × 10–4    (c) 4 × 10–4    (d) 4.56 ×10 –4 

IES-10. Ans. (a) Circumferential strain = ( )1 2
1
E

σ μσ−  

 
[ ]

1 2

6 4
5 6

Since circumferential stress  80 MPa and longitudinal stress  40 MPa
1Circumferential strain  80 0.28 40 10  3.44 x10

2 10 10

σ σ

−

= =

∴ = − × × =
× ×

 

 

IES-11. A penstock pipe of 10m diameter carries water under a pressure head of 100 m. 
If the wall thickness is 9 mm, what is the tensile stress in the pipe wall in MPa? 

[IES-2009] 
 (a) 2725   (b) 545·0  (c) 272·5  (d) 1090 

IES-11. Ans. (b) Tensile stress in the pipe wall = Circumferential stress in pipe wall = Pd
2t

 

 

2

6 2 2
3

Where, P gH 980000N / m
980000 10Tensile stress 544.44 10 N / m 544.44MN / m 544.44MPa
2 9 10−

= ρ =
×

∴ = = × = =
× ×

 

 
IES-12. A water main of 1 m diameter contains water at a pressure head of 100 metres. 

The permissible tensile stress in the material of the water main is 25 MPa. 
What is the minimum thickness of the water main? (Take g = 10 m/ 2s ). 

[IES-2009] 
 (a) 10 mm                   (b) 20mm                      (c) 50 mm                  (d) 60 mm 
IES-12. Ans. (b) Pressure in the main 6 2gh 1000 10 1000 = 10 N / mm 1000 KPa= ρ = × × =  

 ( ) ( )
c

6

6
c

PdHoop stress
2t

10 1Pd 1t m 20 mm
2 502 25 10

= σ =

∴ = = = =
σ × ×
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Longitudinal stress 
IES-13. Hoop stress and longitudinal stress in a boiler shell under internal pressure 

are 100 MN/m2 and 50 MN/m2 respectively. Young's modulus of elasticity and 
Poisson's ratio of the shell material are 200 GN/m2 and 0.3 respectively. The 
hoop strain in boiler shell is: [IES-1995] 

 (a) 0.425 310−×   (b) 0.5 310−×    (c) 0.585 310−×   (d) 0.75 310−×  

IES-13. Ans. (a) ( ) [ ] 31 1Hoopstrain = 100 0.3 50 0.425 10
200 1000h lE

σ μσ −− = − × = ×
×

 

 
IES-14. In strain gauge dynamometers, the use of how many active gauge makes the 

dynamometer more effective? [IES 2007] 
 (a) Four   (b) Three  (c) Two   (d) One 
IES-14. Ans. (b) 

Volumetric strain 
IES-15. Circumferential and longitudinal strains in a cylindrical boiler under internal 

steam pressure are 1ε  and 2ε  respectively. Change in volume of the boiler 
cylinder per unit volume will be: [IES-1993; IAS 2003] 

 2 2
1 2 1 2 1 2 1 2(a) 2 (b) (c) 2 (d)ε ε ε ε ε ε ε ε+ +      

IES-15. Ans. (c) Volumetric stream = 2 × circumferential strain + longitudinal strain 
 
IES-16. The volumetric strain in case of a thin cylindrical shell of diameter d, thickness 

t, subjected to internal pressure p is: [IES-2003; IAS 1997] 

 (a) ( ). 3 2
2
pd
tE

μ−  (b) ( ). 4 3
3
pd
tE

μ−  (c) ( ). 5 4
4
pd
tE

μ−  (d) ( ). 4 5
4
pd
tE

μ−  

 (Where E = Modulus of elasticity, μ = Poisson's ratio for the shell material) 
IES-16. Ans. (c) Remember it. 
 

Spherical Vessel 
IES-17. For the same internal diameter, wall thickness, material and internal pressure, 

the ratio of maximum stress, induced in a thin cylindrical and in a thin 
spherical pressure vessel will be: [IES-2001] 

 (a) 2     (b) 1/2    (c) 4    (d) 1/4 
IES-17. Ans. (a) 
 
IES-18. From design point of view, spherical pressure vessels are preferred over 

cylindrical pressure vessels because they [IES-1997] 
 (a) Are cost effective in fabrication 
  (b) Have uniform higher circumferential stress 
 (c) Uniform lower circumferential stress  
 (d) Have a larger volume for the same quantity of material used 
IES-18. Ans. (d) 

Previous 20-Years IAS Questions 

Circumferential or hoop stress 
IAS-1. The ratio of circumferential stress to longitudinal stress in a thin cylinder 

subjected to internal hydrostatic pressure is: [IAS 1994] 
 (a) 1/2    (b) 1   (c) 2    (d) 4 
IAS-1. Ans. (c) 
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IAS-2. A thin walled water pipe carries water under a pressure of 2 N/mm2 and 

discharges water into a tank. Diameter of the pipe is 25 mm and thickness is 
2·5 mm. What is the longitudinal stress induced in the pipe? [IAS-2007] 

 (a) 0   (b) 2 N/mm2   (c) 5 N/mm2  (d) 10 N/mm2 

IAS-2. Ans. (c) 2Pr 2 12.5 5 N/mm
2 2 2.5t

σ ×
= = =

×
 

 
IAS-3. A thin cylindrical shell of mean diameter 750 mm and wall thickness 10 mm has 

its ends rigidly closed by flat steel plates. The shell is subjected to internal 
fluid pressure of 10 N/mm2 and an axial external pressure P1. If the 
longitudinal stress in the shell is to be zero, what should be the approximate 
value of P1? [IAS-2007] 

 (a) 8 N/mm2   (b) 9 N/mm2  (c) 10 N/mm2  (d) 12 N/mm2 

 

IAS-3. Ans. (c)  Tensile longitudinal stress due to internal fluid pressure (δ 1) t = 

275010
4

750 10

π

π

⎛ ⎞×
×⎜ ⎟
⎝ ⎠
× ×

  

tensile. Compressive longitudinal stress due to external pressure p1 ( δ l)c =
2

1
750
4

750 10

P π

π

⎛ ⎞×
×⎜ ⎟
⎝ ⎠
× ×

 compressive. For zero longitudinal stress (δ l) t = (δ l)c. 

IAS-4. Assertion (A): A thin cylindrical shell is subjected to internal fluid pressure 
that induces a 2-D stress state in the material along the longitudinal and 
circumferential directions. [IAS-2000] 

 Reason(R): The circumferential stress in the thin cylindrical shell is two times 
the magnitude of longitudinal stress. 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 

IAS-4. Ans. (b) For thin cell 
Pr Pr

2c lt t
σ σ= =  

 
IAS-5. Match List-I (Terms used in thin cylinder stress analysis) with List-II 

(Mathematical expressions) and select the correct answer using the codes 
given below the lists: [IAS-1998] 

 List-I  List-II  
 A. Hoop stress 1. pd/4t 
 B. Maximum shear stress 2. pd/2t 
 C. Longitudinal stress 3. pd/2σ 
 D. Cylinder thickness 4. pd/8t 
 Codes:  A  B  C D  A  B  C D 
  (a)  2  3  1 4 (b)  2  3  4 1 
  (c)  2  4  3 1 (d)  2  4  1 3 
IAS-5. Ans. (d) 

Longitudinal stress 
IAS-6. Assertion (A): For a thin cylinder under internal pressure, At least three strain  

gauges is needed to know the stress state completely at any point on the shell.  Page 316 of 429
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 Reason (R): If the principal stresses directions are not know, the minimum 
number of strain gauges needed is three in a biaxial field.  [IAS-2001] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-6. Ans. (d) For thin cylinder, variation of radial strain is zero. So only circumferential and 

longitudinal strain has to measurer so only two strain gauges are needed.  

Maximum shear stress 
IAS-7. The maximum shear stress is induced in a thin-walled cylindrical shell having 

an internal diameter 'D' and thickness’t’ when subject to an internal pressure 
'p' is equal to: [IAS-1996] 

 (a) pD/t   (b) pD/2t  (c) pD/4t   (d) pD/8t 

IAS-7. Ans. (d)  c l
c l max

PD PD PDHoop stress( ) and Longitudinalstress( )
2t 4t 2 8t

σ σ
σ σ τ

−
= = ∴ = =  

Volumetric strain 
IAS-8. Circumferential and longitudinal strains in a cylindrical boiler under internal 

steam pressure are 1ε  and 2ε  respectively. Change in volume of the boiler 

cylinder per unit volume will be: [IES-1993; IAS 2003] 

 2 2
1 2 1 2 1 2 1 2(a) 2 (b) (c) 2 (d)ε ε ε ε ε ε ε ε+ +      

IAS-8. Ans. (c) Volumetric stream = 2 x circumferential strain + longitudinal strain. 
IAS-9. The volumetric strain in case of a thin cylindrical shell of diameter d, thickness 

t, subjected to internal pressure p is: [IES-2003; IAS 1997] 

 (a) ( ). 3 2
2
pd
tE

μ−  (b) ( ). 4 3
3
pd
tE

μ−  (c) ( ). 5 4
4
pd
tE

μ−  (d) ( ). 4 5
4
pd
tE

μ−  

 (Where E = Modulus of elasticity, μ = Poisson's ratio for the shell material) 
IAS-9. Ans. (c) Remember it. 
 
IAS-10. A thin cylinder of diameter ‘d’ and thickness 't' is subjected to an internal 

pressure 'p' the change in diameter is (where E is the modulus of elasticity and 
μ is the Poisson's ratio) [IAS-1998] 

 (a) 
2

(2 )
4
pd
tE

μ−  (b)
2

(1 )
2
pd
tE

μ+   (c) 
2

(2 )pd
tE

μ+  (d) 
2

(2 )
4
pd
tE

μ+  

IAS-10. Ans. (a) 
 
IAS-11. The percentage change in volume of a thin cylinder under internal pressure 

having hoop stress = 200 MPa, E = 200 GPa and Poisson's ratio = 0·25 is: 
[IAS-2002] 

 (a) 0.40   (b) 0·30   (c) 0·25   (d) 0·20 

IAS-11. Ans. (d) ( ) 6PrHoop stress 200 10t aP
t

σ = = ×  
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( ) ( )

( )
6

9

PrVolumetric strain ( ) 5 4 5 4
2 2

200 10 25 4 0.25
2 200 10 1000

t
ve

Et E
σμ μ= − = −

×
= − × =

× ×

 

 
IAS-12. A round bar of length l, elastic modulus E and Poisson's ratio μ is subjected to 

an axial pull 'P'. What would be the change in volume of the bar? [IAS-2007] 

 (a) 
(1 2 )

Pl
Eμ−

  (b) 
(1 2 )Pl

E
μ−

  (c) 
Pl
E
μ

  (d) 
Pl
Eμ

 

IAS-12. Ans. (b)  

 
, 0 and 0

or ,

x y z

x x
x y

P
A

E E

σ σ σ

σ σε ε μ

= = =

= = −
  

 ( ) ( )

( )

and 

or 1 2 1 2

. 1 2

x
z

x
v x y z

v v

E
P

E AE
PlV V Al
E

σε μ

σε ε ε ε μ μ

δ ε ε μ

= −

= + + = − = −

= × = = −

 

 
IAS-13. If a block of material of length 25 cm. breadth 10 cm and height 5 cm undergoes 

a volumetric strain of 1/5000, then change in volume will be: [IAS-2000] 
 (a) 0.50 cm3  (b) 0.25 cm3  (c) 0.20 cm3   (d) 0.75 cm3 
IAS-13. Ans. (b)  

 
3

Volumechange(δV)Volumetricstrain( )
Initial volume(V)

1or ( ) 25 10 5 0.25
5000

v

vV V cm

ε

δ ε

=

= × = × × × =
 

  

Page 318 of 429



Chapter-10 Thin Cylinder S K Mondal’s 

 

 

Previous Conventional Questions with Answers 

Conventional Question GATE-1996 
Question: A thin cylinder of 100 mm internal diameter and 5 mm thickness is subjected 

to an internal pressure of 10 MPa and a torque of 2000 Nm. Calculate the 
magnitudes of the principal stresses.     

Answer: Given: d = 100 mm = 0.1 m; t = 5 mm = 0.005 m; D = d + 2t = 0.1 + 2 x 0.005 = 
 0.11 m p = 10 MPa, 10 x 106N/m2; T= 2000 Nm. 

 Longitudinal stress, 
6

6 2 2
l x

pd 10 10 0.1 50 10 N / m 50MN / m
4t 4 0.005

σ σ × ×
= = = = × =

×
 

 Circumferential stress, c y
pd
2t

σ σ= = =
6

210 10 0.1 100MN / m
2 0.005
× ×

=
×

 

 To find the shear stress, using Torsional equation, 

 

( )
( )

( )
2

xy
4 4 4 4

T ,we have
J R

2000 0.05 0.005TR T R 24.14MN / m
J D d 0.11 0.1

32 32

τ

τ τ
π π

=

× +×
= = = = =

− −

 

 Principal stresses are: 

 

( )

( )

( )
( )

2
2x y x y

1 2 xy

2
2

2

2
1

2
2

,
2 2

50 100 50 100 24.14
2 2

75 34.75 109.75 and 40.25MN / m
Major principal stress 109.75MN / m ;

minor principal stress 40.25MN / m ;

σ σ σ σ
σ τ

σ

σ

+ −⎛ ⎞
= ± +⎜ ⎟

⎝ ⎠

+ −⎛ ⎞= ± +⎜ ⎟
⎝ ⎠

= ± =

=

=

 

 
Conventional Question IES-2008 
Question: A thin cylindrical pressure vessel of inside radius ‘r’ and thickness of metal ‘t’ 

is subject to an internal fluid pressure p. What are the values of  
 (i) Maximum normal stress? 
 (ii) Maximum shear stress? 

Answer: Circumferential (Hoop) stress( )cσ =
.p r
t

 

 Longitudinal stress( )σA =
.

2
=

p r
t

 

 Therefore (ii) Maximum shear stress, ( τ max) =
.r

2 4
σ σ−

=Ac p
t

 

 

Conventional Question IES-1996 
Question: A thin cylindrical vessel of internal diameter d and thickness t is closed at 

both ends is subjected to an internal pressure P. How much would be the 
hoop and longitudinal stress in the material? 

Answer: For thin cylinder we know that  Page 319 of 429
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 Hoop or circumferential stress ( )σ
2c
Pd

t
=  

 And longitudinal stress( )σA =
4
Pd

t
 

 Therefore σ 2σc = A  
 
Conventional Question IES-2009 
Q.  A cylindrical shell has the following dimensions: 
  Length = 3 m 
  Inside diameter = 1 m 
  Thickness of metal = 10 mm 
  Internal pressure = 1.5 MPa 
  Calculate the change in dimensions of the shell and the maximum intensity of 

shear stress induced. Take E = 200 GPa and Poisson’s ratio ν = 0.3           [15-Marks] 
 
Ans.   We can consider this as a thin cylinder. 

  Hoop stresses,  

  Longitudinal stresses,  

  Shear stress =  

     

   Hence from the given data 

   
6

8
1 3

1.5 10 1 0.75 10
2 10 10−

× ×
σ = = ×

× ×
 

     

    

6
6

2 3
1.5 10 1 37.5 10
4 10 10

37.5 MPa
−

× ×
σ = = ×

× ×
=

 

    

( )

( )

( )

( )

1

1 1 2

6

3 9

6

9

3

3

 Hoop strain
1 v
E

Pd 2 v
4tE

1.5 10 1 2 0.3
4 10 10 200 10
37.5 10 2 0.3
200 10
0.31875 10
d 0.3187 10

d

−

−

−

ε

ε = σ − σ

= −

× ×
= −

× × × ×
×

= −
×

= ×
Δ

= ×

 

    3
 change in diameter,
d = 1 × 0.31875 × 10  m

 = 0.31875 mm

−

∴

Δ  

1
pd
2t

σ =

2
pd
4t

σ =

1 2
2

σ − σ

pd
8t

=

75 MPa=
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( )

( )

2

2

6

9

5

5

5

4

Logitudinal strain, 
pd 1 2v
4tE

37.5 10 1 2 0.3
200 10
7.5 10
l 7.5 10

l
or l 7.5 10 3

2.25 10 m 0.225mm

−

−

−

−

ε

∈ = −

×
= − ×

×
= ×
Δ

= ×

Δ = × ×

= × =

 

 
  ⇒ Change in length = 0.225 mm and maximum shear stress, 

   

 
 
Conventional Question IES-1998 
Question: A thin cylinder with closed ends has an internal diameter of 50 mm and a 

wall thickness of 2.5 mm. It is subjected to an axial pull of 10 kN and a torque 
of 500 Nm while under an internal pressure of 6 MN/m2 

 (i) Determine the principal stresses in the tube and the maximum shear 
stress. 

 (ii) Represent the stress configuration on a square element taken in the load 
direction with direction and magnitude indicated; (schematic). 

Answer: Given: d = 50 mm = 0.05 m D = d + 2t = 50 + 2 x 2.5 = 55 mm = 0.055 m; 
 Axial pull, P = 10 kN; T= 500 Nm; p = 6MN/m2 

 (i) Principal stresses ( 1 2,σ ) in the tube and the maximum shear stress ( maxt ): 

 

6 3

x 3 3

6 6 6 2

6
6

y 3

pd P 6 10 0.05 10 10
4t dt 4 2.5 10 0.05 2.5 10
30 10 25.5 10 55.5 10 N / m

pd 6 10 0.05 60 10
2t 2 2.5 10

σ
π π

σ

− −

−

× × ×
= + = +

× × × × ×
= × + × = ×

× ×
= = = ×

× ×

 

 Principal stresses are: 

 

( )

( )

( ) ( ) ( )

( )

x y x y 2
1 2 xy

4 44 4 7 4

, 1
2 2

TUseTorsional equation, i
J R

where J D d 0.055 0.05 2.848 10 m
32 32

J polar moment of inertia

σ σ σ σ
σ τ

τ

π π −

+ −⎛ ⎞ ⎛ ⎞
= ± + − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − − −

⎡ ⎤= − = − = ×⎣ ⎦

=

 

 ( )Substituting the values in i ,we get  

6

3
pd 1.5 10 1
8t 8 10 10

18.75 MPa
−

× ×
σ = =

× ×
=
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( )

( )

7

6 2
7

500
0.055 / 22.848 10

500 0.055 / 2
or 48.28 10 N / m

2.848 10

τ

τ

−

−

=
×

×
= = ×

×

 

 Now, substituting the various values in eqn. (i), we have 

 

( )
6 6 6 6 26

1 2

6
12 12

6 6 2 2

2 2
1 2

55.5 10 60 10 55.5 10 60 10, 48.28 10
2 2

(55.5 60) 10 4.84 10 2330.96 10
2

57.75 10 48.33 10 106.08MN / m ,9.42MN / m
Principal stresses are : 106.08MN / m ; 9.42MN / m

Maximum shea

σ

σ σ

⎛ ⎞ ⎛ ⎞× + × × − ×
= ± + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ ×
= ± × + ×

= × ± × =

= =

21 2
max

106.08 9.42r stress, 48.33MN / m
2 2

σ σ
τ

− −
= = =

 

 ( )ii Stress configuration on a square element :  

  
 
 
 

Page 322 of 429



 

 

 

 11.   Thick Cylinder 

Theory at a Glance (for IES, GATE, PSU)  
1. Thick cylinder 

 iInner dia of the cylinder (d ) 15 or 20
wall thickness (t)

<  

 

2. General Expression 

  
 

3. Difference between the analysis of stresses in thin & thick cylinders 

• In thin cylinders, it is assumed that the tangential stress tσ is uniformly distributed over 

the cylinder wall thickness. 

In thick cylinder, the tangential stress tσ has the highest magnitude at the inner surface of 

the cylinder & gradually decreases towards the outer surface. 

• The radial stress rσ  is neglected in thin cylinders while it is of significant magnitude in case 

of thick cylinders. 

 

4. Strain 

• Radial strain,   .r
du
dr

∈ =  

• Circumferential /Tangential strain  t
u
r

∈ =  

• Axial strain, tz r
z E E E

σσ σμ
⎛ ⎞

∈ = − +⎜ ⎟
⎝ ⎠
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5. Stress 

• Axial stress, 
2

2 2
0

σ =
−
i i

z
i

p r
r r

 

• Radial stress, 2r
BA
r

σ = −  

• Circumferential /Tangential stress, 2t
BA
r

σ = +  

[Note: Radial stress always compressive so its magnitude always –ive. But in some books they 

assume that compressive radial stress is positive and they use, 2σ = −r
B A
r

] 

 

6. Boundary Conditions 

           At = ir r ,          σ = −r ip  

            At     = or r  r opσ = −  

 

7. 
2 2

2 2

−
=

−
i i o o

o i

p r p rA
r r

 and     
2 2

2 2( )
( )

= −
−

i o
i o

o i

r rB p p
r r

 

 
 

8. Cylinders with internal pressure (pi) i.e. 0op =  

• 
2

2 2
0

σ =
−
i i

z
i

p r
r r

 

• 
2 2

0
2 2 2

0

1σ
⎡ ⎤

= − −⎢ ⎥− ⎣ ⎦
i i

r
i

p r r
r r r

    [ -ive means compressive stress] 

• 
2 2

0
2 2 2

0

1σ
⎡ ⎤

= + +⎢ ⎥− ⎣ ⎦
i i

t
i

p r r
r r r

 

 

(a) At the inner surface of the cylinder 

 

r
2 2

t 2 2

2

max 2 2

( )     

( ) 

( )( ) 

( ) .

i

i

i o i

o i

o
i

o i

i r r

ii p

p r riii
r r

riv p
r r

σ

σ

τ

=

= −

+
= +

−

=
−

  

       (b) At the outer surface of the cylinder 
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2

i
2 2

( ) r = r

( ) 0

2p r( ) =  

σ

σ

=

−

o

r

i
t

o i

i

ii

iii
r r

 

        (c) Radial and circumferential stress distribution within the cylinder wall when only 

internal pressure acts. 

 
  

9. Cylinders with External Pressure (po) i.e. 0ip =  

• 
2 2

r 2 2 2σ
⎡ ⎤

= − −⎢ ⎥− ⎣ ⎦
o o i

o i

p r ri
r r r

 

• 
2 2

2 2 2σ
⎡ ⎤

= − +⎢ ⎥− ⎣ ⎦
o o i

t
o i

p r ri
r r r

 

      (a) At the inner surface of the cylinder 

 (i) r = ir  

 (ii) r oσ =  

 (iii) 
2

2 2

2σ = −
−
o o

t
o i

p r
r r

 

      (b) At the outer surface of the cylinder 

 (i) r = ro 

 (ii) r opσ = −  

 (iii) 
2 2

2 2

( )σ +
= −

−
o o i

t
o i

p r r
r r

 

     (c) Distribution of radial and circumferential stresses within the cylinder wall when 

only external pressure acts 
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10. Lame's Equation [for Brittle Material, open or closed end] 
There is a no of equations for the design of thick cylinders. The choice of equation depends upon two 

parameters. 

• Cylinder Material (Whether brittle or ductile) 

• Condition of Cylinder ends (open or closed) 
 

When the material of the cylinder is brittle, such as cast iron or cast steel, Lame's Equation is used to 

determine the wall thickness. Condition of cylinder ends may open or closed. 
 

It is based on maximum principal stress theory of failure. 
 

There principal stresses at the inner surface of the cylinder are as follows: (i) (ii) & (iii) 

 
2 2

0
t 2 2

0
2

z 2 2

( ) 

( )( ) 

( ) 

σ

σ

σ

= −

+
= +

−

= +
−

r i

i i

i

i i

o i

i p

p r rii
r r

p riii
r r

 

• tσ σ σ> >z r  

• t  is the criterion of designσ  o

i

 σ
σ

+
=

−
t i

t i

r p
r p

  

• For o ir r t= +  

•  t 1σ
σ

⎡ ⎤+
= × −⎢ ⎥

−⎢ ⎥⎣ ⎦

t i
i

t i

pr
p

( '  )Lame s Equation  

• t
σσ = ult

fos
 

11. Clavarino's Equation [for cylinders with closed end & made of ductile material] 
When the material of a cylinder is ductile, such as mild steel or alloy steel, maximum strain theory 

of failure is used (St. Venant's theory) is used.  
 

Three principal stresses at the inner surface of the cylinder are as follows (i) (ii) & (iii) 
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r
2 2

2 2

2

2 2

( ) 

( )( )
( )

( )
( )

σ

σ

σ

= −

+
= +

−

= +
−

i

i o i
t

o i

i i
z

o i

i p

p r rii
r r

p riii
r r

 

• ( )1 σ σ σ⎡ ⎤∈ = − +⎣ ⎦t t r zE
 

• 
/σσ

∈ = = yld
t

fos
E E

 

• Or yld( ).  Where =
fos
σ

σ σ μ σ σ σ= − +t r z  

• σ  is the criterion of design 
 

  
(1 2 )
(1 )

σ μ
σ μ
+ −

=
− +

o i

i i

r p
r p

 

 

• For ro = ri + t 

  
(1 2 ) 1  
(1 )

σ μ
σ μ

⎡ ⎤+ −
= −⎢ ⎥− +⎣ ⎦

i
i

i

pt r
p

( )Clavarion's Equation  

 

12. Birne's Equation  [for cylinders with open end & made of ductile material] 
When the material of a cylinder is ductile, such as mild steel or alloy steel, maximum strain theory 

of failure is used (St. Venant's theory) is used.  
 

Three principal stresses at the inner surface of the cylinder are as follows (i) (ii) & (iii) 

 

r

2 2

2 2

( ) 

( )( )
( )

( ) 0

σ

σ

σ

= −

+
= +

−

=

i

i o i
t

o i

z

i p

p r rii
r r

iii

 

• yld                        where =
fos
σ

σ σ μσ σ= −t r  

• σ  is the criterion of design 

  
(1 )
(1 )

σ μ
σ μ
+ −

=
− +

o i

i i

r p
r p

 

• For ro = ri + t 

  
(1 ) 1
(1 )

σ μ
σ μ

⎡ ⎤+ −
= × −⎢ ⎥− +⎣ ⎦

i
i

i

pt r
p

        (Birnie's Equation)  

 

13. Barlow’s equation: [for high pressure gas pipe brittle or ductile material] 
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  i
o

t

pt r
σ

=                              [GAIL exam 2004] 

Where y
t for ductile material

fos
σ

σ =  

                ult for brittle material
fos
σ

=  

 

14. Compound Cylinder (A cylinder & A Jacket) 
• When two cylindrical parts are assembled by shrinking or press-fitting, a contact pressure is 

created between the two parts. If the radii of the inner cylinder are a and c and that of the 

outer cylinder are (c- δ ) and b, δ being the radial interference the contact pressure is given 

by: 

  
( )2 2 2 2

2 2 2

( )
2 ( )

b c c aEP
c c b a
δ ⎡ ⎤− −⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

 Where E is the Young's modulus of the material 

• The inner diameter of the jacket is slightly smaller than the outer diameter of cylinder 

• When the jacket is heated, it expands sufficiently to move over the cylinder 

• As the jacket cools, it tends to contract onto the inner cylinder, which induces residual 

compressive stress. 

• There is a shrinkage pressure 'P' between the cylinder and the jacket. 

• The pressure 'P' tends to contract the cylinder and expand the jacket 

• The shrinkage pressure 'P' can be evaluated from the above equation for a given amount of 

interference δ  

• The resultant stresses in a compound cylinder are found by supervision losing the 2- stresses 

 stresses due to shrink fit 

 stresses due to internal pressure 

Derivation: 

 

 

j

δ

δ

δ δ δ

j

c

c

Due to interference let us assume increase in inner diameter 

of jacket and decrease in outer diameter of cylinder.

so =  +  i.e. without sign.

=

=  
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[ ]

( )
( )

j

µ

δ

σ µσ

t
2 2 2 2

2 2 2 2

r

Now tangential strain

1             =

σ =circumferential stress

cP p(b +c )              = ( )     +
E b -c

σ =-p radialstress

j j

t r

c

c
E

b c i
b c

⎡ ⎤=∈ ∈ =⎢ ⎥⎣ ⎦

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥+⎢ ⎥ ⎢ ⎥+ −−−⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

[ ] ( )

µ

σ
δ σ µσ

σ

-

2 2

t 2 2

2 2

2 2

( )
1And in similar way  =

cP              =- ( )    Here -ivesignrepresentscontraction 
E

c c t r

r

p c a
c ac c

E
p

c a ii
c a

⎡ ⎤+⎢ ⎥=−⎢ ⎥−=∈ − ⎢ ⎥
⎢ ⎥

=−⎢ ⎥⎣ ⎦
⎡ ⎤+⎢ ⎥ −−−⎢ ⎥−⎣ ⎦

 

δδ δ δ
2 2 2 2 2 2 2

2 2 2 2 2 2 2

Adding ( ) & ( )

2 ( ) ( )( )     or
( )( ) 2 ( )j c

i ii

Pc c b a E b c c aP
E cb c c a c b a

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥∴ = + = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

 

15. Autofrettage  
Autofrettage is a process of pre-stressing the cylinder before using it in operation. 
 

We know that when the cylinder is subjected to internal pressure, the circumferential stress at the 

inner surface limits the pressure carrying capacity of the cylinder. 
 

In autofrettage pre-stressing develops a residual compressive stresses at the inner surface. When 

the cylinder is actually loaded in operation, the residual compressive stresses at the inner surface 

begin to decrease, become zero and finally become tensile as the pressure is gradually increased. 

Thus autofrettage increases the pressure carrying capacity of the cylinder. 

 

16. Rotating Disc 
The radial & circumferential (tangential) stresses in a rotating disc of uniform thickness are given 

by  
 

    ( )
2 22

2 2 20
0 23

8
ρωσ μ

⎛ ⎞
= + + − −⎜ ⎟

⎝ ⎠
i

r i
R RR R r

r
 

    ( )
2 22

2 2 20
0 2

1 33 .
8 3

ρω μσ μ
μ

⎛ ⎞+
= + + + −⎜ ⎟+⎝ ⎠

i
t i

R RR R r
r

 

Where Ri = Internal radius 

            Ro = External radius 

            ρ = Density of the disc material 

           ω  = Angular speed 

            μ = Poisson's ratio. 
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Or, Hoop’s stress, 2 2 2
0

μ3 1 μσ . .
4 3 μ

ρω
⎡ ⎤⎛ ⎞+ −⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠⎣ ⎦

t iR R  

Radial stress, 2 2 2
0

3 .
8
μσ ρω+⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎣ ⎦⎝ ⎠

r iR R  
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Lame's theory 
GATE-1. A thick cylinder is subjected to an internal pressure of 60 MPa. If the hoop 

stress on the outer surface is 150 MPa, then the hoop stress on the internal 
surface is: [GATE-1996; IES-2001] 

 (a) 105 MPa   (b) 180 MPa   (c) 210 MPa   (d) 135 MPa 
GATE-1. Ans. (c) If internal pressure = pi;   External pressure = zero 

 Circumferential or hoop stress (σc) = 
22
oi i

2 2 2
o i

rp r
1

r r r
⎡ ⎤

+⎢ ⎥− ⎣ ⎦
 

 At i c op 60MPa, 150MPa and r rσ= = =  

 

222 2 2
o oi i i

2 2 2 2 2 2 2
io i o o i o i

i

22
oi

c 2 2 2
o i i

r rr r r 150 5 9150 60 1 120 or or
120 4 r 5r r r r r r r

at r r

rr 5 960 1 60 1 210 MPa
4 5r r r

σ

⎡ ⎤ ⎛ ⎞
∴ = + = = = =⎜ ⎟⎢ ⎥− − − ⎝ ⎠⎣ ⎦
∴ =

⎡ ⎤ ⎛ ⎞= + = × × + =⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎣ ⎦

 

Previous 20-Years IES Questions 

Thick cylinder 
IES-1. If a thick cylindrical shell is subjected to internal pressure, then hoop stress, 

radial stress and longitudinal stress at a point in the thickness will be: 
 (a) Tensile, compressive and compressive respectively [IES-1999] 
 (b) All compressive 
 (c) All tensile 
 (d) Tensile, compressive and tensile respectively 
IES-1. Ans. (d) Hoop stress – tensile, radial stress – compressive and longitudinal stress – tensile. 

  
 Radial and circumferential stress 

distribution within the cylinder wall 
when only internal pressure acts. 

 
Distribution of radial and circumferential 
stresses within the cylinder wall when only 
external pressure acts. 

IES-2. Where does the maximum hoop stress in a thick cylinder under external 
pressure occur? [IES-2008] 

 (a) At the outer surface     (b) At the inner surface  
 (c) At the mid-thickness    (d) At the 2/3rd outer radius  
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IES-2. Ans. (b)  
 Circumferential or hoop stress = tσ  

 
 
IES-3. In a thick cylinder pressurized from inside, the hoop stress is maximum at 
 (a) The centre of the wall thickness (b) The outer radius [IES-1998] 
 (c) The inner radius    (d) Both the inner and the outer radii 
IES-3. Ans. (c) 
 
IES-4. Where does the maximum hoop stress in a thick cylinder under external 

pressure occur? [IES-2008] 
 (a) At the outer surface (b) At the inner surface  
 (c) At the mid-thickness (d) At the 2/3rd outer radius  
IES-4. Ans. (a) Maximum hoop stress in thick cylinder under external pressure occur at the outer 

surface. 

 
 
IES-5. A thick-walled hollow cylinder having outside and inside radii of 90 mm and 40 

mm respectively is subjected to an external pressure of 800 MN/m2. The 
maximum circumferential stress in the cylinder will occur at a radius of 

[IES-1998] 
 (a) 40 mm    (b) 60 mm   (c) 65 mm   (d) 90 mm 
IES-5. Ans. (a) 
 
IES-6. In a thick cylinder, subjected to internal and external pressures, let r1 and r2 be 

the internal and external radii respectively. Let u be the radial displacement of 
a material element at radius r, 2 1r r r≥ ≥ . Identifying the cylinder axis as z axis, 
the radial strain component rrε is: [IES-1996] 

 (a) u/r   (b) /u θ   (c) du/dr  (d) du/dθ 
IES-6. Ans. (c) The strains εr and εθ may be given by 
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 ( )
θ

θ θ

ε σ σ σ

θ θ
ε σ σ

θ

∂
= = − =⎡ ⎤⎣ ⎦∂

+ Δ − Δ
= = = −⎡ ⎤⎣ ⎦Δ

1 since 0

1

r
r r z

r r
r

u v
r E

r u r u v
r r E

 

  
 

Representation of radial and 
circumferential strain. 

Lame's theory 
IES-7. A thick cylinder is subjected to an internal pressure of 60 MPa. If the hoop 

stress on the outer surface is 150 MPa, then the hoop stress on the internal 
surface is: [GATE-1996; IES-2001] 

 (a) 105 MPa   (b) 180 MPa   (c) 210 MPa   (d) 135 MPa 
 
IES-7. Ans. (c) If internal pressure = pi;   External pressure = zero 

 Circumferential or hoop stress (σc) = 
22
oi i

2 2 2
o i

rp r
1

r r r
⎡ ⎤

+⎢ ⎥− ⎣ ⎦
 

 At i c op 60MPa, 150MPa and r rσ= = =  

 

222 2 2
o oi i i

2 2 2 2 2 2 2
io i o o i o i

i

22
oi

c 2 2 2
o i i

r rr r r 150 5 9150 60 1 120 or or
120 4 r 5r r r r r r r

at r r

rr 5 960 1 60 1 210 MPa
4 5r r r

σ

⎡ ⎤ ⎛ ⎞
∴ = + = = = =⎜ ⎟⎢ ⎥− − − ⎝ ⎠⎣ ⎦
∴ =

⎡ ⎤ ⎛ ⎞= + = × × + =⎢ ⎥ ⎜ ⎟− ⎝ ⎠⎣ ⎦

 

 
IES-8. A hollow pressure vessel is subject to internal pressure. [IES-2005] 
 Consider the following statements: 
 1. Radial stress at inner radius is always zero. 
 2. Radial stress at outer radius is always zero. 
 3. The tangential stress is always higher than other stresses. 
 4. The tangential stress is always lower than other stresses. 
 Which of the statements given above are correct? 
 (a) 1 and 3   (b) 1 and 4  (c) 2 and 3   (d) 2 and 4 
IES-8. Ans. (c) 
 
IES-9. A thick open ended cylinder as shown in the 

figure is made of a material with permissible 
normal and shear stresses 200 MPa and 100 MPa 
respectively. The ratio of permissible pressure 
based on the normal and shear stress is:  

[di = 10 cm; do = 20 cm] 
 (a) 9/5     (b) 8/5 
 (c) 7/5    (d) 4/5 
 

 
[IES-2002]

IES-9. Ans. (b) 

Longitudinal and shear stress 
IES-10. A thick cylinder of internal radius and external radius a and b is subjected to 

internal pressure p as well as external pressure p. Which one of the following 
statements is correct? [IES-2004] 

 The magnitude of circumferential stress developed is: 
 (a) Maximum at radius r = a  (b) Maximum at radius r = b 
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 (c) Maximum at radius r = ab   (d) Constant 
IES-10. Ans. (d)  

 
( )

2 2 2 2
i i o o

c 2 2 2 2 2
o i

2 2
i o o i

c 2 2
o i

Pr P rB Pa PbA A P
r r r b a

P P r r
P B o

r r

σ

σ

− −
= + = = = −

− −

−
∴ = − = =

−

 

 
IES-11. Consider the following statements: [IES-2007] 
 In a thick walled cylindrical pressure vessel subjected to internal pressure, the 

Tangential and radial stresses are: 
 1. Minimum at outer side 
 2. Minimum at inner side 
 3. Maximum at inner side and both reduce to zero at outer wall 
 4. Maximum at inner wall but the radial stress reduces to zero at outer wall 
  Which of the statements given above is/are correct? 
 (a) 1 and 2 (b) 1 and 3 (c) 1 and 4 (d) 4 only 
IES-11. Ans. (c) 
 
IES-12. Consider the following statements at given point in the case of thick cylinder 

subjected to fluid pressure: [IES-2006] 
 1. Radial stress is compressive 
 2. Hoop stress is tensile 
 3. Hoop stress is compressive 
 4. Longitudinal stress is tensile and it varies along the length 
 5. Longitudinal stress is tensile and remains constant along the length of the 

cylinder 
 Which of the statements given above are correct? 
 (a) Only 1, 2 and 4  (b) Only 3 and 4 (c) Only 1,2 and 5  (d) Only 1,3 and 5 
IES-12. Ans. (c) 3. For internal fluid pressure Hoop or circumferential stress is tensile. 
 4. Longitudinal stress is tensile and remains constant along the length of the cylinder. 
 
IES-13. A thick cylinder with internal diameter d and outside diameter 2d is subjected 

to internal pressure p. Then the maximum hoop stress developed in the 
cylinder is: [IES-2003] 

 (a) p     (b) 
2
3

p   (c) 
5
3

p    (d) 2p 

IES-13. Ans. (c) In thick cylinder, maximum hoop stress 
2

2
2 2

2 1
22 2

2 1 2

52
3

2

hoop

dd
r rp p p
r r dd

σ

⎛ ⎞+ ⎜ ⎟+ ⎝ ⎠= × = × =
− ⎛ ⎞− ⎜ ⎟

⎝ ⎠

 

Compound or shrunk cylinder 
IES-14. Autofrettage is a method of: [IES-1996; 2005; 2006] 
 (a) Joining thick cylinders   (b) Relieving stresses from thick cylinders 
 (c) Pre-stressing thick cylinders  (d) Increasing the life of thick cylinders 
IES-14. Ans. (c) 
 
IES-15. Match List-I with List-II and select the correct answer using the codes given 

below the Lists: [IES-2004] 
 List-I List-II 
 A. Wire winding 1. Hydrostatic stress 
 B. Lame's theory 2. Strengthening of thin cylindrical shell 
 C. Solid sphere subjected to uniform 3. Strengthening of thick cylindrical shell 
  pressure on the surface  
 D. Autofrettage 4. Thick cylinders 
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 Coeds: A B C D  A B C D 
  (a)  4 2  1  3  (b)  4  2  3  1 
  (c)  2  4  3  1  (d)  2  4  1  3 
IES-15. Ans. (d) 
 
IES-16. If the total radial interference between two cylinders forming a compound 

cylinder is δ and Young's modulus of the materials of the cylinders is E, then 
the interface pressure developed at the interface between two cylinders of the 
same material and same length is: [IES-2005] 

 (a) Directly proportional of E x δ  (b) Inversely proportional of E/ δ 
 (c) Directly proportional of E/ δ  (d) Inversely proportional of E / δ 
 
IES-16. Ans. (a)    

  

( )
( )( )

2 2 2
2 3 12

2 2 2 2
3 2 2 1

2D D DPD
E D D D D

P E.

δ

α δ

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎡ ⎤− −⎣ ⎦⎣ ⎦

∴

 

 
Alternatively : if E then P
and if then P so P Eδ α δ

↑ ↑

↑ ↑
 

 

 
IES-17. A compound cylinder with inner radius 5 cm and outer radius 7 cm is made by 

shrinking one cylinder on to the other cylinder. The junction radius is 6 cm 
and the junction pressure is 11 kgf/cm2. The maximum hoop stress developed in 
the inner cylinder is: [IES-1994] 

 (a) 36 kgf/cm2 compression    (b) 36 kgf/cm2 tension 
 (c) 72 kgf/cm2 compression    (d) 72 kgf/cm2 tension. 
IES-17. Ans. (c) 

Thick Spherical Shell 
IES-18. The hemispherical end of a pressure vessel is fastened to the cylindrical 

portion of the pressure vessel with the help of gasket, bolts and lock nuts. The 
bolts are subjected to: [IES-2003] 

 (a) Tensile stress  (b) Compressive stress (c) Shear stress       (d) Bearing stress 
IES-18. Ans. (a) 

Previous 20-Years IAS Questions 

Longitudinal and shear stress 
IAS-1. A solid thick cylinder is subjected to an external hydrostatic pressure p. The 

state of stress in the material of the cylinder is represented as: [IAS-1995] 
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IAS-1. Ans. (c) 

 
 Distribution of radial and circumferential stresses within the cylinder wall when only 

external pressure acts. 
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Previous Conventional Questions with Answers 

Conventional Question IES-1997 
Question: The pressure within the cylinder of a hydraulic press is 9 MPa. The inside 

diameter of the cylinder is 25 mm. Determine the thickness of the cylinder 
wall, if the permissible tensile stress is 18 N/mm2 

Answer: Given: P = 9 MPa = 9 N/mm2, Inside radius, r1 = 12.5 mm; 
 tσ  = 18 N/mm2 

 Thickness of the cylinder: 

 

2 2
2 1

t 2 2
2 1

2 2
2
2 2
2

2

2 1

r rUsing the equation; p ,we have
r r

r 12.518 9
r 12.5

or r 21.65mm
Thickness of the cylinder r r 21.65 12.5 9.15mm

σ
⎡ ⎤+

= ⎢ ⎥−⎣ ⎦
⎡ ⎤+

= ⎢ ⎥−⎣ ⎦
=

∴ = − = − =

 

 
Conventional Question IES-2010   
Q.  A spherical shell of 150 mm internal diameter has to withstand an internal 

pressure of 30 MN/m2. Calculate the thickness of the shell if the allowable 
stress is 80 MN/m2. 

       Assume the stress distribution in the shell to follow the law  

         [10 Marks] 

 
Ans.  A spherical shell of 150 mm internal diameter internal pressure = 30 MPa. 
 Allowable stress = 80 MN/m2 

 Assume radial stress =  

 Circumference stress =  

 At internal diameter (r) 

σ = − σ = +r 03 3
2b ba and a .
r r

r 3
2ba
r

σ = −

3
ba
rθσ = +
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r
2

2

3

3

n

3

3

3
3

30N / mm

80N / mm
2b30 a ..............(i)

(75)
b80 a .................(ii)

(75)
Soluing eq (i)&(ii)

110 75 130b a
3 3

At outer Radius (R) radial stress should be zero
2bo a
R

2b 2 110 75R 713130a 3
3

θ

σ

σ

= −

=

− = −

= +

×
= =

= −

× ×
= = =

×
942.3077

R 89.376mm
There fore thickness of cylinder = (R r)

89.376 75 14.376mm

=
−

= − =

 

 
Conventional Question IES-1993 
Question: A thick spherical vessel of inner 'radius 150 mm is subjected to an internal 

pressure of 80 MPa. Calculate its wall thickness based upon the 
 (i) Maximum principal stress theory, and 
 (ii) Total strain energy theory. 
 Poisson's ratio = 0.30, yield strength = 300 MPa     
Answer: Given: 

 

( ) 6 2
1 r

6 2

1r 150mm; p 80MPa 80 10 N / m ; 0.30;
m

300MPa 300 10 N / m
Wall thickness t :

σ μ

σ

= = = × = =

= = ×  

 

( )
2

2
r 2

1

2
6 6

2

i Maximum principal stress theory :

rK 1We know that, Where K
rK 1

K 1or 80 10 300 10
K 1

σ σ
⎛ ⎞⎛ ⎞+

≤ =⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
⎛ ⎞+

× ≤ ×⎜ ⎟−⎝ ⎠

 

 2
2 1

1

2 1

or K 1.314
or K 1.314

ri.e. 1.314 or r r 1.314 150 1.314 197.1mm
r

Metal thickness, t r r 197.1 150 47.1 mm

≥
=

= = × = × =

∴ = − = − =

 

 (ii)    Total strain energy theory: 

 2 2 2
1 2 1 2 yUse σ σ μσ σ σ+ − ≤  
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( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

2 4
r2

22

26 4
26

22

22 2 2 4

2
2

1

2 1

2 K 1 1

K 1

2 80 10 K 1 03 1 0.3
300 10

K 1

or 300 K 1 2 80 1.3K 0.7

gives K 1.86 or 0.59
It is clear thatK 1

K 1.364
ror 1.364 or r 150 1.364 204.6 mm
r
t r r 204.6 150 54.6 mm

σ μ μ
σ

⎡ ⎤+ + −⎣ ⎦≥
−

⎡ ⎤× × + + −⎣ ⎦∴ × ≥
−

− = × +

=
>

∴ =

= = × =

∴ = − = − =

 

 
Conventional Question ESE-2002 
Question: What is the difference in the analysis of think tubes compared to that for thin 

tubes? State the basic equations describing stress distribution in a thick 
tube. 

Answer: The difference in the analysis of stresses in thin and thick cylinder: 
 (i) In thin cylinder, it is assumed that the tangential stress is uniformly distributed 

over the cylinder wall thickness. In thick cylinder, the tangential stress has highest 
magnitude at the inner surface of the cylinder and gradually decreases towards the 
outer surface. 

 (ii) The radial stress is neglected in thin cylinders, while it is of significant magnitude 
in case of thick cylinders. 

 Basic equation for describing stress distribution in thick tube is Lame's equation. 

 2 2   and   r t
B BA A
r r

σ σ= − = +  

 
Conventional Question ESE-2006 
Question: What is auto frettage? 
 How does it help in increasing the pressure carrying capacity of a thick 

cylinder? 
Answer: Autofrettage is a process of pre-stressing the cylinder before using it in operation. 
 

 We know that when the cylinder is subjected to internal pressure, the circumferential 
stress at the inner surface limits the pressure carrying capacity of the cylinder. 

 

 In autofrettage pre-stressing develops a residual compressive stresses at the inner 
surface. When the cylinder is actually loaded in operation, the residual compressive 
stresses at the inner surface begin to decrease, become zero and finally become tensile 
as the pressure is gradually increased. Thus autofrettage increases the pressure 
carrying capacity of the cylinder. 

 
Conventional Question ESE-2001 
Question: When two cylindrical parts are assembled by shrinking or press-fitting, a 

contact pressure is created between the two parts. If the radii of the inner 
cylinder are a and c and that of the outer cylinder are (c- δ ) and b, δ being 
the radial interference the contact pressure is given by: 

( )2 2 2 2

2 2 2

( )
2 ( )

b c c aEP
c c b a
δ ⎡ ⎤− −⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

 

 Where E is the Young's modulus of the material, Can you outline the steps 
involved in developing this important design equation? 
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Answer: 

 

 

 

j

δ

δ

δ δ δ

j

c

c

Due to interference let us assume increase in inner diameter 

of jacket and decrease in outer diameter of cylinder.

so =  +  i.e. without sign.

=

=  

 [ ]

( )
( )

j

µ

δ

σ µσ

t
2 2 2 2

2 2 2 2

r

Now tangential strain

1             =

σ =circumferential stress

cP p(b +c )              = ( )     +
E b -c

σ =-p radialstress

j j

t r

c

c
E

b c i
b c

⎡ ⎤=∈ ∈ =⎢ ⎥⎣ ⎦

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥+⎢ ⎥ ⎢ ⎥+ −−−⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 [ ] ( )

µ

δ

σ
σ µσ

σ

-

2 2

t 2 2

2 2

2 2

And in similar way  

( )
1             =

cP              =- ( )    Here -ivesignrepresentscontraction 
E

c c

t r

r

c

p c a
c ac

E
p

c a ii
c a

=∈

⎡ ⎤+⎢ ⎥=−⎢ ⎥−− ⎢ ⎥
⎢ ⎥

=−⎢ ⎥⎣ ⎦
⎡ ⎤+⎢ ⎥ −−−⎢ ⎥−⎣ ⎦

 

 δ δ δ

δ

2 2 2

2 2 2 2

2 2 2 2

2 2 2

Adding ( ) & ( )

2 ( )
( )( )

( )( )   Proved.
2 ( )

j c

i ii

Pc c b a
E b c c a

E b c c aor P
c c b a

⎡ ⎤−⎢ ⎥∴ = + = ⎢ ⎥− −⎣ ⎦
⎡ ⎤− −⎢ ⎥= ⎢ ⎥−⎣ ⎦
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Conventional Question ESE-2003 
Question: A steel rod of diameter 50 mm is forced into a bronze casing of outside 

diameter 90 mm, producing a tensile hoop stress of 30 MPa at the outside 
diameter of the casing. 

 Find (i) The radial pressure between the rod and the casing  
 (ii) The shrinkage allowance and  
 (iii) The rise in temperature which would just eliminate the force fit. 
 Assume the following material properties: 
 Es = 2×105 MPa, 0.25 Sμ = , 51.2 10 /o

s Cα −= ×  

 Eb = 1×105 MPa , 50.3,   1.9 10 /o
b b Cμ μ −= = ×  

Answer:  

  
 There is a shrinkage pressure P between the steel rod and the bronze casing. The 

pressure P tends to contract the steel rod and expand the bronze casing. 
 (i) Consider Bronze casing, According to Lames theory 

         
σ

2 2
i 0 0

2 2 2
0

2 2
i 0 0

2 2
0

P    Where A = 

(P )                          and B = 

i
t

i

i

i

r P rB A
r r r

P r r
r r

−
= +

−

−
−

 

  
0

2 22 2
0i

 2 2 2 2 2 2
0 0 0

,   P 0 and

PrPr 2PrA=   , B=
r

i

i i

i i i

P P

r
r r r r r

= =

=
− − −

 

  

2 2 2
i i i

2  2 2  2 2  2 2
0 0 0

22 2 2
0 0

2 2

Pr Pr 2Pr30    
r r r

30(r ) 90,  P= 15 1 15 1 MPa=33.6MPa
502

Therefore the radial pressure between the rod and the casing is P=

o i i i

i

i i

B A
r r r r

r ror
r r

∴ = + = + =
− − −

⎡ ⎤⎡ ⎤ ⎛ ⎞− ⎢ ⎥⎟⎜⎢ ⎥= − = −⎟⎜⎢ ⎥⎟⎢ ⎥ ⎜⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦
 33.6 MPa.

 

 (ii) The shrinkage allowance: 
  Let δ j = increase in inert diameter of bronze casing  
  δ C= decrease in outer diameter of steel rod 
  1st consider bronze casing: 

 

 

( )

σ t 2

2

2 2 22
0 0 1

2 2 2 2 22 2
0 0 0

Tangential stress at the inner surface( )

90 1
Pr ( )Pr 50                          = 33.6 = 63.6MPa

r 90 1
50

j
i

i

i i i

B A
r

P r r
r r r r r

= +

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ +⎟⎜⎢ ⎥⎟⎜⎝ ⎠+ ⎢ ⎥+ = = ×⎢ ⎥− − ⎛ ⎞− ⎢ ⎥⎟⎜ −⎟⎜⎢ ⎥⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
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σ

σ
rand radial stress( ) 33.6

longitudial stress( ) 0
j

j

P MPa=− =−

=A

 

  

( )σ µ σ

δ

-4
5

4

1Therefore tangential strain ( ) ( )

1                                   = [63.6 0.3 33.6] =7.368×10
1×10

( ) 7.368 10 0.050 0.03684mm

t j t r jj

j t j i

E

d

ε

ε −

⎡ ⎤= −⎢ ⎥⎣ ⎦

+ ×

∴ = × = × × =

 

  2nd Consider steel rod: 

  ( )

[ ]

σ
σ

δ σ µ σ

µ

t

r

5

j c

Circumferential stress ( )
 radial stress ( )

1( ) ( )

33.6 0.050(1 ) 1 0.3 0.00588mm [reduction]
2 10

Total shrinkage = δ + δ =0.04272mm[it is diametral] = 

s

s

c t s i t r s iS
s

i

s

P
and P

d d
E

Pd
E

=−

=−

⎡ ⎤∴ = ∈ × = − ×⎢ ⎥⎣ ⎦

×
=− − =− − =−

×

0.02136mm [radial]

 

 (iii) Let us temperature rise is ( tΔ ) 

  As b sα α> due to same temperature rise steel not will expand less than bronze 
casing. When their difference of expansion will be equal to the shrinkage then 
force fit will eliminate. 

  
5 5

0.04272
0.04272 0.04272 122

50 1.9 10 1.2 10

i b i s

o

i b s

d t d t

or t C
d

α α

α α − −

× ×Δ − × ×Δ =

= = =
⎡ ⎤ ⎡ ⎤− × × − ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+  

 
Conventional Question AMIE-1998 
Question: A thick walled closed-end cylinder is made of an AI-alloy (E = 72 GPa,

1 0.33),
m

=  has inside diameter of 200 mm and outside diameter of 800 mm. 

The cylinder is subjected to internal fluid pressure of 150 MPa. Determine the 
principal stresses and maximum shear stress at a point on the inside surface 
of the cylinder. Also determine the increase in inside diameter due to fluid 
pressure.  

Answer: Given: 2
1 2

200 800r 100mm 0.1m;r 400mm 0.4;p 150MPa 150MN / m ;
2 2

= = = = = = = =  

 9 2 1E 72GPa 72 10 N / m ; 0.33
m

μ= = × = =  

 Principal stress and maximum shear stress: 
 Using the condition in Lame’s equation: 

 

r 2

2
2

2

b a
r

At r 0.1m, p 150MN / m
r 0.4m, 0

σ

σ
σ

= −

= = + =

= =

  

 Substituting the values in the above equation we have 
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( )
( )

( )
( )

( ) ( )

2

2

b150 a i
0.1
b0 a ii

0.4

From i and ii ,weget
a 10   and   b 1.6

= − − − − −

= − − − − −

= =

 

 

 

( )

( ) ( ) ( )

( ) ( ) ( )

c 2

2
c 1 2max

2
c 2 2min

2 2

The circumferential or hoop stress by Lame's equation,is given by
b a
r

1.6,at r r 0.1m 10 170MN / m tensile , and
0.1

1.6,at r r 0.4m 10 20MN / m tensile .
0.4

Pr incipal stresses are 170 MN / m and 20MN / m

Maxi

σ

σ

σ

= +

∴ = = = + =

= = = + =

∴

( ) ( )c c 2max min
max

170 20mum shear stress, 75MN / m
2 2

σ σ
τ

− −
= = =

 

 

 
( ) ( )

( ) ( )

δ

σ
×

= = =
− −

1
22

21
l 2 22 2

2 1

Increase in inside diameter, d :

150 0.1prWe know,longitudinal or axial stress, 10MN / m
r r 0.4 0.1

 

 
( )

( ) ( )6 6
1 c r l 9

Circumferential or hoop strain at the inner radius,is given by :
1 1 170 10 0.33 150 10 10 0.003
E 72 10

σ μ σ σ ⎡ ⎤⎡ ⎤∈ = + − = × + − × =⎣ ⎦ ⎣ ⎦×

 

 1
1

1

dAlso,
d
δ

∈ =  

 1dor 0.003
0.1
δ

=  

 1d 0.003 0.1 0.003m or 0.3 mmδ = × =  
 

Page 343 of 429



 

 

 

 12.   Spring 

Theory at a Glance (for IES, GATE, PSU)  
1. A spring is a mechanical device which is used for the efficient storage 

and release of energy. 
 

2. Helical spring – stress equation  
Let us a close-coiled helical spring has coil diameter D, wire diameter d and number of turn n. The 

spring material has a shearing modulus G. The spring index, DC
d

= . If a force ‘P’ is exerted in both 

ends as shown.  
 

The work done by the axial 

force 'P' is converted into 

strain energy and stored in 

the spring. 

( )
( )

U= average torque

    × angular displacement
T    = ×θ
2

 

TLFrom the figure we get, θ =
GJ

PDTorque (T)=
2

 

 

 

 

4

2 3

4

length of wire (L)=πDn
πdPolar moment of Inertia(J)=
32

4P D nTherefore U=  
Gd

 

According to Castigliano's theorem, the displacement corresponding to force P is obtained by 

partially differentiating strain energy with respect to that force. 
2 3 3

4 4

4 8UTherefore  = p D n PD n
P P Gd Gd

δ
⎡ ⎤∂∂ ⎢ ⎥= =⎢ ⎥∂ ∂ ⎣ ⎦

 

 Axial deflection
3

4

8  = PD n
Gd

δ  

 Spring stiffness or spring constant ( )
4

3

Pk =
8
Gd
D nδ
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The torsional shear stress in the bar, 
( )

1 3 3 3

16 / 216 8PDT PD
d d d

τ
π π π

= = =  

The direct shear stress in the bar, 2 2 32

4 8 0.5

4

P P PD d
Dd dd

τ
π ππ

⎛ ⎞= = = ⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

 

Therefore the total shear stress,  1 2 3 3

8 0.5 81 s
PD d PDK

Dd d
τ τ τ

π π
⎛ ⎞= + = + =⎜ ⎟
⎝ ⎠

 

     3

8
s

PDK
d

τ
π

=  

Where 0.51s
dK

D
= + is correction factor for direct shear stress. 

 

3. Wahl’s stress correction factor 

  3

8PDK
d

τ
π

=  

 

 Where 4 1 0.615
4 4

CK
C C

−⎛ ⎞= +⎜ ⎟−⎝ ⎠
is known as Wahl’s stress correction factor 

  Here K = KsKc; Where sK is correction factor for direct shear stress and Kc is correction 

factor for stress concentration due to curvature.  
 

Note: When the spring is subjected to a static force, the effect of stress concentration is neglected 

due to localized yielding. So we will use, 3

8
s

PDK
d

τ
π

=  

4. Equivalent stiffness (keq) 
 Spring in series 1 2(δ δ δ )e = +   Spring in Parallel 1 2(δ δ = δ )=e  

  

eq 1 2

1 1 1 
K K K

= +     or 1 2

1 2

=
+eq

K KK
K K

 eq 1 2     K = +K K  

 
 

 Shaft in series ( 1 2θ θ θ= + )  Shaft in Parallel ( 1 2θ θ θ= =eq ) 
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eq 1 2

1 1 1 
K K K

= +     or 1 2

1 2

=
+eq

K KK
K K

 
 eq 1 2     K = +K K  

 
5. Important note 

• If a spring is cut into ‘n’ equal lengths then spring constant of each new spring = nk 
• When a closed coiled spring is subjected to an axial couple M then the rotation, 

4

64φ = cMDn
Ed

 

 

6. Laminated Leaf or Carriage Springs 

• Central deflection, 
3

3

3δ
8

=
PL

Enbt
 

• Maximum bending stress, max 2

3σ
2

=
PL
nbt

 

Where P = load on spring 
 b = width of each plate 
 n = no of plates 
 L= total length between 2 points 
 t =thickness of one plate. 

 
7.  Belleville Springs 

3
2 2

0

4 δ δLoad, ( δ)
(1 μ ) 2

⎡ ⎤⎛ ⎞= − − +⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦f

EP h h t t
k D

 

Where, E = Modulus of elasticity 
 δ= Linear deflection 
 μ =Poisson’s Ratio 
  kf =factor for Belleville spring 
 Do = outside diamerer 
  h = Deflection required to flatten Belleville spring 
               t = thickness   
Note:  

• Total stiffness of the springs kror = stiffness per spring × No of springs 
• In a leaf spring ratio of stress between full length and graduated leaves = 1.5 
• Conical spring- For application requiring variable stiffness 
• Belleville Springs -For application requiring high capacity springs into small space 

  

Do

t

P

ho
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Helical spring 
GATE-1. If the wire diameter of a closed coil helical spring subjected to compressive 

load is increased from 1 cm to 2 cm, other parameters remaining same, then 
deflection will decrease by a factor of: [GATE-2002] 

 (a) 16   (b) 8   (c) 4   (d) 2 

GATE-1. Ans. (a) 
3

4

8PD N
G.d

δ =  

 
GATE-2. A compression spring is made of music wire of 2 mm diameter having a shear 

strength and shear modulus of 800 MPa and 80 GPa respectively. The mean coil 
diameter is 20 mm, free length is 40 mm and the number of active coils is 10. If 
the mean coil diameter is reduced to 10 mm, the stiffness of the spring is 
approximately [GATE-2008]  

 (a) Decreased by 8 times    (b) Decreased by 2 times 
 (c) Increased by 2 times    (d) Increased by 8 times 

GATE-2. Ans. (d) Spring constant (K) =
ND

dGP
3

4

8
.

=
δ

    or K∝ 3

1
D

 

 8
10
20 33

2

1

1

2 =⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

D
D

K
K

 

 
GATE-3. Two helical tensile springs of the same material and also having identical mean 

coil diameter and weight, have wire diameters d and d/2. The ratio of their 
stiffness is: [GATE-2001] 

 (a) 1     (b) 4    (c) 64    (d) 128 

GATE-3. Ans. (c) Spring constant (K) =
ND

dGP
3

4

8
.

=
δ

  Therefore 
4dk

n
∞   

 
GATE-4. A uniform stiff rod of length 300 mm 

and having a weight of 300 N is 
pivoted at one end and connected to 
a spring at the other end. For 
keeping the rod vertical in a stable 
position the minimum value of 
spring constant K needed is: 

 (a) 300 N/m (b) 400N/m  
 (c) 500N/m  (d) 1000 N/m 

 
[GATE-2004]

GATE-4. Ans. (c) Inclined it to a very low angle, dθ  
 For equilibrium taking moment about ‘hinge’ 

 ( )l W 300W d k ld l 0 or k 500N / m
2 2l 2 0.3

θ θ⎛ ⎞× − × = = = =⎜ ⎟ ×⎝ ⎠
 

 
GATE-5. A weighing machine consists of a 2 kg pan resting on spring. In this condition, 

with the pan resting on the spring, the length of the spring is 200 mm. When a 
mass of 20 kg is placed on the pan, the length of the spring becomes 100 mm. 
For the spring, the un-deformed length lo and the spring constant k (stiffness) 
are: [GATE-2005] 
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 (a) lo = 220 mm, k = 1862 N/m  (b) lo = 210 mm, k = 1960 N/m 
 (c) lo = 200 mm, k = 1960 N/m   (d) lo = 200 mm, k = 2156 N/m 
GATE-5. Ans. (b) Initial length = lo m and stiffness = k N/m 

 
( )

( )
o

o

2 g k l 0.2

2 g 20 g k l 0.1

× = −

× + × = −
 

 Just solve the above equations. 

Springs in Series 
GATE-6. The deflection of a spring with 20 active turns under a load of 1000 N is 10 mm. 

The spring is made into two pieces each of 10 active coils and placed in parallel 
under the same load. The deflection of this system is: [GATE-1995] 

 (a) 20 mm   (b) 10 mm   (c) 5 mm   (d) 2.5 mm 
GATE-6. Ans. (d) When a spring is cut into two, no. of coils gets halved.  
 ∴  Stiffness of each half gets doubled.  
 When these are connected in parallel, stiffness = 2k + 2k = 4k 
 Therefore deflection will be ¼ times. = 2.5 mm 

Previous 20-Years IES Questions 

Helical spring 
IES-1. A helical coil spring with wire diameter ’d’ and coil diameter 'D' is subjected to 

external load. A constant ratio of d and D has to be maintained, such that the 
extension of spring is independent of d and D. What is this ratio? [IES-2008] 

 
4/3 4/3

3 4 3 4
3 3

D d(a)D / d (b)d / D (c) (d)
d D

 

IES-1. Ans. (a) 
3

4

8PD N
Gd

δ =  

 

= × = θ

θ =

= π

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂
δ = =

∂

2 2 3

4

3

4

D 1T F ; U T
2 2

FD TLΤ = ;
2 GJ

L DN

1 FD L 4F D NU
2 2 GJ Gd
U 8FD N
F Gd

 

 

 
IES-2. Assertion (A): Concentric cylindrical helical springs are used to have greater 

spring force in a limited space. [IES-2006] 
 Reason (R): Concentric helical springs are wound in opposite directions to 

prevent locking of coils under heavy dynamic loading. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-2. Ans. (b) 
 
IES-3. Assertion (A): Two concentric helical springs used to provide greater spring 

force are wound in opposite directions. [IES-1995; IAS-2004] 
 Reason (R): The winding in opposite directions in the case of helical springs 

prevents buckling. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
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 (c) A is true but R is false 
 (d) A is false but R is true 
IES-3. Ans. (c) It is for preventing locking not for buckling.  
 
IES-4. Which one of the following statements is correct? [IES-1996; 2007; IAS-1997] 
 If a helical spring is halved in length, its spring stiffness 
 (a) Remains same  (b) Halves  (c) Doubles   (d) Triples 

IES-4. Ans. (c) ( )
4

3

Gd 1Stiffness of sprin k so k andnwiil behalf
n8D n

= ∞  

 
IES-5. A body having weight of 1000 N is dropped from a height of 10 cm over a close-

coiled helical spring of stiffness 200 N/cm. The resulting deflection of spring is 
nearly [IES-2001] 

 (a) 5 cm    (b) 16 cm   (c) 35 cm   (d) 100 cm 

IES-5. Ans. (b) 21mg(h x) kx
2

+ =  

IES-6. A close-coiled helical spring is made of 5 mm diameter wire coiled to 50 mm 
mean diameter. Maximum shear stress in the spring under the action of an 
axial force is 20 N/mm2. The maximum shear stress in a spring made of 3 mm 
diameter wire coiled to 30 mm mean diameter, under the action of the same 
force will be nearly [IES-2001] 

 (a) 20 N/mm2   (b) 33.3 N/mm2  (c) 55.6 N/mm2 (d) 92.6 N/mm2 

IES-6. Ans. (c) s 3

8PDUse k
d

τ
π

=  

IES-7. A closely-coiled helical spring is acted upon by an axial force. The maximum 
shear stress developed in the spring is τ . Half of the length of the spring is cut 
off and the remaining spring is acted upon by the same axial force. The 
maximum shear stress in the spring the new condition will be: [IES-1995] 

 (a) ½ τ    (b) τ    (c) 2 τ    (d) 4 τ  

IES-7. Ans. (b) s 3

8PDUse k
d

τ
π

=  it is independent of number of turn 

IES-8. The maximum shear stress occurs on the outermost fibers of a circular shaft 
under torsion. In a close coiled helical spring, the maximum shear stress 
occurs on the [IES-1999] 

 (a) Outermost fibres (b) Fibres at mean diameter (c) Innermost fibres (d) End coils 
IES-8. Ans. (c) 
 
IES-9. A helical spring has N turns of coil of diameter D, and a second spring, made of 

same wire diameter and of same material, has N/2 turns of coil of diameter 2D. 
If the stiffness of the first spring is k, then the stiffness of the second spring 
will be: [IES-1999] 

 (a) k/4    (b) k/2    (c) 2k    (d) 4k 

IES-9. Ans. (a) 
( )

4 4

23 3
Stiffness (k)  ; econd spring,stiffness (k ) =

64 464 2
2

Gd Gd kS NR N R
= =

×
 

 
IES-10. A closed-coil helical spring is subjected to a torque about its axis. The spring 

wire would experience a [IES-1996; 1998] 
 (a) Bending stress 
 (b)  Direct tensile stress of uniform intensity at its cross-section 
 (c)  Direct shear stress 
 (d)  Torsional shearing stress 
IES-10. Ans. (a) 
 
IES-11. Given that: [IES-1996] 
 d = diameter of spring, R = mean radius of coils, n = number of coils and G = 

modulus of rigidity, the stiffness of the close-coiled helical spring subject to an 
axial load W is equal to Page 349 of 429
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 (a) 
4

364
Gd

R n
   (b) 

3

364
Gd

R n
  (c) 

4

332
Gd

R n
  (d) 

4

264
Gd

R n
 

IES-11. Ans. (a) 
 
IES-12. A closely coiled helical spring of 20 cm mean diameter is having 25 coils of 2 cm 

diameter rod. The modulus of rigidity of the material if 107 N/cm2. What is the 
stiffness for the spring in N/cm? [IES-2004] 

 (a) 50    (b) 100    (c) 250    (d) 500 

IES-12. Ans. (b) ( ) ( ) ( )
( )

7 2 4 44

3 3 3

10 N / cm 2 cmGdStiffness of sprin k 100N / cm
8D n 8 20 cm 25

×
= = =

× ×
 

 
IES-13. Which one of the following expresses the stress factor K used for design of 

closed coiled helical spring? [IES-2008] 

 4C 4 4C 1 0.615 4C 4 0.615 4C 1(a) (b) (c) (d)
4C 1 4C 4 C 4C 1 C 4C 4

− − − −
+ +

− − − −
 

 Where C = spring index 
IES-13. Ans. (b) 
 
IES-14. In the calculation of induced shear stress in helical springs, the Wahl's 

correction factor is used to take care of [IES-1995; 1997] 
 (a)  Combined effect of transverse shear stress and bending stresses in the wire. 
 (b)  Combined effect of bending stress and curvature of the wire. 
 (c)  Combined effect of transverse shear stress and curvature of the wire. 
 (d)  Combined effect of torsional shear stress and transverse shear stress in the wire. 
IES-14. Ans. (c) 
 
IES-15. While calculating the stress induced in a closed coil helical spring, Wahl's 

factor must be considered to account for [IES-2002] 
 (a) The curvature and stress concentration effect  (b) Shock loading 
 (c) Poor service conditions     (d) Fatigue loading 
IES-15. Ans. (a) 
IES-16. Cracks in helical springs used in Railway carriages usually start on the inner 

side of the coil because of the fact that [IES-1994] 
 (a)  It is subjected to the higher stress than the outer side. 
 (b)  It is subjected to a higher cyclic loading than the outer side. 
 (c)  It is more stretched than the outer side during the manufacturing process. 
 (d)  It has a lower curvature than the outer side. 
IES-16. Ans. (a) 
 
IES-17. Two helical springs of the same material and of equal circular cross-section 

and length and number of turns, but having radii 20 mm and 40 mm, kept 
concentrically (smaller radius spring within the larger radius spring), are 
compressed between two parallel planes with a load P. The inner spring will 
carry a load equal to [IES-1994] 

 (a) P/2    (b) 2P/3   (c) P/9    (d) 8P/9 

IES-17. Ans. (d) 
33

3

20 1 8;
40 8 8 8 9

o i i i
o i i

i o

W R W WW So W P or W P
W R

⎛ ⎞= = = = + = =⎜ ⎟
⎝ ⎠

 

 
IES-18. A length of 10 mm diameter steel wire is coiled to a close coiled helical spring 

having 8 coils of 75 mm mean diameter, and the spring has a stiffness K. If the 
same length of wire is coiled to 10 coils of 60 mm mean diameter, then the 
spring stiffness will be: [IES-1993] 

 (a) K    (b) 1.25 K  (c) 1.56 K  (d) 1.95 K 

IES-18. Ans. (c) 
4

3Stiffnessof spring (k) Where G and  d issame
64

=
Gd

R n
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 3 3
2

2 2

1 1 1Therefore
1.5675 8

60 10

= = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

k
k R n

R n

 

 
IES-19. A spring with 25 active coils cannot be accommodated within a given space. 

Hence 5 coils of the spring are cut. What is the stiffness of the new spring? 
 (a) Same as the original spring (b) 1.25 times the original spring [IES-2004] 
 (c) 0.8 times the original spring (d) 0.5 times the original spring 

IES-19. Ans. (b) ( )
4

3

GdStiffness of spring k
8D n

= 2 1

1 2

k n1 25k or 1.25
n k n 20

α∴ = = =  

 
IES-20. Wire diameter, mean coil diameter and number of turns of a closely-coiled steel 

spring are d, D and N respectively and stiffness of the spring is K. A second 
spring is made of same steel but with wire diameter, mean coil diameter and 
number of turns 2d, 2D and 2N respectively. The stiffness of the new spring is: 

[IES-1998; 2001] 
 (a) K     (b) 2K   (c) 4K   (d) 8K 

IES-20. Ans. (a) ( )
4

3

GdStiffness of spring k
8D n

=  

 
IES-21. When two springs of equal lengths are arranged to form cluster springs which 

of the following statements are the: [IES-1992] 
 1. Angle of twist in both the springs will be equal        
 2. Deflection of both the springs will be equal 
 3. Load taken by each spring will be half the total load   
 4. Shear stress in each spring will be equal 
 (a) 1 and 2 only (b) 2 and 3 only  (c) 3 and 4 only  (d) 1, 2 and 4 only 
IES-21. Ans. (a) 
IES-22. Consider the following statements: [IES-2009] 
 When two springs of equal lengths are arranged to form a cluster spring 
 1.  Angle of twist in both the springs will be equal 
 2.  Deflection of both the springs will be equal 
 3.  Load taken by each spring will be half the total load 
 4.  Shear stress in each spring will be equal 
 Which of the above statements is/are correct? 
 (a) 1 and 2                  (b) 3 and 4                    (c)2 only                    (d) 4 only 
IES-22. Ans. (a) Same as [IES-1992] 
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Close-coiled helical spring with axial load 
IES-23. Under axial load, each section of a close-coiled helical spring is subjected to 
 (a) Tensile stress and shear stress due to load [IES-2003] 
 (b) Compressive stress and shear stress due to torque 
 (c)  Tensile stress and shear stress due to torque 
 (d)  Torsional and direct shear stresses 
IES-23. Ans. (d) 
 
IES-24. When a weight of 100 N falls on a spring of stiffness 1 kN/m from a height of 2 

m, the deflection caused in the first fall is: [IES-2000] 
 (a) Equal to 0.1 m    (b) Between 0.1 and 0.2 m 
 (c) Equal to 0.2 m    (d) More than 0.2 m 

IES-24. Ans. (d) use  ( ) 21mg h x kx
2

+ =   

Subjected to 'Axial twist' 
IES-25. A closed coil helical spring of mean coil diameter 'D' and made from a wire of 

diameter 'd' is subjected to a torque 'T' about the axis of the spring. What is the 
maximum stress developed in the spring wire? [IES-2008] 

 
π π π π3 3 3 3

8T 16T 32T 64T(a) (b) (c) (d)
d d d d

 

IES-25. Ans. (b) 

Springs in Series 
IES-26. When a helical compression spring is cut into two equal halves, the stiffness of 

each of the result in springs will be: [IES-2002; IAS-2002] 
 (a) Unaltered   (b) Double   (c) One-half   (d) One-fourth 
IES-26. Ans. (b) 
 
IES-27. If a compression coil spring is cut into two equal parts and the parts are then 

used in parallel, the ratio of the spring rate to its initial value will be: [IES-1999] 
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 (a) 1   (b) 2   (c) 4   (d) Indeterminable for want of sufficient data 
IES-27. Ans. (c) When a spring is cut into two, no. of coils gets halved.  
 ∴  Stiffness of each half gets doubled.  
 When these are connected in parallel, stiffness = 2k + 2k = 4k 

Springs in Parallel 
IES-28. The equivalent spring stiffness for the 

system shown in the given figure (S is 
the spring stiffness of each of the three 
springs) is: 

 (a) S/2 (b) S/3 
 (c) 2S/3 (d) S 
   

 
[IES-1997; IAS-2001]

 

IES-28. Ans. (c)  
1 1 1 2

2 3e
e

or S S
S S S

= + =  

 
IES-29. Two coiled springs, each having stiffness K, are placed in parallel. The stiffness 

of the combination will be: [IES-2000] 

 ( ) ( ) ( ) ( )a   4              b 2              c                  d          
2 4
K KK K  

IES-29. Ans. (b) 1 2W k k kδ δ δ= = +  

 
 
IES-30. A mass is suspended at the bottom of two springs in series having stiffness 10 

N/mm and 5 N/mm. The equivalent spring stiffness of the two springs is nearly 
[IES-2000] 

 (a) 0.3 N/mm   (b) 3.3 N/mm   (c) 5 N/mm   (d) 15 N/mm 

IES-30. Ans. (b) 
1 1 1 10

10 5 3
= + =e

e

or S
S
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IES-31. Figure given above shows a spring-
mass system where the mass m is 
fixed in between two springs of 
stiffness S1 and S2. What is the 
equivalent spring stiffness? 

 (a) S1- S2 (b) S1+ S2
  

 (c) (S1+ S2)/ S1 S2 (d) (S1- S2)/ 
S1 S2  

    

 
[IES-2005]

IES-31. Ans. (b)         
 
 
IES-32. Two identical springs 

labelled as 1 and 2 are 
arranged in series and 
subjected to force F as 
shown in the given 
figure.  

 Assume that each spring constant is K. The strain energy stored in spring 1 is: 
[IES-2001] 

 (a) 
2

2
F
K

  (b) 
2

4
F
K

  (c) 
2

8
F
K

   (d) 
2

16
F

K
  

IES-32. Ans. (c) The strain energy stored per spring =
2

21 1. / 2 / 2
2 2 eq

eq

Fk x k
k

⎛ ⎞
= × ×⎜ ⎟⎜ ⎟

⎝ ⎠
 and here total 

force ‘F’ is supported by both the spring 1 and 2 therefore keq = k + k =2k 
 
IES-33.  What is the equivalent stiffness (i.e. spring 

constant) of the system shown in the given 
figure? 

 (a) 24 N/mm (b) 16 N/mm 
 (c) 4 N/mm (d) 5.3 N/mm 
  

 
[IES-1997]

IES-33. Ans. (a) Stiffness K1 of 10 coils spring = 8 N/mm 
 ∴  Stiffness K2 of 5 coils spring = 16 N/mm 
 Though it looks like in series but they are in parallel combination. They are not subjected 

to same force. Equivalent stiffness (k) = k1 + k2 = 24 N/mm 

Previous 20-Years IAS Questions 

Helical spring 
IAS-1. Assertion (A): Concentric cylindrical helical springs which are used to have 

greater spring force in a limited space is wound in opposite directions. Page 354 of 429
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 Reason (R): Winding in opposite directions prevents locking of the two coils in 
case of misalignment or buckling. [IAS-1996] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b)  Both A and R are individually true but R is NOT the correct explanation of A  
 (c)  A is true but R is false 
 (d)  A is false but R is true 
IAS-1. Ans. (a) 
 
IAS-2. An open-coiled helical spring of mean diameter D, number of coils N and wire 

diameter d is subjected to an axial force' P. The wire of the spring is subject to: 
[IAS-1995] 

 (a) direct shear only    (b) combined shear and bending only 
 (c) combined shear, bending and twisting  (d) combined shear and twisting only 
IAS-2. Ans. (d) 
 
IAS-3. Assertion (A): Two concentric helical springs used to provide greater spring 

force are wound in opposite directions. [IES-1995; IAS-2004] 
 Reason (R): The winding in opposite directions in the case of helical springs 

prevents buckling. 
 (a)  Both A and R are individually true and R is the correct explanation of A 
 (b)  Both A and R are individually true but R is NOT the correct explanation of A  
 (c)  A is true but R is false 
 (d)  A is false but R is true 
IAS-3. Ans. (c) It is for preventing locking not for buckling.  
IAS-4. Which one of the following statements is correct? [IES-1996; 2007; IAS-1997] 
 If a helical spring is halved in length, its spring stiffness 
 (a) Remains same  (b) Halves  (c) Doubles   (d) Triples 

IAS-4. Ans. (c) ( )
4

3

Gd 1Stiffness of sprin k so k andnwiil behalf
n8D n

= ∞  

 
IAS-5. A closed coil helical spring has 15 coils. If five coils of this spring are removed 

by cutting, the stiffness of the modified spring will: [IAS-2004] 
 (a) Increase to 2.5 times    (b) Increase to 1.5 times 
 (c) Reduce to 0.66 times    (d) Remain unaffected 

IAS-5. Ans. (b) K=
4

2 1
3

1 2

1 15 1.5
8 10

K NGd or K or
D N N K N

α = = =  

 
IAS-6. A close-coiled helical spring has wire diameter 10 mm and spring index 5. If the 

spring contains 10 turns, then the length of the spring wire would be: [IAS-2000] 
 (a) 100 mm  (b) 157 mm  (c) 500 mm  (d) 1570 mm 
IAS-6. Ans. (d) ( ) ( )5 10 10 1570l Dn cd n mmπ π π= = = × × × =  
 
IAS-7. Consider the following types of stresses: [IAS-1996] 
 1. torsional shear 2. Transverse direct shear  3. Bending stress 
 The stresses, that are produced in the wire of a close-coiled helical spring 

subjected to an axial load, would include 
 (a) 1 and 3    (b) 1 and 2  (c) 2 and 3   (d) 1, 2 and 3 
IAS-7. Ans. (b) 
 
IAS-8. Two close-coiled springs are subjected to the same axial force. If the second 

spring has four times the coil diameter, double the wire diameter and double 
the number of coils of the first spring, then the ratio of deflection of the second 
spring to that of the first will be: [IAS-1998] 

 (a) 8    (b) 2   (c) 1
2

   (d) 1/16 
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IAS-8. Ans. (a) 

2 2
3 3

1 12
4 4 4

1 2

1

D N
D N8PD N 4 2or 8

Gd 2d
d

δ
δ

δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

×⎝ ⎠⎝ ⎠= = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
IAS-9. A block of weight 2 N falls from a height of 1m on the top of a spring· If the 

spring  gets compressed by 0.1 m to bring the weight momentarily to rest, then 
the spring constant would be: [IAS-2000] 

 (a) 50 N/m    (b) 100 N/m  (c) 200N/m   (d) 400N/m 
IAS-9. Ans. (d) Kinetic energy of block = potential energy of spring 

 or  2
2 2

1 2 2 2 1. / 400 /
2 0.1

WhW h k x or k N m N m
x

× ×
× = = = =  

 
IAS-10. The springs of a chest expander are 60 cm long when unstretched. Their 

stiffness is 10 N/mm. The work done in stretching them to 100 cm is: [IAS-1996] 
 (a) 600 Nm    (b) 800 Nm  (c) 1000 Nm   (d) 1600 Nm 

IAS-10. Ans. (b) { }22 21 1 10NE kx 1 0.6 m 800Nm
12 2 m

1000

⎧ ⎫
⎪ ⎪⎪ ⎪= = × × − =⎨ ⎬
⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
IAS-11. A spring of stiffness 'k' is extended from a displacement x1 to a displacement x2 

the work done by the spring is: [IAS-1999] 

 (a) 2 2
1 2

1 1
2 2

−k x k x  (b) 2
1 2

1 ( )
2

−k x x  (c) 2
1 2

1 ( )
2

+k x x  (d) 
2

1 2

2
x xk +⎛ ⎞

⎜ ⎟
⎝ ⎠

 

IAS-11. Ans. (a) Work done by the spring is = −2 2
1 2

1 1k x k x
2 2

 

 
 
IAS-12.  A spring of stiffness 1000 N/m is stretched initially by 10 cm from the 

undeformed position. The work required to stretch it by another 10 cm is: 
[IAS-1995] 

 (a) 5 Nm   (b) 7 Nm  (c) 10 Nm  (d) 15 Nm. 

IAS-12. Ans. (d) ( ) { }2 2 2 2
2 1

1 1E k x x 1000 0.20 0.10 15Nm
2 2

= − = × × − =  

Springs in Series 
IAS-13. When a helical compression spring is cut into two equal halves, the stiffness of 

each of the result in springs will be: [IES-2002; IAS-2002] 
 (a) Unaltered   (b) Double   (c) One-half   (d) One-fourth 
IAS-13. Ans. (b) 
 
IAS-14. The length of the chest-expander spring when it is un-stretched, is 0.6 m and its 

stiffness is 10 N/mm. The work done in stretching it to 1m will be: [IAS-2001] 
 (a) 800 J   (b) 1600 J  (c) 3200 J   (d) 6400 J 
IAS-14. Ans. (a) 

 Work done = ( )22 2 2 21 1 10N 1 10k.x 1 0.6 m 0.4 800
12 2 1mm 2

1000

⎛ ⎞
= × × − = × × =⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟

⎝ ⎠

N m J
m
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Springs in Parallel 
IAS-15. The equivalent spring stiffness for the 

system shown in the given figure (S is 
the spring stiffness of each of the three 
springs) is: 

 (a) S/2 (b) S/3 
 (c) 2S/3 (d) S 
   

 
[IES-1997; IAS-2001]

 

IAS-15. Ans. (c) 
1 1 1 2

2 3e
e

or S S
S S S

= + =  

 
 
IAS-16. Two identical springs, each of stiffness K, are 

assembled as shown in the given figure. The 
combined stiffness of the assembly is: 

 (a) K2 (b) 2K 
 (c) K (d) (1/2)K 
    

 
[IAS-1998]

IAS-16. Ans. (b) Effective stiffness = 2K. Due to applied force one spring will be under tension and 
another one under compression so total resistance force will double. 

Flat spiral Spring 
IAS-17. Mach List-I (Type of spring) with List-II (Application) and select the correct 

answer: [IAS-2000] 
  List-I  List-II  
 A.  Leaf/Helical springs 1. Automobiles/Railways coachers  
 B.  Spiral springs 2.  Shearing machines 
 C.  Belleville springs 3.  Watches 
 Codes: A  B  C   A  B  C 
  (a) 1  2  3  (b)  1 3  2 
  (c)  3 1  2  (d)  2  3 1 
IAS-17. Ans. (b) 
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Semi-elliptical spring 
IAS-18. The ends of the leaves of a semi-elliptical leaf spring are made triangular in 

plain in order to: [IAS 1994] 
 (a)  Obtain variable I in each leaf 
 (b)  Permit each leaf to act as a overhanging beam 
 (c)  Have variable bending moment in each leaf 
 (d)  Make Mil constant throughout the length of the leaf. 
IAS-18. Ans. (d) The ends of the leaves of a semi-elliptical leaf spring are made rectangular in plan 

in order to make M/I constant throughout the length of the leaf. 
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Previous Conventional Questions with Answers 

Conventional Question ESE-2008 
Question: A close-coiled helical spring has coil diameter D, wire diameter d and number 

of turn n. The spring material has a shearing modulus G. Derive an 
expression for the stiffness k of the spring. 

Answer: The work done by the 
axial force 'P' is 
converted into strain 
energy and stored in 
the spring. 

( )
( )

U= average torque

    × angular displacement
T    = ×θ
2

 

TLFrom the figure we get, θ =
GJ

PDTorque (T)=
2

 

 

 

 
4

2 3

4

length of wire (L)=πDn
πdPolar moment of Inertia(J)=
32

4P D nTherefore U=  
Gd

 

 According to Castigliano's theorem, the displacement corresponding to force P is 
obtained by partially differentiating strain energy with respect to that force. 

 

( )

2 3 3

4 4

4

3

4 8UTherefore  =

PSo Spring stiffness, k =
8

p D n PD n
P P Gd Gd

Gd
D n

δ

δ

⎡ ⎤∂∂ ⎢ ⎥= =⎢ ⎥∂ ∂ ⎣ ⎦

=

 

 
Conventional Question ESE-2010 
Q.  A stiff bar of negligible weight transfers a load P to a combination of three 

helical springs arranged in parallel as shown in the above figure. The springs 
are made up of the same material and out of rods of equal diameters. They are 
of same free length before loading. The number of coils in those three springs 
are 10, 12 and 15 respectively, while the mean coil diameters are in ratio of 1 : 
1.2 : 1.4 respectively. Find the distance ‘x’ as shown in figure, such that the stiff 
bar remains horizontal after the application of load P.     [10 Marks] 

l l

x P

 
Ans. Same free length of spring before loading  
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The number of coils in the spring 1,2 and 3 is 10, 12 and 15 mean diameter of spring 1,2 
and 3 in the ratio of 1 : 1.2 : 1.4  Find out distance x so that rod  remains horizontal 
after loading. 

       Since the rod is rigid and remains horizontal after the load p is applied therefore the 
deflection of each spring will be same 

  1 2 3 (say)δ = δ = δ = δ  
 Spring are made of same material and out of the rods of equal diameter  
  = = = = = =1 2 3 1 2 3G G G G and d d d d  
 Load in spring 1 

  
δ δ δ

= = =
×

4 4 4

1 3 3 3
1 1 1 1

Gd Gd GdP .....(1)
64R n 64R 10 640R

 

  Load in spring 2 

  
δ δ δ

= = =
× × ×

4 4 4

2 3 3 3 3
2 2 1 1

Gd Gd GdP .....(2)
64 R n 64 (1.2) 12R 1327.10R

 

 Load in spring 3 

  
δ δ δ

= = =
× ×

4 4 4

3 3 3 3 3
3 3 1 1

Gd Gd GdP .....(3)
64R n 64 (1.4) 15R 2634.2R

 

 From eqn (1) & (2)    

  2 1

2 1

640P P
1327.1

P 0.482P

=

=
 

 

( )

= =

× + × =

+ × =

+
=

= + +

n

3 1 1

1

2 3

1 1

1

1 2 3

1 1

from eq (1) & (3)
640P P 0.2430P

2634.2
Taking moment about the line of action P

P L P 2L P.x
0.4823 P L 0.2430 P 2L P.x.

0.4823 0.486 P L
x ........(4)

P
total load in the rod is 

 P=P +P +P
P P .4823P 0.24
=

= = =

=

1

1

1 1

30P
P 1.725 P ......(5)

Equation (4) & (5)
0.9683L 0.9683Lx 0.5613L

1.725 P / P 1.725
x 0.5613 L  

 
Conventional Question ESE-2008 
Question: A close-coiled helical spring has coil diameter to wire diameter ratio of 6. The 

spring deflects 3 cm under an axial load of 500N and the maximum shear 
stress is not to exceed 300 MPa. Find the diameter and the length of the 
spring wire required. Shearing modulus of wire material = 80 GPa. 

Answer: 
δ

4

3,
8
GdPStiffness K
D n

= =  
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( )9

3

4

80 10500 D, [  c= 6]
0.03 8 6 d

, 3.6 10 ( )

d
or given

n

or d n i−

× ×
= =

× ×

= × −−−

 

 
 static loading correcting factor(k)

0.5 0.5   k= 1+ 1 1.0833
c 6

For
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

 
( )

π

d
π

3

2

8PD know that =k
d

8 6

We

kPC DC
d

τ

τ
⎡ ⎤
⎢ ⎥= = =
⎢ ⎥⎣ ⎦
∵

 

 
3

6
1.0833 8 500 6 5.252 10 5.252

300 10
 D=cd=6×5.252mm=31.513mm

d m mm

So
π

−× × ×
= = × =

× ×  

 
π π×

�From, equation (i) n=14.59 15
Now length of spring wire(L) = Dn = 31.513×15 mm =1.485 m

 

 
Conventional Question ESE-2007 
Question: A coil spring of stiffness 'k' is cut to two halves and these two springs are 

assembled in parallel to support a heavy machine. What is the combined 
stiffness provided by these two springs in the modified arrangement? 

 Answer: When it cut to two halves stiffness of 
each half will be 2k. Springs in parallel. 
Total load will be shared so 

 Total load = W+W 

  
δ δ δ. .(2 ) .(2 )

4 .
eq

eq

or K k k

or K k

= +

=
 

 

 
 
Conventional Question ESE-2001 
Question: A helical spring B is placed inside the coils of a second helical spring A , 

having the same number of coils and free axial length and of same material. 
The two springs are compressed by an axial load of 210 N which is shared 
between them. The mean coil diameters of A and B are 90 mm and 60 mm and 
the wire diameters are 12 mm and 7 mm respectively. Calculate the load 
shared by individual springs and the maximum stress in each spring. 

Answer: 
4

3

GdThe stiffness of the spring (k) =
8D N

 

 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎜⎟ ⎟ = = × =⎜ ⎜ ⎟ ⎟⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

e A B
4 3 4 3

A A
A

B B A

Here load shared the springs are arranged in parallel
Equivalent stiffness(k )=k +k

K d 12 60Hear =  [As N ] 2.559
K d 7 90N

D N
D

B

 

 = =
+

Total load 210Let total deflection is 'x' m  x
Equivalet stiffness A B

N
K K
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( )

A
210 210Load shared by spring 'A'(F )  =151N

111 2.559

Load shared by spring 'A'(F ) 210 151 59 N

= × = =
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜ +⎟ ⎟+⎜ ⎜ ⎟⎟ ⎜⎜ ⎝ ⎠⎟⎜⎝ ⎠

= × = − =

A
B

A

B B

K x
k
k

K x

 

 3

0.5 8For static load:  = 1+
C π

τ
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

PD
d

 

 ( )
( )3max

0.5 8 151 0.0901 21.362MPa
90 π 0.012
12

τ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ × ×⎪ ⎪= + =⎨ ⎬⎛ ⎞⎪ ⎪ ×⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

A  

 ( )
( )3max

0.5 8 59 0.0601 27.816 MPa
60 π 0.007
7

τ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ × ×⎟⎜ ⎟= + =⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟ ×⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

B  

 

Conventional Question AMIE-1997 
Question: A close-coiled spring has mean diameter of 75 mm and spring constant of 90 

kN/m. It has 8 coils. What is the suitable diameter of the spring wire if 
maximum shear stress is not to exceed 250 MN/m2? Modulus of rigidity of the 
spring wire material is 80 GN/m2. What is the maximum axial load the spring 
can carry?  

Answer: Given D 75mm; k 80kN / m; n 8= = =  
 τ = = = ×2 2 9 2250MN / m ; G 80GN / m 80 10 N / m  
 Diameter of the spring wire, d: 

 We know,      

( )

( ) ( )

( )

πτ

π

δ

δ

= × = ×

× = × × − − −

=

= × × − − −

3

6 3

3

T d whereT P R
16

P 0.0375 250 10 d i
16

Also P k
or P 80 10 ii

 

 Using the relation: 

 

( )
δ

δ

−

−

× ×
= = = × ×

× ×

= × × × × =

33
14

4 9 4 4

3 14
4

8P 0.075 88PD n P 33.75 10
Gd 80 10 d d

Substituting for in equation(ii),we get
PP 80 10 33.75 10 or d 0.0128m or 12.8mm
d

 

 Maximum axial load the spring can carry P: 
 From equation (i), we get 

 ( ) ( )π
× = × × × ∴ = =

36P 0.0375 250 10 0.0128 ; P 2745.2N 2.7452kN
16
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 13.   Theories of Column 

Theory at a Glance (for IES, GATE, PSU)  
1. Introduction 

• Strut: A member of structure which carries an axial compressive load. 

• Column: If the strut is vertical it is known as column. 

• A long, slender column becomes unstable when its axial compressive load reaches a value 

called the critical buckling load. 

• If a beam element is under a compressive load and its length is an order of magnitude larger 

than either of its other dimensions such a beam is called a columns.  

• Due to its size its axial displacement is going to be very small compared to its lateral 

deflection called buckling.  

• Buckling does not vary linearly with load it occurs suddenly and is therefore dangerous 

• Slenderness Ratio: The ratio between the length and least radius of gyration. 

• Elastic Buckling: Buckling with no permanent deformation. 

• Euler buckling is only valid for long, slender objects in the elastic region. 

• For short columns, a different set of equations must be used. 

 

2. Which is the critical load? 
• At this value the structure is in equilibrium regardless of the magnitude of the angle 

(provided it stays small) 

• Critical load is the only load for which the structure will be in equilibrium in the disturbed 

position 

• At this value, restoring effect of the moment in the spring matches the buckling effect of the 

axial load represents the boundary between the stable and unstable conditions. 

• If the axial load is less than Pcr the effect of the moment in the spring dominates and the 

structure returns to the vertical position after a small disturbance – stable condition. 

• If the axial load is larger than Pcr the effect of the axial force predominates and the structure 

buckles – unstable condition. 

• Because of the large deflection caused by buckling, the least moment of inertia I can be 

expressed as, I = Ak2   

• Where: A is the cross sectional area and r is the radius of gyration of the cross sectional area, 

i.e.  kmin = minI
A
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• Note that the smallest radius of gyration of the column, i.e. the least moment of inertia I 

should be taken in order to find the critical stress.   l/ k is called the slenderness ratio, it is a 

measure of the column's flexibility.  

 

3. Euler’s Critical Load for Long Column 
Assumptions: 

(i) The column is perfectly straight and of uniform cross-section 

(ii) The material is homogenous and isotropic  

(iii) The material behaves elastically 

(iv) The load is perfectly axial and passes through the centroid of the column section. 

(v) The weight of the column is neglected. 

Euler’s critical load, 

2

2

π
cr

e

EIP
l

=
 

Where A e=Equivalent length of column (1st mode of bending) 

 

4. Remember the following table 
Case Diagram  Pcr Equivalent 

length(le) 

 

Both ends hinged/pinned 

  

 

 

 

 

 

Both ends fixed  

  

 

 

 

 

 
One end fixed & other end free 

  

 

 

 
 

2

2

π EI
A

A

2

2

4π EI
A 2

A

2

2

π EI
4A

2A
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5
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One end fixe
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5. Slender

     =

Sle

=

∴

crP

6. Rankine
Rankine theo

• Short
• Long

• Slend

  

• Cripp

•    P =

 wher

d & other en

rness Rat
2

2

2

2

min

π  whe

π=     
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=

⎛ ⎞
⎜ ⎟
⎝ ⎠

A

e

e

EI
L

EA

k
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π
σ

=
A e
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cσ=
1 '⎛+ ⎜

⎝
A e

A

K
k
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2
min

e

min

ere I=A  k
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2π
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⎞
⎟
⎠
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mn
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crP=
A

 

material & e
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 cσ  stress= crushing  

• For steel columns 

 K’ = 
1

25000
for both ends fixed  

        = 
1

12500
 for one end fixed & other hinged      20 100≤ ≤

A e

k
 

 

7. Other formulas for crippling load (P) 

• Gordon’s formula, 

  2

σ    b = a constant, d = least diameter or breadth of bar
1

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠
A
c

e

AP
b

d

 

• Johnson Straight line formula, 

  σ 1                 c = a constant depending on material.⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Ae
cP A c

k
 

• Johnson parabolic formulae :  

 
where the value of index ‘b' depends on the end conditions. 

 

• Fiddler’s formula, 

  ( ) ( )2

cσ σ σ σ 2 σ σ⎡ ⎤
= + − + −⎢ ⎥

⎣ ⎦
c e e c e

AP c
C

 

       
2

e 2
πwhere, σ =

⎛ ⎞⎜ ⎟
⎝ ⎠
A e

E

k

 

8. Eccentrically Loaded Columns 
• Secant formula 

m ax 2σ 1 sec
2

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

Ac eeyP P
A k k EA

 

Where maxσ =maximum compressive stress 

            P = load  
 

u

P
P

PP

M
M
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  c

A = Area of c/s
y = Distance of the outermost fiber in compression from the NA
e = Eccentricity of the  load

  

  

el = Equivalent length

Ik = Radius of gyration =
A

Modulus of elasticity of the material=E

 

  
e. .

2k

Where M = Moment introduced.

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

A PM P e Sec
EA  

 

• Prof. Perry’s Formula 

 max 1
2

σ σ1 1
σ σ

⎛ ⎞⎛ ⎞
− − =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
d c

d e

e y
k

 

  maxWhere σ maximum compressive stress=  

  

d

2

2

Loadσ
c/s area
Euler's loadσ

/  area
π'  

= =

= =

= =
A

e
e

e
e

P
A
P
A c s

EIp Euler s load

 

  1

' Versine at mid-length of column due to initial curvature
e = Eccentricity of the load
e ' 1.2

distance of outer most fiber in compression form the NA
k = Radius of gyration

=

= +
=c

e

e e
y

 

  If maxσ  is allowed to go up to fσ (permssible stress)  

  Then, 1
2η = ce y

k
 

  
2

f

σ σ (1 ) σ σ (1 )
σ σ σ

2 2
f e f e

d e

η η+ + + +⎧ ⎫
= − −⎨ ⎬

⎩ ⎭
 

• Perry-Robertson Formula 

  

0.003

σ σ 1 0.003 σ σ (1 0.003
σ σ σ

2 2

η ⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎧ ⎫+ + + +⎜ ⎟ ⎪ ⎪⎝ ⎠= − −⎨ ⎬
⎪ ⎪
⎩ ⎭

A

A A

e

e e
f e f e

d e f

k

k k
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9. ISI’s Formula for Columns and Struts 

• For 
Ae

k
=0 to 160 

 
'

σ

1 0.2sec
4

=
⎛ ⎞×

+ ⎜ ⎟
⎝ ⎠

A

y

c
e c

fosP
fos p

k E

 

Where, Pc = Permissible axial compressive stress 

 Pc’ = A value obtained from above Secant formula 

 yσ = Guaranteed minimum yield stress = 2600 kg/cm2 for mild steel 

 fos = factor of safety = 1.68 

 el
k
=  Slenderness ratio 

 E = Modulus of elasticity = 6 22.045 10 /kg cm× for mild steel 
 

• For 160el
k
>  
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Strength of Column 
GATE-1. The rod PQ of length L and with 

flexural rigidity EI is hinged at 
both ends. For what minimum 
force F is it expected to buckle?    

  (a) 2

2

L
EIπ

  (b) 
2

2
2 EI
L
π  

 (c) 
2

2

2L
EIπ

  (b) 2

2

2L
EIπ

 

 
[GATE-2008]

GATE-1. Ans. (b) Axial component of the force FPQ = F Sin 450 

 We know for both end fixed column buckling load (P) = 2

2

L
EIπ

   

 and  0Fsin45 = P  or     F =
2

2

2 EI
L
π  

Equivalent Length 
GATE-2. The ratio of Euler's buckling loads of columns with the same parameters 

having (i) both ends fixed, and (ii) both ends hinged is: 
[GATE-1998; 2002; IES-2001] 

 (a) 2     (b) 4    (c) 6    (d) 8 
GATE-2. Ans. (b) Euler’s buckling loads of columns 

   
( )

( )

2

2

2

2

4 EI1 both ends fixed
l

EI2 both ends hinged
l

π

π

=

=

 

Euler's Theory (For long column) 
GATE-3. A pin-ended column of length L, modulus of elasticity E and second moment of 

the cross-sectional area I is loaded centrically by a compressive load P. The 
critical buckling load (Pcr) is given by: [GATE-2006] 

 (a) 2 2cr
EIP

Lπ
=   (b) 

2

23cr
EIP
L

π
=   (c) 2cr

EIP
L
π

=   (d) 

2

2cr
EIP

L
π

=  

GATE-3. Ans. (d) 
 
GATE-4. What is the expression for the crippling load for a column of length ‘l’ with one 

end fixed and other end free? [IES-2006; GATE-1994] 

 (a) 
2

2

2 EIP
l
π

=  (b) 
2

24
EIP
l

π
=    (c) 

2

2

4 EIP
l
π

=   (d) 
2

2

EIP
l

π
=  Page 370 of 429
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GATE-4. Ans. (b) 
 
21. The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is subjected to 
a compressive force of 10 KN due to the internal pressure. The end conditions for the rod may 
be assumed as guided at the piston end and hinged at the other end. The Young’s modulus is 
200 GPa. The factor of safety for the piston rod is     
(a) 0.68   (b) 2.75   (c) 5.62   (d) 11.0 [GATE-2007] 
21. Ans. (c) 

 

Previous 20-Years IES Questions 

Classification of Column 
IES-1. A structural member subjected to an axial compressive force is called 

[IES-2008] 
 (a) Beam  (b) Column  (c) Frame  (d) Strut 
IES-1. Ans. (d) A machine part subjected to an axial compressive force is called a strut. A strut may 

be horizontal, inclined or even vertical. But a vertical strut is known as a column, 
pillar or stanchion. 

 The term column is applied to all such members except those in which failure would be 
by simple or pure compression. Columns can be categorized then as: 

 1. Long column with central loading 
 2. Intermediate-length columns with central loading 
 3. Columns with eccentric loading 
 4. Struts or short columns with eccentric loading 
 
IES-2. Which one of the following loadings is considered for design of axles? 
 (a) Bending moment only [IES-1995] 
 (b) Twisting moment only 
 (c) Combined bending moment and torsion 
 (d) Combined action of bending moment, twisting moment and axial thrust. 
IES-2. Ans. (a) Axle is a non-rotating member used for supporting rotating wheels etc. and do not 

transmit any torque. Axle must resist forces applied laterally or transversely to their 
axes. Such members are called beams.  
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IES-3. The curve ABC is the Euler's 
curve for stability of column. The 
horizontal line DEF is the 
strength limit. With reference to 
this figure Match List-I with List-
II and select the correct answer 
using the codes given below the 
lists: 

 List-I                           List-II 
 (Regions) (Column specification) 
 A. R1                  1. Long, stable 
 B. R2                  2. Short 
 C. R3                  3. Medium 
 D. R4                  4. Long, unstable  

[IES-1997]
 Codes: A B C  D  A B  C  D 
  (a)  2  4  3  1  (b)  2  3  1  4 
  (c)  1  2  4  3  (d)  2  1  3  4 
IES-3. Ans. (b) 
 
IES-4. Mach List-I with List-II and select the correct answer using the codes given 

below the lists: [IAS-1999] 
  List-I      List-II 
 A. Polar moment of inertia of section  1. Thin cylindrical shell 
 B. Buckling     2. Torsion of shafts 
 C. Neutral axis     3. Columns 
 D. Hoop stress     4. Bending of beams 
 Codes: A B C D  A B C D 
  (a)  3 2 1 4 (b) 2 3 4 1 
  (c) 3 2 4 1 (d)  2 3 1 4 
IES-4. Ans. (b) 

Strength of Column 
IES-5. Slenderness ratio of a column is defined as the ratio of its length to its 
 (a) Least radius of gyration  (b) Least lateral dimension [IES-2003] 
 (c) Maximum lateral dimension  (d) Maximum radius of gyration 
IES-5. Ans. (a) 
 
IES-6. Assertion (A): A long column of square cross section has greater buckling 

stability than a similar column of circular cross-section of same length, same 
material and same area of cross-section with same end conditions. 

 Reason (R): A circular cross-section has a smaller second moment of area than 
a square cross-section of same area. [IES-1999; IES-1996] 

 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-6. Ans. (a) 

Equivalent Length 
IES-7. Four columns of same material and same length are of rectangular cross-

section of same breadth b. The depth of the cross-section and the end 
conditions are, however different are given as follows: [IES-2004] 

         Column   Depth   End conditions 
  1    0.6 b   Fixed-Fixed 
  2    0.8 b   Fixed-hinged 
  3    1.0 b   Hinged-Hinged 
  4    2.6 b   Fixed-Free 
 Which of the above columns Euler buckling load maximum? 
 (a) Column 1   (b) Column 2   (c) Column 3  (d) Column 4 
IES-7. Ans. (b) 
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IES-8. Match List-I (End conditions of columns) with List-II (Equivalent length in 
terms of length of hinged-hinged column) and select the correct answer using 
the codes given below the Lists: [IES-2000] 

 List-I       List-II 
 A. Both ends hinged     1. L 
 B. One end fixed and other end free   2. L/ 2  
 C. One end fixed and the other pin-pointed  3. 2L 
 D. Both ends fixed      4. L/2 
 Code: A B C D  A B C D 
  (a) 1 3 4 2 (b) 1 3 2 4 
  (c) 3 1 2 4 (d) 3 1 4 2 
IES-8. Ans. (b) 
IES-9. The ratio of Euler's buckling loads of columns with the same parameters 

having (i) both ends fixed, and (ii) both ends hinged is: 
[GATE-1998; 2002; IES-2001] 

 (a) 2     (b) 4    (c) 6    (d) 8 
IES-9. Ans. (b) Euler’s buckling loads of columns 

  
( )

( )

2

2

2

2

4 EI1 both ends fixed
l

EI2 both ends hinged
l

π

π

=

=

 

Euler's Theory (For long column) 
IES-10. What is the expression for the crippling load for a column of length ‘l’ with one 

end fixed and other end free? [IES-2006; GATE-1994] 

 (a) 
2

2

2 EIP
l
π

=  (b) 
2

24
EIP
l

π
=    (c) 

2

2

4 EIP
l
π

=   (d) 
2

2

EIP
l

π
=  

IES-10. Ans. (b) 
 
IES-11. Euler's formula gives 5 to 10% error in crippling load as compared to 

experimental results in practice because: [IES-1998] 
 (a) Effect of direct stress is neglected 
 (b) Pin joints are not free from friction 
 (c) The assumptions made in using the formula are not met in practice 
 (d) The material does not behave in an ideal elastic way in tension and compression 
IES-11. Ans. (c) 
 
IES-12. Euler's formula can be used for obtaining crippling load for a M.S. column with 

hinged ends. 

 Which one of the following conditions for the slenderness ratio 
l
k

 is to be 

satisfied? [IES-2000] 

 (a) 5 8l
k

< <                   (b) 9 18l
k

< <              (c) 19 40l
k

< <                (d) 80l
k
≥          

IES-12. Ans. (d) 
 
IES-13. If one end of a hinged column is made fixed and the other free, how much is the 

critical load compared to the original value? [IES-2008] 
 (a) ¼   (b) ½   (c) Twice  (d) Four times 
IES-13. Ans. (a) Critical Load for both ends hinged = π 2EI/ l 2 
 And Critical Load for one end fixed, and other end free = π 2EI/4l2 
 
IES-14. If one end of a hinged column is made fixed and the other free, how much is the 

critical load compared to the original value? [IES-2008] 
 (a) ¼   (b) ½   (c) Twice  (d) Four times 

IES-14. Ans. (a) Original load = 
2

2
EI

I
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 When one end of hinged column is fixed and other free. New Le = 2L 

 ∴ New load = 
( )

2 2

2 2
EI EI 1 Original value

44L2L
π π

= = ×  

 
IES-15. Match List-I with List-II and select the correct answer using the code given 

below the Lists: [IES-1995; 2007; IAS-1997] 
             List-I (Long Column)    List-II (Critical Load) 
 A. Both ends hinged    1. π 2EI/4l2 

 B. One end fixed, and other end free  2. 4 π 2EI/ l2 
 C. Both ends fixed     3. 2 π 2EI/ l2 
 D. One end fixed, and other end hinged  4. π 2EI/ l2 
 Code:  A B C D  A B C D 
    (a) 2 1 4 3      (b) 4 1 2 3 
  (c) 2 3 4 1      (d) 4 3 2 1 
IES-15. Ans. (b) 
 
IES-16. The ratio of the compressive critical load for a long column fixed at both the 

ends and a column with one end fixed and the other end free is: [IES-1997] 
 (a) 1 : 2    (b) 1: 4   (c) 1: 8   (d) 1: 16 
IES-16. Ans. (d) Critical Load for one end fixed, and other end free is π 2EI/4l2 and both ends fixed 

is 4 π 2EI/ l 2 
 
IES-17. The buckling load will be maximum for a column, if [IES-1993] 
 (a) One end of the column is clamped and the other end is free 
 (b) Both ends of the column are clamped 
 (c) Both ends of the column are hinged 
 (d) One end of the column is hinged and the other end is free 
IES-17. Ans. (b) Buckling load of a column will be maximum when both ends are fixed 
 
IES-18. If diameter of a long column is reduced by 20%, the percentage of reduction in 

Euler buckling load is: [IES-2001] 
 (a) 4     (b) 36    (c) 49    (d) 59 

IES-18. Ans. (d) 
2

2

π
=

EIP
L

4P I or P d∞ ∞ or 
( )4 4 4

4

d dp p 0.8d1 0.59
p dd

′−′− ⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

 
IES-19. A long slender bar having uniform rectangular cross-section 'B x H' is acted 

upon by an axial compressive force. The sides B and H are parallel to x- and y-
axes respectively. The ends of the bar are fixed such that they behave as pin-
jointed when the bar buckles in a plane normal to x-axis, and they behave as 
built-in when the bar buckles in a plane normal to y-axis. If load capacity in 
either mode of buckling is same, then the value of H/B will be: [IES-2000] 

 (a) 2     (b) 4    (c) 8    (d) 16 

IES-19. Ans. (a) 
2

2

π
=xx

EIP
L

 and 
2

2

4π ′
=yy

EIP
L

 as xx yyP P=  then 
3 3BH HB HI 4I or 4 or 2

12 12 B
′= = × =  

 
IES-20. The Euler's crippling load for a 2m long slender steel rod of uniform cross-

section hinged at both the ends is 1 kN. The Euler's crippling load for 1 m long 
steel rod of the same cross-section and hinged at both ends will be: [IES-1998] 

 (a) 0.25 kN   (b) 0.5 kN  (c) 2 kN  (d) 4 kN 

IES-20. Ans. (d) For column with both ends hinged, P =
2

2

EI
l

π
. If ‘l’ is halved, P will be 4 times. 

 
IES-21. If σc  and E denote the crushing stress and Young's modulus for the material of 

a column, then the Euler formula can be applied for determination of cripping 
load of a column made of this material only, if its slenderness ratio is: 

 (a) More than / cEπ σ  (b) Less than / cEπ σ  [IES-2005] 
Page 374 of 429



Chapter-13 Theories of Column S K Mondal’s 

 

 (c) More than 2

c

Eπ
σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (d) Less than 2

c

Eπ
σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

IES-21. Ans. (a) For long column   PEuler < Pcrushing 

 or  
22 2 2 2

c c c2 2
ce e

EI EAK le E leA or A or or E /
k kl l

π π πσ σ π σ
σ

⎛ ⎞< < > >⎜ ⎟
⎝ ⎠

 

 
IES-22. Four vertical columns of same material, height and weight have the same end 

conditions. Which cross-section will carry the maximum load? [IES-2009] 
 (a) Solid circular section   (b) Thin hollow circular section 
 (c) Solid square section   (d) I-section 
IES-22. Ans. (b)  

Rankine's Hypothesis for Struts/Columns 
IES-23. Rankine Gordon formula for buckling is valid for [IES-1994] 
 (a) Long column    (b) Short column 
 (c) Short and long column   (d) Very long column 
IES-23. Ans. (c)  

Prof. Perry's formula 
IES-24. Match List-I with List-II and select the correct answer using the code given 

below the lists: [IES-2008] 
 List-I (Formula/theorem/ method)    List-II (Deals with topic) 
 A. Clapeyron's theorem     1. Deflection of beam 
 B. Maculay's method     2. Eccentrically loaded column 
 C. Perry's formula      3. Riveted joints 
 4. Continuous beam 
 Code: A  B  C   A  B  C 
  (a)  3  2  1  (b)  4  1  2 
  (c)  4  1  3  (d)  2  4  3 
IES-24. Ans. (b) 

Previous 20-Years IAS Questions 

Classification of Column 
IAS-1. Mach List-I with List-II and select the correct answer using the codes given 

below the lists: [IAS-1999] 
  List-I      List-II 
 A. Polar moment of inertia of section  1. Thin cylindrical shell 
 B. Buckling     2. Torsion of shafts 
 C. Neutral axis     3. Columns 
 D. Hoop stress     4. Bending of beams 
 Codes: A B C D  A B C D 
  (a)  3 2 1 4 (b) 2 3 4 1 
  (c) 3 2 4 1 (d)  2 3 1 4 
IAS-1. Ans. (b) 

Strength of Column 
IAS-2. Assertion (A): A long column of square cross-section has greater buckling 

stability than that of a column of circular cross-section of same length, same 
material, same end conditions and same area of cross-section. [IAS-1998] 

 Reason (R): The second moment of area of a column of circular cross-section is 
smaller than that of a column of square cross section having the same area. 

 (a) Both A and R are individually true and R is the correct explanation of A 
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 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-2. Ans. (a) 
 
IAS-3. Which one of the following pairs is not correctly matched? [IAS-2003] 
 (a) Slenderness ratio : The ratio of length of the column to the least radius of gyration 
 (b) Buckling factor : The ratio of maximum load to the permissible axial load on the 

column 
 (c) Short column : A column for which slenderness ratio < 32 
 (d) Strut : A member of a structure in any position and carrying an axial 

compressive load 
IAS-3. Ans. (b) Buckling factor: The ratio of equivalent length of the column to the least radius of 

gyration. 

Equivalent Length 
IAS-4. A column of length 'I' is fixed at its both ends. The equivalent length of the 

column is: [IAS-1995] 
 (a) 2 l     (b) 0.5 l  (c) 2 l    (d) l 
IAS-4. Ans. (b) 
 
IAS-5. Which one of the following statements is correct? [IAS-2000] 
 (a) Euler's formula holds good only for short columns 
 (b) A short column is one which has the ratio of its length to least radius of gyration 

greater than 100 
 (c) A column with both ends fixed has minimum equivalent or effective length 
 (d) The equivalent length of a column with one end fixed and other end hinged is half 

of its actual length 
IAS-5. Ans. (c) A column with both ends fixed has minimum equivalent effective length (l/2) 

Euler's Theory (For long column) 
IAS-6. For which one of the following columns, Euler buckling load =

2

2

4 EI
l
π

? 

 (a) Column with both hinged ends [IAS-1999; 2004] 
 (b) Column with one end fixed and other end free 
 (c) Column with both ends fixed 
 (d) Column with one end fixed and other hinged 
IAS-6. Ans. (c)     
IAS-7. Assertion (A): Buckling of long columns causes plastic deformation. [IAS-2001] 
 Reason (R): In a buckled column, the stresses do not exceed the yield stress. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IAS-7. Ans. (d) And Critical Load for one end fixed, and other end free = π 2EI/4l2 
 
IAS-8. Match List-I with List-II and select the correct answer using the code given 

below the Lists: [IES-1995; 2007; IAS-1997] 
             List-I (Long Column)    List-II (Critical Load) 
 A. Both ends hinged    1. π 2EI/4l2 

 B. One end fixed, and other end free  2. 4 π 2EI/ l 2 
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 C. Both ends fixed     3. 2 π 2EI/ l 2 
 D. One end fixed, and other end hinged  4. π 2EI/ l 2 
 Code:   A B C D  A B C D 
  (a) 2 1 4 3      (b) 4 1 2 3 
  (c) 2 3 4 1      (d) 4 3 2 1 
IAS-8. Ans. (b) 
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Previous Conventional Questions with Answers 
Conventional Question ESE-2001, ESE 2000 
Question: Differentiate between strut and column. What is the general expression used 

for determining of their critical load? 
Answer: Strut: A member of structure which carries an axial compressive load. 
Column: If the strut is vertical it is known as column. 

 For strut failure due to compression or 
force

σ =c
Compressive

Area
 

 If c ycσ σ> it fails.  

 Euler's formula for column( )
2

2

π
=

AC
e

EIP
 

 
Conventional Question ESE-2009 
Q.  Two long columns are made of identical lengths ‘l’ and flexural rigidities ‘EI’. 

Column 1 is hinged at both ends whereas for column 2 one end is fixed and the 
other end is free. 

  (i) Write the expression for Euler’s buckling load for column 1. 
  (ii) What is the ratio of Euler’s buckling load of column 1 to that column 2? [ 2 Marks] 
 
Ans.   (i) 

( )
2 2

1 22 2
EI EIP ;  P right

L 4L
π π

= =
 

   eForcolumnl,bothendhinged l L=  

   (ii)   

 
Conventional Question ESE-2010 
Q. The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is 

subjected to a compressive force of 10 kN due to internal pressure. The piston end 
of the rod is guided along the cylinder and the other end of the rod is hinged at the 
cross-head. The modulus of elasticity for piston rod material is 200 GPa. Estimate 
the factor of safety taken for the piston rod design.              [2 Marks] 

Ans.  

20mm PP

 
Pσ
A

= ; 
PLδ
AE

= ; e 2
=
AA ; 

2

e 2
e

EIP π
=
A

(considering one end of the column is fixed and 

other end is hinged) 
 Pe = Euler Crippling load 
 Compressive load, c cP σ Area= ×  = 10 kN 

 Euler’s load, 
( ) ( )2 9 4

e 2

2 200 10 0.020 / 64
P

(0.7)
π × × × π ×

=  = 63.278 kN 

 F.S = Euler 's load
Compressiveload

 

 F.S  = 
63.278 6.3

10
=  

 
 

1

2

P 4
P

=
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Conventional Question ESE-1999 
Question: State the limitation of Euler's formula for calculating critical load on 

columns  
Answer: Assumptions: 
 (i) The column is perfectly straight and of uniform cross-section 
 (ii) The material is homogenous and isotropic  
 (iii) The material behaves elastically 
 (iv) The load is perfectly axial and passes through the centroid of the column section. 
 (v) The weight of the column is neglected. 
 
Conventional Question ESE-2007 
Question: What is the value of Euler's buckling load for an axially loaded pin-ended 

(hinged at both ends) strut of length 'l' and flexural rigidity 'EI'? What would 
be order of Euler's buckling load carrying capacity of a similar strut but 
fixed at both ends in terms of the load carrying capacity of the earlier one? 

Answer: From Euler's buckling load formula, 

 
π2

C 2Critical load (P )
e

EI
=

A
 

 Equivalent length ( )  for both end hinged =  for both end fixed.2e = AA A  

 
π2

c 2So for both end hinged (P )beh
EI

=
A

 

 
( )
π π2 2

c 2 2

4and for both fixed (P )

2
bef

EI EI
= =

AA
 

 
Conventional Question ESE-1996 
Question: Euler's critical load for a column with both ends hinged is found as 40 kN. 

What would be the change in the critical load if both ends are fixed? 
Answer: We know that Euler's critical laod, 

 PEuler=
2

2

π

e

EI
A

  [Where E = modulus of elasticity, I = least moment of inertia 

equivalent lengthe =A ] 
 For both end hinged ( A e) = A  
 And For both end fixed ( A e) = A /2 

 

2π

π π

. . . 2

2 2

Euler . . . 2 2

( ) =40kN(Given) 

and (P ) =   4 4 40 160
( / 2)

Euler b e h

b e F

EIP

EI EI kN

∴ =

= × = × =

A

A A

 

 
Conventional Question ESE-1999 
Question: A hollow cast iron column of 300 mm external diameter and 220 mm internal 

diameter is used as a column 4 m long with both ends hinged. Determine the 
safe compressive load the column can carry without buckling using Euler's 
formula and Rankine's formula  

 E = 0.7×105 N/mm2, FOS = 4,  Rankine constant (a) = 1/1600 
 Crushing Stress (σc ) = 567 N/mm2 

Answer: Given outer diameter of column (D) = 300 mm = 0.3 m. 
 Inner diameter of the column (d) = 220 mm = 0.22 m. 
 Length of the column ( A ) = 4 m 
 End conditions is both ends hinged. Therefore equivalent length ( eA ) = A  = 4 m. 

 Yield crushing stress (σc ) = 567 MPa = 567×106 N/m2 
 Rankine constant (a) = 1/ 1600 and E = 0.7×105 N/mm2 = 70 x 109 N/m2 Page 379 of 429
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( )

π π

π

π
4

π π

4 4 4 4 4 4

4 4
2 22 2

2 2

2 2 2 2 2

Moment of Inertia(I) ( ) 0.3 0.22 2.826 10
64 64

0.3 0.2264Slenderness ratio(k)= 0.093
16 16( )

Area(A) ( ) (0.3 0.22 ) 0.03267
4 4

D d m

D dI D d m
A D d

D d m

−⎡ ⎤= − = − = ×⎢ ⎥⎣ ⎦

− ++
= = = =

−

= − = − =

 

 
2π π

Euler
2 9 4

2 2

(i) Euler's buckling load, P

(70 10 ) (2.826 10 ) 12.2MN
4

P 12.2Safe load = 3.05
fos 4

Euler
e

Euler

EIP

MN

−× × × ×
= = =

∴ = =

A
 

 
( )σ

Rankine

6

Rankine 2 2

Rankine

(ii)Rankine's buckling load, P

567×10 0.03267.      P  =  = 8.59 MN
1 41+1 .

1600 0.093
P 8.59 load = 2.148

fos 4

c

e

A

a
k

Safe MPa

×
=

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜×+ ⎟ ⎟⎜ ⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠

∴ = =

A
 

 
Conventional Question ESE-2008 
Question: A both ends hinged cast iron hollow cylindrical column 3 m in length has a 

critical buckling load of  P kN. When the column is fixed at both the ends, its 
critical buckling load raise by 300 kN more. If ratio of external diameter to 
internal diameter is 1.25 and E = 100 GPa determine the external diameter of 
column.  

Answer: 
2

2c
e

EIP
I

π
=  

  

  

  

  

2

2

For both end hinged column
EIP= ( )

L
iπ

−−−

( )
2 2

2 2

For  both end fixed column
4P+300= ( )

2

EI EI ii
LL

π π
= −−−

 (ii) by (i) we get
P+300 4  or P=100kN

P

Dividing

=

( )

( )

2
4 4

2

3 2
4 4 5

2 9

Moment of inertia of a hollow cylinder c/s is

64
100 10 364 1.8577 10

100 10

PLI D d
E

orD d

π
π

π π
−

= − =

×
− = = ×

× ×
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Conventional Question AMIE-1996 
Question: A piston rod of steam engine 80 cm long in subjected to a maximum load of 60 

kN. Determine the diameter of the rod using Rankine's formula with 
permissible compressive stress of 100 N/mm2. Take constant in Rankine's 

formula as 1
7500

for hinged ends. The rod may be assumed partially fixed 

with length coefficient of 0·6. 
Answer: Given: 3 2

cl 80 cm 800mm ;P 60kN 60 10 N, 100N / mm ;σ= = = = × =  

 1a for hinged ends; length coefficient 0.6
7500

= =  

 To find diameter of the rod, d: 
 Use Rankine’s formula 

 c
2

e

AP
l1 a
k

σ
=

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 

 eHere l 0.6l 0.6 800 480 mm [ length coefficient 0.6]= = × = =∵  

 
4

2

dI d64k
A 4d

4

π

π
= = =  

 

2

3
2

100 d
460 10

1 4801
7500 d / 4

π⎛ ⎞× ⎜ ⎟
⎝ ⎠∴ × =
⎡ ⎤+ ⎢ ⎥⎣ ⎦

 

 Solving the above equation we get the value of ‘d’  
 Note: Unit of d comes out from the equation will be mm as we put the equivalent 

length in mm.  
 =or d 33.23mm  
 
Conventional Question ESE-2005 
Question: A hollow cylinder CI column, 3 m long its internal and external diameters as 

80 mm and 100 mm respectively. Calculate the safe load using Rankine 
formula: if 

 (i) Both ends are hinged and  
 (ii) Both ends are fixed. 
 Take crushing strength of material as 600 2/N mm , Rankine constant 1/1600 

and factor of safety = 3. 

Answer: 
π 4 4 4 6 4Moment of Inertia (I)= (0.1 0.08 ) 2.898 10

64
m m−− = ×  

4
4 5

D D 1.25 or d =
d 1.25-5

1 D 1 1.8577 10
1.25

 D=0.0749 m = 74.9 mm

given

or

or

−

=

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜− = ×⎟⎜⎢ ⎥⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
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( ) ( )

( ) ( )

δ

δ δ

= + − − − − −

+ = + + = +

2

2

2 2

2 2

d yEI P e y i
dx
d y d y P PEI Py P e or y e

EI EIdx dx

 

 The solution to the above differential equation is 

 

( ) ( )

( )
( )

1 2

1 2

1 2

1

P Py C cos x C sin x e ii
EI EI

Where C and C are the cons tan ts.
At the end B,x 0 and y 0

0 C cos 0 C sin0 e

or C e

δ

δ

δ

⎡ ⎤ ⎡ ⎤
= + + + − − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= =

∴ = + + +

= − +

 

 

( )

1 2

Differentiating equation ii we get

dy P P P PC sin x C cos x
dx EI EI EI EI

⎡ ⎤ ⎡ ⎤
= − +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
( ) 2

2

Again,at the fixed end B,
dyWhen x 0, 0
dx

P P0 e 0 C cos0
EI EI

or C 0

δ

= =

∴ = + × +

=

 

 

( )

( ) ( )

( )

At the free end A,x ,y
Substituting for x and y in equation ii ,we have

Pe cos e
EI

P ecos iii
EI e

δ

δ δ δ

δ

= =

⎡ ⎤
= − + = +⎢ ⎥

⎣ ⎦
⎡ ⎤

∴ = − − −⎢ ⎥ +⎣ ⎦

A

A

A

 

 It is mentioned in the problem that the deflection of the free end does not exceed the 
eccentricity. It means that δ = e 

 Substituting this value in equation (iii), we have 

 1

P e 1cos
EI e 2

P 1cos
EI 2 3

EI
3 P

δ

π

π

−

⎡ ⎤
= =⎢ ⎥ +⎣ ⎦

⎛ ⎞∴ = =⎜ ⎟
⎝ ⎠

∴ =

A

A

A

 

 
Conventional Question ESE-2005 
Question: A long strut AB of length ' A ' is of uniform section throughout. A thrust P is 

applied at the ends eccentrically on the same side of the centre line with 
eccentricity at the end B twice than that at the end A.  Show that the 
maximum bending moment occurs at a distance x from the end A,  

 Where, tan(kx)= 
2 cos P and k=

sin EI
k

k
− A

A
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yield strength and modulus of elasticity value for steel as 250 MPa and 200 
GPa respectively. 

Answer: Given: Cross-section, (= b x d) = 600 mm x 100 mm = 0.6 m x 0.1 m = 0.06 m2; 

 Yield strength = 2 12 2250 250 / ; 200 200 10 /P MPa MN m E GPa N m
A

= = = = ×  

 3 3
5 40.6 0.1Least areamoment of Inertia, 5 10 m

12 12
bdI −×

= = = ×

Length of the column, L :
 

 
( )

5
2 4 2

2

5 10, 8.333 10
0.6 0.1

[ where area of cross-section, radius of gyration ]

IAlso k m
A

I AK A k

−
−×

= = = ×
×

= = =∵
 

 2 2

2 2

From Euler's formula for column, we have

, cr
e

EI EICrushing load P
L L
π π

= =
 

 

( )

e
2 2

2

2

2

2 2
2

For bothendhinged type of column, = L

/

cr

cr

cr

L

EAkor P
L

P EIor Yield stress
A L

Ekor L
P A

π

π

π

=

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎟⎜⎝ ⎠

=

 

 Substituting the value,we get  

 

2 9
2

6

200 10 0.0008333 6.58
250 10

2.565

L

L m

π × × ×
= =

×
=

 

 
Conventional Question GATE-1993 
Question: Determine the temperature rise necessary to induce buckling in a lm long 

circular rod of diameter 40 mm shown in the Figure below. Assume the rod to 
be pinned at its ends and the coefficient of thermal expansion as 6 020 10 / C−×
. Assume uniform heating of the bar.  

   
Answer: Letusassume the buckling load be'P'.  
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e2
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e2
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.,
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L L t t
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∝

= =
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( )
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2
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2

42

0

2 4 6

. . . .
Substituting the values,we get

0.040
64Temperature rise 49.35

1 0.040 20 10
4

Ior L
LA

L I It
L LA L L A

t C

π
δ

δ π π

π
π

π −

=

= = =
∝ ∝ ∝

× ×
= =

× × × ×

+

+

 

 So the rod will buckle when the temperature rises more than 49.35°C. 
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 14.   Strain Energy Method 

Theory at a Glance (for IES, GATE, PSU)  
1. Resilience (U) 

• Resilience is an ability of a material to absorb energy when 

elastically deformed and to return it when unloaded. 

• The strain energy stored in a specimen when stained within 

the elastic limit is known as resilience. 

2σU =    U =
2 2

∈
× ×

2 EV o lu m e o r V o lu m e
E

 

 

2. Proof Resilience 
• Maximum strain energy stored at elastic limit. i.e. the strain energy stored in the body upto 

elastic limit.  

• This is the property of the material that enables it to resist shock and impact by storing 

energy. The measure of proof resilience is the strain energy absorbed per unit volume. 

 

3. Modulus of Resilience (u) 
The proof resilience per unit volume is known as modulus of resilience. If σ  is the stress due to 

gradually applied load, then 

2σu =    u =
2 2

∈2 Eo r
E   

 

4.  Application 

2 2
2

2
2

3P .
4 4= π π2 2 (2 ) 2.4 4

LL PP LU
dAE d E E

= +  

 
Strain energy becomes smaller & smaller as the  cross sectional area of bar
is increased over more & more of its length i.e. A , U↑ ↓

 

5. Toughness 
• This is the property which enables a material to be twisted, bent or stretched under impact 

load or high stress before rupture. It may be considered to be the ability of the material to 

LL/4

2d

P
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1 ⎛ ⎞∂∂

= ⎜ ⎟∂ ∂⎝ ⎠
∫ x

x
MU M dx

p EI p
 

• Note: 

o Strain energy, stored due to direct stress in 3 coordinates 

 21 (σ ) 2 σ σ
2

μ⎡ ⎤= −⎣ ⎦∑ ∑x x yU
E

 

o = =If σ σ σ ,in case of equal stress in 3 direction thenx y z  

   
2 23σ σU= [1 2μ]     (volume strain energy)

2 2E k
− =  
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Strain Energy or Resilience 
GATE-1. The strain energy stored in the beam with flexural rigidity EI and loaded as 

shown in the figure is: [GATE-2008] 

 

     (a) 
2 3

3
P L

EI
  (b) 

2 32
3
P L
EI

   (c) 
2 34

3
P L
EI

  (d) 
2 38

3
P L
EI

 

 

GATE-1. Ans. (c) 
4 3 42 2 2 2

0 0 3

L L L L

L L

M dx M dx M dx M dx
EI EI EI EI

= + +∫ ∫ ∫ ∫  

     

3 42 2 2 2

0 0 3

32 2 2 3

0

2 By symmetry

( ) ( ) 42
3

L L L L

L L

L L

L

M dx M dx M dx M dx
EI EI EI EI

Px dx PL dx P L
EI EI EI

⎡ ⎤
⎢ ⎥= + =⎢ ⎥
⎢ ⎥⎣ ⎦

= + =

∫ ∫ ∫ ∫

∫ ∫
 

 

GATE-2. 
3

3
PL
EI

 is the deflection under the load P of a cantilever beam [length L, modulus 

of elasticity, E, moment of inertia-I]. The strain energy due to bending is: 
[GATE-1993] 

 
2 3 2 3 2 3 2 3

( ) ( ) ( ) ( )
3 6 4 48
P L P L P L P La b c d

EI EI EI EI
 

GATE-2. Ans. (b) We may do it taking average 

 Strain energy = Average force x displacement = 
3

2 3
⎛ ⎞× =⎜ ⎟
⎝ ⎠

P PL
EI

2 3

6
P L

EI
 

 Alternative method: In a funny way you may use Castiglione’s theorem, U
P

δ
∂

=
∂

. Then 

U
P

δ
∂

=
∂

3

3
PL
EI

= or 
3

3
PLU U P
EI

= ∂ = ∂∫ ∫  Partially integrating with respect to P we get 

2 3P LU
6EI

=  
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 (a) 
2 2

2
T L P L
GJ AE

+  (b) 
2 2

2
T L P L
GJ AE

+  (c) 
2 2

2 2
T L P L
GJ AE

+   (d) 
2 2T L P L

GJ AE
+  

IES-2. Ans. (c) 
1 1 1 1Internal strain energy = P + P +
2 2 2 2

PL TLT T
AE GJ

δ θ =  

 
IES-3. Strain energy stored in a body of volume V subjected to uniform stress s is: 

[IES-2002] 
 (a) s E / V    (b) sE2/ V   (c) sV2/E   (d) s2V/2E 
IES-3. Ans. (d) 
 
IES-4. A bar of length L and of uniform cross-sectional area A and second moment of 

area ‘I’ is subjected to a pull P. If Young's modulus of elasticity of the bar 
material is E, the expression for strain energy stored in the bar will be: 

[IES-1999] 

 
2 2 2 2P L PL PL P L(a) (b) (c) (d)

2AE 2EI AE AE
 

IES-4. Ans. (a) ( )
21 1Strain energy  x stress x strain x volume = .

2 2 2
P P L PLAL
A A E AE

⎛ ⎞ ⎛ ⎞= × × × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
IES-5. Which one of the following gives the correct expression for strain energy 

stored in a beam of length L and of uniform cross-section having moment of 
inertia ‘I’ and subjected to constant bending moment M? [IES-1997] 

 ( ) ( ) ( ) ( )
2 2

a                   b              c                        d   
2 2

ML ML M L M L
EI EI EI EI

 

IES-5. Ans. (d) 
 
IES-6. A steel specimen 150 2mm in cross-section stretches by 0·05 mm over a 50 mm 

gauge length under an axial load of 30 kN. What is the strain energy stored in 
the specimen? (Take E = 200 GPa) [IES-2009] 

 (a) 0.75 N-m                 (b) 1.00 N-m                   (c) 1.50 N-m                 (d) 3.00 N-m 
IES-6. Ans. (a) Strain Energy stored in the specimen 

  
( ) −

−

× ×⎛ ⎞= δ = = = =⎜ ⎟ × × × ×⎝ ⎠

2 32

6 9

30000 50 101 1 PL P LP P 0.75 N-m
2 2 AE 2AE 2 150 10 200 10

 

 
IES-7. What is the expression for the strain energy due to bending of a cantilever 

beam (length L. modulus of elasticity E and moment of inertia I)? [IES-2009] 

 (a) 
2 3

3
P L

EI
                        (b)  

2 3

6
P L

EI
                         (c) 

2 3

4
P L

EI
                        (d) 

2 3

48
P L

EI
 

IES-7. Ans. (b) Strain Energy Stored  
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

∫
LL 2 2 3 2 3

0 0

(Px) dx P x P L
2E 2EI 3 6EI

 

 
IES-8. The property by which an amount of energy is absorbed by a material without 

plastic deformation, is called: [IES-2000] 
 (a) Toughness (b) Impact strength  (c) Ductility  (d) Resilience 
IES-8. Ans. (d) 
 
IES-9. 30 C 8 steel has its yield strength of 400 N/mm2 and modulus of elasticity of 2 × 

105 MPa. Assuming the material to obey Hooke's law up to yielding, what is its 
proof resilience? [IES-2006] 

 (a) 0·8 N/mm2  (b) 0.4 N/mm2  (c) 0·6 N/mm2  (d) 0·7 N/mm2 

IES-9. Ans. (b) Proof resilience ( ) ( )22
2

p 5

4001 1R . 0.4N / mm
2 E 2 2 10
σ

= = × =
×
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Toughness 
IES-10. Toughness for mild steel under uni-axial tensile loading is given by the shaded 

portion of the stress-strain diagram as shown in [IES-2003] 

IES-10. Ans. (d) Toughness of material is the total area under stress-strain curve. 

Previous 20-Years IAS Questions 

Strain Energy or Resilience 
IAS-1. Total strain energy stored in a simply supported beam of span, 'L' and flexural 

rigidity 'EI 'subjected to a concentrated load 'W' at the centre is equal to: 
[IAS-1995] 

 (a) 
2 3

40
W L

EI
   (b) 

2 3

60
W L

EI
  (c) 

2 3

96
W L

EI
  (d) 

2 3

240
W L

EI
 

IAS-1. Ans. (c) Strain energy = 
2L L/2 L/22 2 2 3

0 0 0

M dx M dx 1 Wx W L2 dx
2EI 2EI EI 2 96EI

⎛ ⎞= × = × =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

 Alternative method: In a funny way you may use Castiglione’s theorem, U U
P W

δ
∂ ∂

= =
∂ ∂

 

 We know that 
3

48
WL

EI
δ = for simply supported beam in concentrated load at mid span. 

Then U U
P W

δ
∂ ∂

= =
∂ ∂

3

48
WL

EI
= or 

3

48
WLU U W

EI
= ∂ = ∂∫ ∫  partially integrating with 

respect to W we get 
2 3W LU

96EI
=  

 
IAS-2. If the cross-section of a member is subjected to a uniform shear stress of 

intensity 'q' then the strain energy stored per unit volume is equal to (G = 
modulus of rigidity). [IAS-1994] 

 (a) 2q2/G   (b) 2G / q2  (c) q2 /2G  (d) G/2 q2 
IAS-2. Ans. (c) 
          
IAS-3. The strain energy stored in the beam with flexural rigidity EI and loaded as 

shown in the figure is: [GATE-2008] 
 

Page 394 of 429



Chapter-14 Strain Energy Method S K Mondal’s 

 

 
 

 (a) 
2 3

3
P L

EI
   (b) 

2 32
3
P L
EI

  (c) 
2 34

3
P L
EI

  (d) 
2 38

3
P L
EI

 

 

IAS-3. Ans. (c) 
4 3 42 2 2 2

0 0 3

L L L L

L L

M dx M dx M dx M dx
EI EI EI EI

= + +∫ ∫ ∫ ∫  

 

3 42 2 2 2

0 0 3

32 2 2 3

0

2 By symmetry

( ) ( ) 42
3

L L L L

L L

L L

L

M dx M dx M dx M dx
EI EI EI EI

Px dx PL dx P L
EI EI EI

⎡ ⎤
⎢ ⎥= + =⎢ ⎥
⎢ ⎥⎣ ⎦

= + =

∫ ∫ ∫ ∫

∫ ∫
 

 
IAS-4. Which one of the following statements is correct? [IAS-2004] 
 The work done in stretching an elastic string varies 
 (a) As the square of the extension   (b) As the square root of the extension 
 (c) Linearly with the extension   (d) As the cube root of the extension 

IAS-4. Ans. (a) 
( )22

2
2

1 1
2 2 2

l
E E

E L
δσ ⎡ ⎤

⎢ ⎥= ∈ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Toughness 
IAS-5. Match List-I with List-II and select the correct answer using the codes given 

below the lists: [IAS-1996] 
 List-I (Mechanical properties)  List-II (Meaning of properties) 
 A. Ductility    1. Resistance to indentation 
 B. Hardness    2. Ability to absorb energy during plastic 
 C. Malleability                    deformation 
 D. Toughness    3. Percentage of elongation 
       4. Ability to be rolled into flat product 
 Codes:  A B C D  A B C D 
  (a)  1 4 3 2 (b)  3 2 4 1 
  (c) 2 3 4 1 (d)  3 1 4 2 
IAS-5. Ans. (d) 
 
IAS-6. Match List-I (Material properties) with List-II (Technical 

definition/requirement) and select the correct answer using the codes below 
the lists: [IAS-1999] 

 List-I    List-II 
 A. Hardness   1. Percentage of elongation 
 B. Toughness   2. Resistance to indentation 
 C. Malleability   3. Ability to absorb energy during plastic deformation 
 D. Ductility   4. Ability to be rolled into plates 
 Codes: A B C D  A B C D 
  (a) 3 2 1 4 (b)  2 3 4 1 
  (c) 2 4 3 1 (d)  1 3 4 2 
IAS-6. Ans. (b) 
 
IAS-7. A truck weighing 150 kN and travelling at 2m/sec impacts which a buffer 

spring which compresses 1.25cm per 10 kN. The maximum compression of the 
spring is: [IAS-1995] Page 395 of 429
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 (a) 20.00 cm 
 (b) 22.85 cm   
 (c) 27.66 cm       
 (d) 30.00 cm 

 
IAS-7. Ans. (c) Kinetic energy of the truck = strain energy of the spring 

 

3
2

2
2 2

150 10 2
9.811 1 mvmv kx or x 0.2766m 27.66cm
10 10002 2 k

0.0125

⎛ ⎞×
×⎜ ⎟

⎝ ⎠= = = = =
×⎡ ⎤

⎢ ⎥⎣ ⎦
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Previous Conventional Questions with Answers 

Conventional Question IES 2009 
Q.  A close coiled helical spring made of wire diameter d has mean coil radius R, 

number of turns n and modulus of rigidity G. The spring is subjected to an 
axial compression W. 

  (1) Write the expression for the stiffness of the spring. 
  (2) What is the magnitude of the maximum shear stress induced in the spring 

wire neglecting the curvature effect?   [2 Marks] 

Ans.   (1) Spring stiffness, K =   

   (2) Maximum shear stress,  

 
Conventional Question IES 2010 
Q.   A semicircular steel ring of mean radius 300 mm is suspended vertically with 

the top end fixed as shown in the above figure and carries a vertical load of 200 
N at the lowest point. 
Calculate the vertical deflection of the lower end if the ring is of rectangular 
cross- section 20 mm thick and 30 mm wide. 

        Value of Elastic modulus is 5 22 10  N/mm× . 
        Influence of circumferential and shearing forces may be neglected. 
                      [10 Marks] 
 

 
Ans. Load applied, F = 200 N    
 Mean Radius, R = 300 mm  
 Elastic modules, E = 5 22 10  N/mm×  
 I = Inertia of moment of cross – section 

 
3bdI b = 20 mm

12
=  

      ( )3 4

d = 30 mm

20 30
=  = 45,000 mm

12
×    

 ⇒  Influence of circumferential and shearing force are neglected strain energy at the section.  

4

3
W Gd
X 8nD

=

3
8WD

d
τ =

π
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( )

2

0

2 2 2

0
22

5

3

M Rd Ru = for 10
2EI 4

M = F Rsin
M  = R sin
F

u FR sin FR =  =  d     
F EI 2EI

200 300FR =  = 
2EI 2 2 10 45000

3.14 10 mm.

π

π

−

θ
≥

× θ
∂

⇒ θ
∂

∂ θ
δ θ ⇒ ×π

∂

π× ×π
δ

× × ×

δ = ×

∫

∫
 

 
 
 
Conventional Question GATE-1996 
Question: A simply supported beam is subjected to a single force P at a distance b from 

one of the supports. Obtain the expression for the deflection under the load 
using Castigliano's theorem. How do you calculate deflection at the mid-point 
of the beam?  

Answer: Let load P acts at a distance b from the support B, and L be the total length of the 
beam. 

 
Re , ,

Re ,

A

B

Pbaction at A R and
L

Paaction at A R
L

=

=
 

  
 Strain energy stored by beam AB, 
 U = Strain energy stored by AC (U AC) + strain energy stored by BC (U BC) 

 ( ) ( ) ( )

( ) ( )

2 2 2 2 3 2 2 3

2 20 0

22 22 2 2 2 2 2

2

2 22 2

. .
2 2 6 6

)
6 66

2
Deflection under the load ,

6 3

a bPb dx Pa dx P b a P b ax x
L EI L EI EIL EIL

P L b bP b a P b aa b a b L
EIL EILEIL

P L b b P L b bUP y
P EIL EIL

δ

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
⎡ ⎤= + = = + =⎣ ⎦

− −∂
= = = =

∂

∫ ∫

∵  

 Deflection at the mid-span of the beam can be found by Macaulay's method. 
 By Macaulay's method, deflection at any section is given by 
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( ) ( )

( ) ( )
( ) ( )

( )

33
2 2

3

3
2 2

32 22

2 2 2

6 6 6
Where y is deflection at any distance x from the support.

At , , . at mid-span,
2

/ 2 2
6 6 2 6

2
or,

48 12 48

4
48

P x aPbx PbEIy L b x
L L

Lx i e

LP aPb L Pb LEIy L b
L L

Pb L b P L aPbLEIy

Py bL b L b L
EI

−
= − − −

=

⎛ ⎞−⎜ ⎟× ⎝ ⎠= − − × −

− −
= − −

= − − − −( )32a⎡ ⎤
⎣ ⎦

 

 

Page 399 of 429



 

 

 

 15.   Theories of Failure 

Theory at a Glance (for IES, GATE, PSU)  
1. Introduction  

• Failure: Every material has certain strength, expressed in terms of stress or strain, beyond 

which it fractures or fails to carry the load. 

• Failure Criterion: A criterion used to hypothesize the failure. 

• Failure Theory: A Theory behind a failure criterion. 
 

Why Need Failure Theories? 

• To design structural components and calculate margin of safety. 

• To guide in materials development. 

• To determine weak and strong directions. 
 

Failure Mode 

• Yielding: a process of global permanent plastic deformation. Change in the geometry of the 

object. 

• Low stiffness: excessive elastic deflection. 

• Fracture: a process in which cracks grow to the extent that the component breaks apart. 

• Buckling: the loss of stable equilibrium. Compressive loading can lead to bucking in 

columns. 

• Creep: a high-temperature effect. Load carrying capacity drops. 

 

Failure Modes: 
Excessive elastic 
deformation 

Yielding Fracture 

1. Stretch, twist, or 
bending 

2. Buckling 
 
3. Vibration 

• Plastic deformation at room 
temperature 

• Creep at elevated 
temperatures 

• Yield stress is the important 
design factor 

• Sudden fracture of brittle 
materials 

• Fatigue (progressive 
fracture) 

• Stress rupture at elevated 
temperatures 

• Ultimate stress is the 
important design factor 

2. Maximum Principal Stress Theory  
(W. Rankin’s Theory- 1850) – Brittle Material  
The maximum principal stress criterion: 

Page 400 of 429



Chapter-

 

• Ra

la

th

• Cr

pr

• Cr

sa

• Th

be

• U

• Li

• G

3. Maxi
(Guest’
The Tres

• Al

• Yi

si

-15 
ankin stated

argest princi

he onset of fr

rack will st

rincipal stre

riterion has

ame in comp

Failu

his theory o

een used suc

sed to descr

imitations 

o Doesn

o Doesn

mater

eneralizatio

mum She
s or Tres

sca Criterio

lso known a

ielding will 

mple tension

d max princ

ipal stress e

racture, |σ1

tart at the 

ess at that po

s good exper

pression and

ure surface

of yielding h

ccessfully for

ribe fracture

 

n’t distinguis

n’t depend o

rials 

on to 3-D str

ear Stress
sca’s The
on: 

s the Maxim

occur when 

n test. 

Theo
ipal stress t

xceeds the u

| = σu OR |σ

most highly

oint reaches

rimental ver

d tension 

 according

has very poo

r brittle mat

 of brittle m

sh between 

on orientati

ess case is e

s or Stres
ory-1868

mum Shear S

 the maximu

ories of Fa
theory as fol

ultimate str

σ3| = σu 

y stressed p

s σu 

rification, e

g to maximu

 

or agreemen

terials. 

materials su

tension or co

ion of princ

easy: 

ss differe
)- Ductile

Stress criter

um shear st

ailure
llows- a mat

rength σu in 

point in a b

ven though 

um princip

nt with expe

uch as cast i

ompression 

cipal planes

ence theo
e Material

rion.  

tress reache

terial fails by

 a simple te

rittle mater

 it assumes

 
pal stress th

riment. How

iron 

 

s so only ap

 

ory 
 

s that which

S K 
y fracturing

nsion test. T

rial when th

s ultimate s

heory 

wever, the t

pplicable to

h caused yie

Mondal’s 
g when the 

That is, at 

he largest 

trength is 

theory has 

o isotropic 

elding in a 

Page 401 of 429



C

 

4
T

T

e

th

e

U

σ

σ

5

V

Chapter-15 
• Reca

princ

maxi

If 1σ

• Failu

stres

• This 

4. Strain E
The theory 

This theory i

nergy absor

he stress sy

nergy at the

2
1

1
2

U
E

σ⎡= +⎣

2 2 2
1 2 3σ σ σ+ +

2 2
1 2 2σ σ μ+ −

5. Shear S
Theory

Von-Mises C
• Also 
• Base

ll that yield

cipal stresse

imum shear 

2 3σ σ> >  T

ure by slip (

s fτ as deter

 theory gives

Failur

Energy Th
 associated

is based on 

rbed by the m

stem causin

e elastic limi

2 2
2 3σ σ+ + −

(2
3 1 22μ σ σ−

2
1 2 yμσ σ σ=   

Strain En
y or Von-M
Criterion: 
known as th
d on a more

ding of a m

es. This sho

 stress in th

Then 1σ σ−

(yielding) oc

rmined in a 

s satisfactory

re surface a

heory (Ha
d with Haig

the assump

material at f

ng it. The str

it in simple 

( 1 22μ σ σ σ+

2 3 3σ σ σ+ +

 For 2

nergy The
Misses T

he Maximum
 complex vie

Theorie
material occu

ould indicate

e material r

3 yσ σ=  

ccurs when t

uniaxial ten

ry result for 

according t

aigh’s Th
gh 

ption that st

failure up to

rain energy 

 tension. 

2 3 3 1σ σ σ σ+

) 2
3 1 yσ σ=    

2D- stress 

eory (Dist
heory)-Du

m Energy of 
ew of the rol

es of Failu
urred by slip

e to you tha

rather than t

the maximu

nsion test.  

ductile ma

 

to maximu

eory) 

trains are re

o this point 

 per unit vol

)
2

2
y

E
σ

⎤ =⎦  

For 3

tortion En
uctile Ma

 Distortion c
le of the prin

re
ppage betwe

at yielding 

the maximu

um shearing

aterial.  

 
um shear st

ecoverable u

is a single v

lume causin

3D- stress 

nergy The
aterial 

criterion 
ncipal stress

een planes 

of a materi

um normal s

g stress, maτ

tress theory

up to the ela

valued funct

ng failure is 

eory or M

s differences

S K Mo
oriented at 

al depends 

tress. 

x exceeds th

 

y 

astic limit, a

ion indepen

equal to the

Mises-Hen

s. 

ondal’s 
 45° to 

on the 

he yield 

and the 

ndent of 

e strain 

nky 

Page 402 of 429



Chapter-

 

• In
co

• W

• Fo

 

• It 

 

• In
so
an

• Th
th
on

• It 

6. Maxi
According

strain at 

and minim

-15 
n simple term
ontributing t

When the crit

or a state of 

2
1σ −

 is often con

eσ =

eorσ

n formulatin
o the theory
nisotropic m
he von Mise
here is little 
n or between
 gives very g

mum Prin
g to this the

the tensile 

mum princip

ms, the von 
to the chara
terion is app

f plane stres

1 2 2σ σ σ− +

nvenient to e

1 2
1 (
2

σ σ⎡ −⎢⎣

1 (
2 xσ⎡= −⎢⎣

ng this failur
y given is 

materials. 
es theory is 
 difference i
n these two t
good result i

ncipal Str
eory, yieldin

yield point 

pal strains c

Theo
Mises criter
cterization o

plied, its rela

s ( 3σ =0)  

2 2
2 yσ=  

express this 

2
2 2) (σ σ+ −

2) (y yσ σ− +

re theory we
only applic

 a little less
in their pred
theories. 
in ductile m

rain Theo
ng will occur

in either sim

correspondin

ories of Fa
rion consider
of yield onse
ationship to 

 as an equiv

2
3 3) (σ σ+ −

2) (z xσ σ− +

e used gene
cable to tho

s conservativ
dictions of fa

material. 

ory (St. Ve
r when the 

mple tension

ng to σ1 and 

 

ailure
rs the diame
et in isotropi
 the uniaxia

 

alent stress
1/22

1)σ ⎤⎥⎦

2) 6x zσ− +

ralized Hoo
ose materia

ve than the 
ailure. Most

enant The
 maximum 

n or compre

σ2, in the lim

eters of all t
ic materials

al tensile yie

, σ e: 

2 26( xy yzτ τ+ +

ke's law for 
ls but it ca

 Tresca theo
t experiment

 

eory) 
principal st

ession. If ε1 

miting case 

S K 
three Mohr’s
. 
ld strength 

1/22 )zxτ ⎤+ ⎥⎦  

 an isotropic
an be gene

ory but in m
tal results te

train just ex

 and ε2 are 

Mondal’s 
s circles as 

is: 

c material 
ralized to 

most cases 
end to fall 

xceeds the 

maximum 

Page 403 of 429



C

 

7

M

H

c

8
A

s

Chapter-15 

7. Mohr’s 

Mohr’s Theo

• Mohr

tensi

• In M

state

one w

• Point

minim

• Expe

failur

simp

enve

• Mohr

Higher shear

ompression 

8. Compa
A comparison

hown in figu

theory- B

ory 

r’s theory is

ion and comp

ohr’s circle, 

es of stress o

with maximu

ts on the o

mum princip

eriments are

re. Each sta

le compress

elope (AB & 

r’s envelope 

r stresses ar

 

rison 
n among the

ure 

Brittle Ma

s used to pr

pression. Cr

 we note tha

on planes wi

um τ , point

outer circle 

pal stresses 

e done on a 

ate defines 

ion, and pur

 A’B’) 

 thus repres

re to the lef

e different f

Theorie

aterial 

redict the fr

riterion mak

at τ depends 

th same σ b

t P. 

are the we

 are sufficien

 given mate

a Mohr’s ci

re shear, th

ents the locu

ft of origin, 

failure theor

es of Failu

fracture of a

kes use of Mo

 on σ, or τ  =

ut differing 

eakest plan

nt to decide 

erial to dete

ircle. If the

e three resu

us of all pos

since most 

ries can be m

re

a material h

ohr’s circle  

= f(σ). Note t

 τ , which m

es. On thes

 whether or 

ermine the 

e data are o

ulting circles

sible failure

brittle mate

made by sup

 

having diffe

the vertical 

means the we

se planes th

 not failure w

states of str

obtained fro

s are adequa

e states. 

erials have 

perposing th

S K Mo

erent proper

 line PC repr

eakest plane

he maximu

will occur. 

ress that re

om simple t

ate to constr

 
higher stren

he yield surfa

ondal’s 

rties in 

resents 

e is the 

um and 

esult in 

ension, 

ruct an 

 
ngth in 

faces as 

Page 404 of 429



Chapter-

 

 
 

-15 

 

Theoories of Faailure S K Mondal’s 

 

Page 405 of 429



Chapter-15 Theories of Failure S K Mondal’s 

 

OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Maximum Shear stress or Stress Difference Theory 
GATE-1. Match 4 correct pairs between list I and List II for the questions [GATE-1994] 
 List-I     List-II 
 (a) Hooke's law    1. Planetary motion 
 (b) St. Venant's law   2. Conservation Energy 
 (c) Kepler's laws    3. Elasticity 
 (d) Tresca's criterion   4. Plasticity 
 (e) Coulomb's laws    5. Fracture 
 (f) Griffith's law    6. Inertia 
GATE-1. Ans. (a) - 3, (c) -1, (d) -5, (e) -2 
 St. Venant's law: Maximum principal strain theory 
 
GATE-2. Which theory of failure will you use for aluminium components under steady 

loading? [GATE-1999] 
 (a) Principal stress theory    (b) Principal strain theory  
 (c) Strain energy theory   (d) Maximum shear stress theory 
GATE-2. Ans. (d) Aluminium is a ductile material so use maximum shear stress theory 

Shear Strain Energy Theory (Distortion energy theory) 
GATE-3. According to Von-Mises' distortion energy theory, the distortion energy under 

three dimensional stress state is represented by [GATE-2006] 

  
GATE-3. Ans. (c) 

 ( ) ( ) ( ){ }2 2 2
s 1 2 2 3 3 1

1V Where E 2G(1 ) simplifyand get result.
12G

σ σ σ σ σ σ μ= − + − + − = +  

 
GATE-4. A small element at the critical section of a component is in a bi-axial state of 

stress with the two principal stresses being 360 MPa and 140 MPa. The 
maximum working stress according to Distortion Energy Theory is: 

[GATE-1997] 
 (a) 220 MPa   (b) 110 MPa   (c) 314 MPa   (d) 330 MPa 
GATE-4. Ans. (c) According to distortion energy theory if maximum stress (σt) then 

 

2 2 2
t 1 2 1 2

2 2 2
t

t

or

or 360 140 360 140
or 314 MPa

σ σ σ σ σ

σ
σ

= + −

= + − ×

=
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IES-6. Ans. (b) 
 
IES-7. According to the maximum shear stress theory of failure, permissible twisting 

moment in a circular shaft is 'T'. The permissible twisting moment will the 
same shaft as per the maximum principal stress theory of failure will be: 

[IES-1998: ISRO-2008] 
 (a) T/2   (b) T   (c) 2T   (d) 2T 

IES-7. Ans. (d) yt
3

16TGiven principalstresses for only thisshear stressare
2d
σ

τ
π

= =  

 ( )
σ τ τ

σ σ σ
π

= = ±

= =

2
1,2

1 2 yt 3

maximum principal stress theory of failuregives

16 2T
max[ , ]

d

 

IES-8. Permissible bending moment in a circular shaft under pure bending is M 
according to maximum principal stress theory of failure. According to 
maximum shear stress theory of failure, the permissible bending moment in 
the same shaft is: [IES-1995] 

 (a) 1/2 M    (b) M    (c) 2 M   (d) 2M 

IES-8. Ans. (b) ( ) ( )2 2 2 2
3 3

16 16M M T and M T
d d

σ τ
π π

= + + = + put T = 0  

 
3

yt
yt 3 3 3

32M
32M 16M 16Mdor and ThereforeM M

2 2d d d
σ πσ τ

π π π

⎛ ⎞
⎜ ⎟′ ⎝ ⎠ ′= = = = = =  

 
IES-9. A rod having cross-sectional area 100 x 10- 6 m2 is subjected to a tensile load. 

Based on the Tresca failure criterion, if the uniaxial yield stress of the material 
is 200 MPa, the failure load is: [IES-2001] 

 (a) 10 kN    (b) 20 kN   (c) 100 kN   (d) 200 kN 
IES-9. Ans. (b) Tresca failure criterion is maximum shear stress theory. 

 yt
max

P sin2 PWeknow that, or
A 2 2A 2

σθτ τ= = =  or ytP Aσ= ×  

 
IES-10. A cold roller steel shaft is designed on the basis of maximum shear stress 

theory. The principal stresses induced at its critical section are 60 MPa and - 60 
MPa respectively. If the yield stress for the shaft material is 360 MPa, the 
factor of safety of the design is: [IES-2002]                      

 (a) 2    (b) 3   (c) 4    (d) 6 
IES-10. Ans. (b) 
 
IES-11. A shaft is subjected to a maximum bending stress of 80 N/mm2 and maximum 

shearing stress equal to 30 N/mm2 at a particular section. If the yield point in 
tension of the material is 280 N/mm2, and the maximum shear stress theory of 
failure is used, then the factor of safety obtained will be: [IES-1994] 

 (a) 2.5    (b) 2.8    (c) 3.0    (d) 3.5 

IES-11. Ans. (b) Maximum shear stress = 
2

2 280 0 30 50 N/mm
2
−⎛ ⎞ + =⎜ ⎟

⎝ ⎠
 

 According to maximum shear stress theory,
280; . . 2.8

2 2 50
y F S

σ
τ = ∴ = =

×
 

 
IES-12. For a two-dimensional state stress ( 1 2 1 2, 0, 0σ σ σ σ> > < ) the designed values 

are most conservative if which one of the following failure theories were used? 
[IES-1998] 

 (a) Maximum principal strain theory  (b) Maximum distortion energy theory 
 (c) Maximum shear stress theory   (d) Maximum principal stress theory 
IES-12. Ans. (c) Page 408 of 429
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 Graphical comparison of different failure theories 
 Above diagram shows that 1 20, 0σ σ> <  will occur at 4th quadrant and most 

conservative design will be maximum shear stress theory. 

Shear Strain Energy Theory (Distortion energy theory) 
IES-13. Who postulated the maximum distortion energy theory? [IES-2008] 
 (a) Tresca   (b) Rankine   (c) St. Venant   (d) Mises-Henky 
IES-13. Ans. (d) 
 
IES-14. Who postulated the maximum distortion energy theory? [IES-2008] 
 (a) Tresca   (b) Rankine   (c) St. Venant   (d) Mises-Henky  
IES-14. Ans. (d) 
 Maximum shear stress theory → Tresca 
 Maximum principal stress theory → Rankine 
 Maximum principal strain theory → St. Venant 
 Maximum shear strain energy theory → Mises – Henky 
 
IES-15. The maximum distortion energy theory of failure is suitable to predict the 

failure of which one of the following types of materials? [IES-2004] 
 (a) Brittle materials      (b) Ductile materials      (c) Plastics        (d) Composite materials 
IES-15. Ans. (b) 
IES-16. If σy is the yield strength of a particular material, then the distortion energy 

theory is expressed as [IES-1994] 
 (a) ( ) ( ) ( )2 2 2 2

1 2 2 3 3 1 2 yσ σ σ σ σ σ σ− + − + − =  

 (b) ( )2 2 2 2
1 2 3 1 2 2 3 3 12 ( ) yσ σ σ μ σ σ σ σ σ σ σ− + − + + =  

 (c) ( ) ( ) ( )2 2 2 2
1 2 2 3 3 1 3 yσ σ σ σ σ σ σ− + − + − =  

 (d) ( )( ) ( )2 2
1 2 31 2 2 1 yμ σ σ σ μ σ− + + = +  

IES-16. Ans. (a)  
 
IES-17. If a shaft made from ductile material is subjected to combined bending and 

twisting moments, calculations based on which one of the following failure 
theories would give the most conservative value? [IES-1996] 

 (a) Maximum principal stress theory (b) Maximum shear stress theory. 
 (d Maximum strain energy theory  (d) Maximum distortion energy theory. 
IES-17. Ans. (b) 
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Maximum Principal Strain Theory 
IES-18. Match List-I (Failure theories) with List-II (Figures representing boundaries of 

these theories) and select the correct answer using the codes given below the 
Lists: [IES-1997] 

 List-I  List-II 
 A. Maximum principal stress 

theory 

  
 B. Maximum shear stress theory 

  
 C. Maximum octahedral stress 

theory 

  
 D. Maximum shear strain 

energy theory 

  
 Code: A B C D  A B C D 
  (a) 2 1 3 4 (b) 2 4 3 1 
  (c) 4 2 3 1 (d) 2 4 1 3 
IES-18. Ans. (d) 

Previous 20-Years IAS Questions 

Maximum Principal Stress Theory 
IAS-1. For 1 2σ σ≠  and σ3 = 0, what is the physical boundary for Rankine failure 

theory? [IAS-2004] 
 (a) A rectangle  (b) An ellipse  (c) A square   (d) A parabola   
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IAS-1. Ans. (c) Rankine failure theory or 
Maximum principle stress theory. 

 

 

Shear Strain Energy Theory (Distortion energy theory) 
IAS-2. Consider the following statements: [IAS-2007] 

1. Experiments have shown that the distortion-energy theory gives an 
accurate prediction about failure of a ductile component than any other 
theory of failure. 

2. According to the distortion-energy theory, the yield strength in shear is less 
than the yield strength in tension. 

 Which of the statements given above is/are correct? 
 (a) 1 only  (b) 2 only  (c) Both 1 and 2 (d) Neither 1 nor 2 

IAS-2. Ans. (c)  0.577
3
y

y y

σ
τ σ= =  

 
IAS-3. Consider the following statements: [IAS-2003] 

1. Distortion-energy theory is in better agreement for predicting the failure of 
ductile materials. 

2. Maximum normal stress theory gives good prediction for the failure of 
brittle materials. 

3. Module of elasticity in tension and compression are assumed to be different 
stress analysis of curved beams. 

 Which of these statements is/are correct? 
 (a) 1, 2 and 3   (b) 1 and 2  (c) 3 only   (d) 1 and 3 
IAS-3. Ans. (b)  
 
IAS-4. Which one of the following graphs represents Mises yield criterion?  [IAS-

1996] 

 
IAS-4. Ans. (d) 

Maximum Principal Strain Theory 
IAS-5. Given that the principal stresses 1 2 3σ σ σ> >  and σe is the elastic limit stress in 

simple tension; which one of the following must be satisfied such that the 
elastic failure does not occur in accordance with the maximum principal strain 
theory? [IAS-2004] 

 (a) 31 2e

E E E E
σ σσ σμ μ⎛ ⎞< − −⎜ ⎟

⎝ ⎠
  (b) 31 2e

E E E E
σ σσ σμ μ⎛ ⎞> − −⎜ ⎟

⎝ ⎠
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 (c) 31 2e

E E E E
σ σσ σμ μ⎛ ⎞> + +⎜ ⎟

⎝ ⎠
  (d) 31 2e

E E E E
σ σσ σμ μ⎛ ⎞< + −⎜ ⎟

⎝ ⎠
 

IAS-5. Ans. (b) Strain at yield point>principal strain 

  31 2e

E E E E
σ σσ σμ μ> − −  
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Previous Conventional Questions with Answers 

Conventional Question ESE-2010 
Q.  The stress state at a point in a body is plane with  
 2 2

1 2σ 60N / mm & σ 36N / mm= = −  
 If the allowable stress for the material in simple tension or compression is 
 100 N/mm2 calculate the value of factor of safety with each of the following 
 criteria for failure  
 (i) Max Stress Criteria 
 (ii) Max Shear Stress Criteria 
 (iii) Max strain criteria 
 (iv) Max Distortion energy criteria               [10 Marks] 
 
Ans.  The stress at a point in a body is plane 
  
 Allowable stress for the material in simple tension or compression is 100  N/mm2 
 Find out factor of safety for 
(i)  Maximum stress Criteria : - In this failure point occurs when max principal stress 

reaches the limiting strength of material. 
 Therefore.   Let F.S factor of safety  

  

( )
1

2

2

allowable
F.S

100 N / mmF.S 1.67 Ans.
60 N / mm

σ
σ =

= =
 

(ii)  Maximum Shear stress criteria : - According to this failure point occurs at a point in a 
member when maximum shear stress reaches to shear at yield point 

 

σ
γ = σ =

σ − σ +
γ = = = =

=
×

= = =
×

=

yt 2
max yt

21 2
max

100 N / mm
2 F.S

60 36 96 48 N / mm
2 2 2

10048
2 F.S

100 100F.S 1.042
2 48 96

F.S 1.042 Ans.

 

(iii)  Maximum Strain Criteria ! – In this failure point occurs at a point in a member when 
maximum strain in a bi – axial stress system reaches the limiting value of strain (i.e 
strain at yield point) 

 

( )

2
2 2 allowable
1 2 1 2

σσ σ 2μσ σ
FOS

FOS 1.27
μ 0.3assume

⎛ ⎞
+ − = ⎜ ⎟

⎝ ⎠
=

=

 

(iv)  Maximum Distortion energy criteria ! – In this failure point occurs at a point in a 
member when distortion strain energy per unit volume in a bi – axial system reaches the 
limiting distortion strain energy at the of yield  

2 2
1 260 N / mm 36 N / mmσ = σ = −
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 ( )

2
yt2 2

1 2 1 2

2
22

F.S

10060 36 60 36
F.S

F.S 1.19

σ⎛ ⎞
σ + σ − σ ×σ = ⎜ ⎟

⎝ ⎠

⎛ ⎞+ −× × − = ⎜ ⎟
⎝ ⎠

=

 

 
Conventional Question ESE-2006 
Question: A mild steel shaft of 50 mm diameter is subjected to a beading moment of 1.5 

kNm and torque T. If the yield point of steel in tension is 210 MPa, find the 
maximum value of the torque without causing yielding of the shaft material 
according to 

 (i) Maximum principal stress theory  
 (ii) Maximum shear stress theory. 

Answer: σ
πb 3

32We know that, Maximum bending stress ( ) M
d

=  

 
π 3

16and Maximum shear stress ( ) T
d

τ =  

 σ σ
σ

π

2
2 2 2

1,2 3

Principal stresses are given by:

16
2 2

b b M M T
d

τ
⎛ ⎞ ⎡ ⎤⎟⎜= ± + = ± +⎟⎜ ⎢ ⎥⎟⎟⎜ ⎣ ⎦⎝ ⎠

 

 ( )
2 2 6

3

( ) According to Maximum principal stress theory

Maximum principal stress=Maximum stress at elastic limit 

16 210 10

y

i

or M M T
d

σ

π
⎡ ⎤+ + = ×⎢ ⎥⎣ ⎦

 

 ( )
2 2 6

3

16or 1500 1500 210 10
0.050

 T = 3332 Nm = 3.332 kNm

T

or

π
⎡ ⎤+ + = ×⎢ ⎥⎣ ⎦  

 

1 2

1 2

σσ σ

σ σ σ

π

max

2 2 6
3

( ) According to Maximum shear stress theory

2 2
,  

16,  2× 210 10
d

,  T = 2096 N m = 2.096 kNm

y

y

ii

or

or M T

or

τ
−

= =

− =

+ = ×

 

 
Conventional Question ESE-2005 
Question: Illustrate the graphical comparison of following theories of failures for two-

dimensional stress system: 
 (i) Maximum normal stress theory 
 (ii) Maximum shear stress theory 
 (iii) Distortion energy theory 
Answer: 
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( )

( )

( ) ( )

1 2 3

2 2

2 2

2
22

2 2

2
1

i Principal stress , , :
2000 100080 N/mm ; 40 N/mm
5 5 5 5
500 80020 N/mm ; 32 N/mm
5 5 5 5

80 40 80 40 32
2 2 2 2

60 20 32 97.74, 22.26

97.74N/mm , or 9

x y

z xy

x y x y
xy

σ σ σ

σ σ

σ τ

σ σ σ σ
σ τ

σ

= = = =
× ×

= = = =
× ×

⎛ ⎞+ − ⎛ ⎞+ −⎟⎜ ⎟⎜⎟= ± + = ± +⎜ ⎟⎜⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠⎝ ⎠

= ± + =

∴ =
2

2
2

3

7.74 MPa

and 22.96N/mm or 22.96 MPa
20N/mm or 22 MPaz

σ

σ σ

=

= =

 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

2 2 2 2
1 2 2 3 3 1

2 2 2
1 2 2 3 3 1

2 2 2

22

ii Will thecube yieldor not?
According to Von-Mises yield criteria, yielding will occur if

2

Now

97.74 22.96 22.96 20 20 97.74

11745.8

and, 2 2 70 9800

yt

yt

i

ii

σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ

− + − + − ≥

− + − + −

= − + − + −

= −−−

= × = −−−

 

 Since 11745.8  > 9800 so yielding will occur.  
Conventional Question GATE-1995 
Question: A thin-walled circular tube of wall thickness t and mean radius r is subjected 

to an axial load P and torque T in a combined tension-torsion experiment. 
 (i) Determine the state of stress existing in the tube in terms of P and T. 
 (ii) Using Von-Mises - Henky failure criteria show that failure takes place 

when
2 2

0 03 , ,
.

where is the yield stress in uniaxial tension
and are respectively the axial and torsional stresses in the tube
σ τ σ σ

σ τ

+ =

   
Answer: Mean radius of the tube = r, 
 Wall thickness of the tube = t, 
 Axial load = P, and 
 Torque = T. 
 (i) The state of stress in the tube: 
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 Due to axial load, the axial stress in the tube 
2
Px

rt
σ

π
=  

 Due to torque, shear stress, 

 ( ){ }
3 3

4 4 3 2

3

2 2

2 -neglecting t higher power of t.
2

The state of stress in the tube is, , 0,
2 2

xy

x y xy

Tr Tr T
J r t r t

J r t r r t

P T
rt r t

τ
π π

π
π

σ σ τ
π π

= = =

= + − =

∴ = = =

 

 (ii) Von Mises-Henky failure in tension for 2-dimensional stress is 

 

2 2 2
0 1 2 1 2

2
2

1

2
2

2

2 2

2 2

x y x y
xy

x y x y
xy

σ σ σ σ σ

σ σ σ σ
σ τ

σ σ σ σ
σ τ

= + −

⎛ ⎞+ − ⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞+ − ⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

 ( )

2
2
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2
2

2

2 2 2
2 2 2 2

2 2 2 2 2
0

In this case, , and
2 4

0
2 4

2 4 2 4 2 4 2 4

x x
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x x
xy y

x x x x x x x x
xy xy xy xy

σ σ
σ τ

σ σ
σ τ σ

σ σ σ σ σ σ σ σ
σ τ τ τ τ

= + +

= − + =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∴ = + + + − + − + + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∵  
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3
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⎢ ⎥− − −⎢ ⎥
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Conventional Question GATE-1994 
Question: Find the maximum principal stress developed in a cylindrical shaft. 8 cm in 

diameter and subjected to a bending moment of 2.5 kNm and a twisting 
moment of 4.2 kNm. If the yield stress of the shaft material is 300 MPa. 
Determine the factor of safety of the shaft according to the maximum 
shearing stress theory of failure.  

Answer: Given: d = 8 cm = 0.08 m; M = 2.5 kNm = 2500 Nm; T = 4.2 kNm = 4200 Nm 

 

( )

( ) ( )

( )

2

2 22 2

3
6 2 2

max 3 3

2

300 300 MN/m

Equivalent torque, 2.5 4.2 4.888kNm

Maximum shear stress developed in the shaft,
16 16 4.888 10 10 MN/m 48.62MN/m

0.08
300Permissible shear stress 150MN/m

2

Fact

yield yt

e

MPa

T M T

T
d

σ σ

τ
π π

−

= =

= + = + =

× ×
= = × =

×

= =

∴
150or of safety 3.085

48.62
= =
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OBJECTIVE QUESTIONS (GATE, IES, IAS) 
 

Previous 20-Years GATE Questions 

Failure of riveted joint 
GATE-1. Bolts in the flanged end of pressure vessel are usually pre-tensioned Indicate 

which of the following statements is NOT TRUE? [GATE-1999] 
 (a) Pre-tensioning helps to seal the pressure vessel 
 (b) Pre-tensioning increases the fatigue life of the bolts 
 (c) Pre-tensioning reduces the maximum tensile stress in the bolts 
 (d) Pre-tensioning helps to reduce the effect of pressure pulsations in the pressure vessel 
GATE-1. Ans. (c) 
 
Statement for Linked Answers and Questions Q2 and Q3 
A steel bar of 10 × 50 mm is cantilevered with two M 12 bolts (P and Q) to support a static 
load of 4 kN as shown in the figure. 

 
 

GATE-2. The primary and secondary shear loads on bolt P, respectively, are: 
[GATE-2008] 

 (A) 2 kN, 20 kN   (B) 20 kN, 2kN  (C) 20kN,0kN  (D) 0kN, 20 kN 

GATE-2. Ans. (a) Primary (Direct) Shear load = kkN 2
2

4
= N 

 
GATE-3. The resultant stress on bolt P is closest to [GATE-2008] 
 (A) 132 MPa  (B) 159 MPa  (C) 178 MPa  (D) 195 MPa  
GATE-3. Ans. (b) 
 
GATE-4. A bolted joint is shown below. The maximum shear stress, in MPa, in the bolts 

at A and B, respectively are: [GATE-2007] 
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GATE-7. A manufacturer of rivets claims that the failure load in shear of his product is 

500 ± 25 N. This specification implies that [GATE-1992] 
 (a) No rivet is weaker than 475 N and stronger than 525 N 
 (b) The standard deviation of strength of random sample of rivets is 25 N 
 (c) There is an equal probability of failure strength to be either 475 Nor 525 N 
 (d) There is approximately two-to-one chance that the strength of a rivet lies between 

475 N to 525 N 
GATE-7. Ans. (a) 

Previous 20-Years IES Questions 

Failure of riveted joint 
IES-1. An eccentrically loaded 

riveted joint is shown with 4 
rivets at P, Q, R and S. 

 Which of the rivets are the 
most loaded? 

 (a) P and Q 
 (b) Q and R 
 (c) Rand S 
  (d) Sand P 
 

 
[IES-2002]

IES-1. Ans. (b) 
 
IES-2. A riveted joint has been designed to 

support an eccentric load P. The load 
generates value of F1 equal to 4 kN and F2 
equal to 3 kN. The cross-sectional area of 
each rivet is 500 mm2. Consider the 
following statements: 

 1. The stress in the rivet is 10 N / mm2 

 2. The value of eccentricity L is 100 mm 
 3. The value of load P is 6 kN 
 4. The resultant force in each rivet is 6 kN 
 Which of these statements are correct? 
 (a) 1 and 2   (b) 2 and 3  
 (c) 3 and 4    (d) 1 and 3 

 
[IES-2003] 

IES-2. Ans. (d) 
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2

1 1 1

P = 2F = 2 x 3 = 6 kN 
and P.L =    = 2 F
or 6   2  4   8

8or
6

+
= × =

=

Fl Fl l
L l l

L
l

 

 
 

( ) ( )

2 2
1 2 1 2

2 2

Resultant force on rivet,

 R = F +F +2FF cosθ

     = 4 3 2 4 3cos

5kN

θ+ + × ×

=
 

 3
2

Shear stresson rivet,
R 5×10τ = =10 N/mm

Area 500

∴

=
 

 

 
IES-3. If permissible stress in 

plates of joint through a 
pin as shown in the 
given figure is 200 MPa, 
then the width w will be 

 (a) 15 mm 
 (b) 18 mm 
 (c) 20 mm 
 (d) 25 mm 
 

 
[IES-1999]

IES-3. Ans. (a) (w – 10) × 2 × 10-6 × 200 × 106 = 2000 N; or w = 15 mm. 
 
IES-4. For the bracket bolted as 

shown in the figure, the bolts 
will develop 

 (a) Primary tensile stresses and 
secondary shear stresses 

 (b) Primary shear stresses and 
secondary shear stresses 

 (c) Primary shear stresses and 
secondary tensile stresses 

 (d) Primary tensile stresses and 
secondary compressive 
stresses 

 
 

[IES-2000]
IES-4. Ans. (a) 
IES-5. Assertion (A): In pre-loaded bolted joints, there is a tendency for failure to 

occur in the gross plate section rather than through holes. [IES-2000] 
 Reason (R): The effect of pre-loading is to create sufficient friction between the 

assembled parts so that no slippage occurs. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
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IES-5. Ans. (a) 
 
IES-6. Two rigid plates are clamped by means of bolt and nut with an initial force N. 

After tightening, a separating force P (P < N) is applied to the lower plate, 
which in turn acts on nut. The tension in the bolt after this is: [IES-1996] 

 (a) (N + P)    (b) (N – P)   (c) P    (d) N 
IES-6. Ans. (a) 

Efficiency of a riveted joint 
IES-7. Which one of the following structural joints with 10 rivets and same size of 

plate and material will be the most efficient? [IES-1994] 

 
IES-7. Ans. (b) 
 
IES-8. The most efficient riveted joint possible is one which would be as strong in 

tension, shear and bearing as the original plates to be joined. But this can 
never be achieved because: [IES-1993] 

 (a) Rivets cannot be made with the same material 
 (b) Rivets are weak in compression 
 (c) There should be at least one hole in the plate reducing its strength 
 (d) Clearance is present between the plate and the rivet  
IES-8. Ans. (c) Riveted joint can't be as strong as original plates, because there should be at least 

one hole in the plate reducing its strength. 

Advantages and disadvantages of welded joints 
IES-9. Assertion (A): In a boiler shell with riveted construction, the longitudinal scam 

is, jointed by butt joint. [IES-2001] 
 Reason (R): A butt joint is stronger than a lap joint in a riveted construction. 
 (a) Both A and R are individually true and R is the correct explanation of A 
 (b) Both A and R are individually true but R is NOT the correct explanation of A  
 (c) A is true but R is false 
 (d) A is false but R is true 
IES-9. Ans. (c) 
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Previous 20-Years IAS Questions 

Failure of riveted joint 
IAS-1. Two identical planks of 

wood are connected by 
bolts at a pitch distance 
of 20 cm. The beam is 
subjected to a bending 
moment of 12 kNm, the 
shear force in the bolts 
will be: 

 (a) Zero         (b) 0.1 kN 
 (c) 0.2 kN      (d) 4 kN 
  

[IAS-2001]
IAS-1. Ans. (a) 
 
IAS-2. Match List-I with List-II and select the correct answer using the code given 

below the Lists: [IAS-2007] 
  List-I      List-II 
 (Stress Induced)    (Situation/ Location) 
 A. Membrane stress   1. Neutral axis of beam 
 B. Torsional shear stress   2. Closed coil helical spring under axial load 
 C. Double shear stress   3. Cylindrical shell subject to fluid pressure 
 D. Maximum shear stress   4. Rivets of double strap butt joint 
 Code: A B C D  A B C D 
  (a)  3 1 4 2 (b)  4 2 3 1 
  (c)  3 2 4 1 (d)  4 1 3 2 
IAS-2. Ans. (c) 
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Previous Conventional Questions with Answers 

Conventional Question GATE-1994 
Question: The longitudinal joint of a thin cylindrical pressure vessel, 6 m internal 

diameter and 16 mm plate thickness, is double riveted lap point with no 
staggering between the rows. The rivets are of 20 mm nominal (diameter with 
a pitch of 72 mm. What is the efficiency of the joint and what would be the 
safe pressure inside the vessel? Allowable stresses for the plate and rivet 
materials are; 145 MN/m2 in shear and 230 MN/m2 in bearing. Take rivet hole 
diameter as 1.5 mm more than the rivet diameter. 

Answer: Given: Diameter of rivet = 20 mm 
 Diameter of hole = 20 + 1.5 = 21.5 mm 
 Diameter the pressure vessel, d = 6 m 
 Thickness of the plate, t = 16 mm 
 Type of the joint: Double riveted lap joint 
 Allowable stresses: 

 

( )

2 2 2
1

2

145 / ; 120 / ; 230 /
72 2 21.5 16Strength of plate in tearing/pitch, 145

1000 1000
0.06728

20Strength of rivert in tearing/pitch, 2 120
4 1000

0.0754

Strength of plate in crushin

c

t

s

MN m MN m MN m

R

MN

R

MN

σ τ σ

π

= = =

⎡ ⎤− ×
= × ×⎢ ⎥
⎢ ⎥⎣ ⎦

=

⎛ ⎞= × × ×⎜ ⎟
⎝ ⎠

=
20 16g/pitch, 2 230

1000 1000
0.1472 MN

sR ⎛ ⎞= × × ×⎜ ⎟
⎝ ⎠

=

 

  
 From the above three modes of failure it can be seen that the weakest element is the 

plate as it will have tear failure at 0.06728 MN/pitch load itself. 
 Stresses acting on the plate for an inside pressure of pN/m2 is shown in figure. 

 

( )

( )

( )

6Hoop stress 187.5
2 2 0.016

6Longitudinal stress 93.75
4 4 0.016

Maximum principal stress acting on the plate
2

only , .187.5 as there is no shear stress.
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t
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×
= = =

×
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Conventional Question GATE-1995 
Question: Determine the shaft diameter and bolt size for a marine flange-coupling 

transmitting 3.75 MW at 150 r.p.m. The allowable shear stress in the shaft and 
bolts may be taken as 50 MPa. The number of bolts may be taken as 10 and 
bolt pitch circle diameter as 1.6 times the shaft diameter. 

Answer: Given, P = 3.75MW;  N = 150 r.p.m.; 

 

6

6

3

6 3

6

50 ; 10, 1.6
Shaft diameter, :

2
60

2 1503.78 10
60

3.75 10 60or 238732 Nm
2 150
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or 238732 50 10
16

238732 16 0.28 290 mm
50 10
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s
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×
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×⎛ ⎞∴ = =⎜ ⎟× ×⎝ ⎠

2

2 6
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4 2
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4 2
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b
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b b

b
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D D
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