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1. Stress and Strain

Theory at a Glance (for IES, GATE, PSU)
1.1 Stress (o)

When a material is subjected to an external force, a resisting force is set up within the component.
The internal resistance force per unit area acting on a material or intensity of the forces distributed

over a given section is called the stress at a point.

® [t uses original cross section area of the specimen and also known as engineering stress or

conventional stress.

Therefore, 0 = —
A

® Pis expressed in Newton (N) and A, original area, in square meters (m2), the stress o will be

expresses in N/ m2. This unit is called Pascal (Pa).

® As Pascal is a small quantity, in practice, multiples of this unit is used.

1 kPa = 103 Pa = 103 N/ m? (kPa = Kilo Pascal)
1 MPa = 106 Pa = 106 N/ m2 = 1 N/mm?2 (MPa = Mega Pascal)
1 GPa =10°Pa = 10° N/ m? (GPa = Giga Pascal)

Let us take an example: A rod 10 mm X 10 mm cross-section is carrying an axial tensile load 10
kN. In this rod the tensile stress developed is given by

P 10kN _ 10x10°N

(0)=== = — = 100N/mm’ = 100MPa
A (10mmx10mm)  100mm

® The resultant of the internal forces for an axially loaded member is

normal to a section cut perpendicular to the member axis.

® The force intensity on the shown section is defined as the normal stress.

. AF
o= lim — and o, =—
AA—-0 AA avg A

® Tensile stress (oY) P - i P

If 0 > 0 the stress is tensile. i.e. The fibres of the component

tend to elongate due to the external force. A member P :i
subjected to an external force tensile P and tensile stress

distribution due to the force is shown in the given figure.
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Chapter-1 Stress and Strain S K Mondal’s
e Compressive stress (o.)
If 0 < 0 the stress is compressive. i.e. The fibres of the
component tend to shorten due to the external force. A
member subjected to an external compressive force P and

compressive stress distribution due to the force is shown in

the given figure.

® Shear stress (7)

When forces are transmitted from one part of a body to other, the stresses

developed in a plane parallel to the applied force are the shear stress. Shear

stress acts parallel to plane of interest. Forces P is applied

transversely to the member AB as shown. The corresponding

internal forces act in the plane of section C and are called shearing ll_FTE
forces. The corresponding average shear stress (T) = A:aa R
1.2 Strain (g) /
The displacement per unit length (dimensionless) is ?
known as strain. %
i
® Tensile strain (£ ) / Lo : :
The elongation per unit length as shown in the |< ":.‘.'LL:"
figure is known as tensile strain. Y : !
et = AL/ Lo Y,
It is engineering strain or conventional strain. /] —>F
Here we divide the elongation to original length :;:
not actual length (Lo + A L) jl‘ L=Lo+AL .l

® Compressive strain (&)

If the applied force is compressive then the reduction of length per unit length is known
as compressive strain. It is negative. Then €. = (-AL)/ L,
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® Shear Strain (7Y): When a

force P is applied tangentially to
the element shown. Its edge

displaced to dotted line. Where

0 is the lateral displacement of

the upper face

of the element relative to the lower face and L is the distance between these faces.

6

Then the shear strain is (’y) = —

1.3 True stress and True Strain

The true stress is defined as the ratio of the load to the cross section area at any instant.

Where 0 and € is the engineering stress and engineering strain respectively.

® True strain

or engineering strain (€) =e7 -1

The volume of the specimen is assumed to be constant during plastic deformation.
[ AL, =AL]ltis valid till the neck formation.

e Comparison of engineering and the true stress-strain curves shown below
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Chapter-1 Stress and Strain S K Mondal’s
® The true stress-strain curve is also known as Trug SI85s - SIren curve
the flow curve. L—_
® True stress-strain curve gives a true indication Lo e
of deformation characteristics because it is . aecking
based on the instantaneous dimension of @ Engineening
the specimen. % SITEsS—SIOim Cuve
® In engineering stress-strain curve, stress drops o AMax £ ood
down after necking since it is based on the £ :
.. n Frachiee
original area.
0 Strain
® In true stress-strain curve, the stress however increases after necking since the cross-
sectional area of the specimen decreases rapidly after necking.
® The flow curve of many metals in the region of uniform plastic deformation can be
expressed by the simple power law.
or = K(er)» Where K is the strength coefficient
n is the strain hardening exponent
n = 0 perfectly plastic solid
n = 1 elastic solid
For most metals, 0.1<n < 0.5
e Relation between the ultimate tensile strength and true stress at maximum
load
The ultimate tensile strength (U ) = —max : ~ =
g u) ( [ Aﬂ P
o
[ A =
: Pmax L
The true stress at maximum load (O’u) =
T A
. . 0 AO &;
And true strain at maximum load <€>T =In A or A =e’
C . P P A c
Eliminating Pmax we get (au) = Max _ _MaX "0 — 5 7
T A A, A
Where Pmax = maximum force and A, = Original cross section area
A = Instantaneous cross section area
Let us take two examples: L, .
(1.) Only elongation no neck formation < A, > P
In the tension test of a rod shown initially it was A [ A =

= 50 mm? and Lo, = 100 mm. After the application of
load it’s A = 40 mm? and L = 125 mm.
Determine the true strain using changes in both

length and area.

Answer: First of all we have to check that does the
member forms neck or not? For that check AL, =AL
or not?

Here 50 X 100 = 40 X 125 so no neck formation is

there. Therefore true strain Page 6 of 429

(If no neck formation
occurs both area and
gauge length can be used

for a strain calculation.)



Chapter-1 Stress and Strain S K Mondal’s

1.4 Hook’s law

According to Hook’s law the stress is directly proportional to strain i.e. normal stress (6) a normal

strain () and shearing stress (7) « shearing strain (7).
o=Ee and 71=Gy

The co-efficient E is called the modulus of elasticity i.e. its resistance to elastic strain. The co-

efficient G is called the shear modulus of elasticity or modulus of rigidity.

1.5 Volumetric strain(c,)

A relationship similar to that for length changes holds for three-dimensional (volume) change. For

P
volumetric strain, (sv) , the relationship is (ev) =(V-Vy)/Vpor - = E

® Where Vis the final volume, Vp is the original volume, and AV is the volume change.

® Volumetric strain is a ratio of values with the same units, so it also is a dimensionless

uantity.
q y Page 7 of 429



Chapter-1 Stress and Strain S K Mondal’s
® AV/V=volumetric strain = gx +ey+ . = 1 +e2 + €3

e Dilation: The hydrostatic component of the total stress contributes to deformation by
changing the area (or volume, in three dimensions) of an object. Area or volume change is

called dilation and is positive or negative, as the volume increases or decreases,

respectively. € zﬁ Where p 1s pressure.

1.6 Young’s modulus or Modulus of elasticity (E) = %:E
S
1.7 Modulus of rigidity or Shear modulus of elasticity (G) =5=:%
v
. _ Ap Ap
1.8 Bulk Modulus or Volume modulus of elasticity (K) ==y " AR

\% R
1.10 Relationship between the elastic constants E, G, K, p

9KG

3K+G [VIMP]
Where K = Bulk Modulus, = Poisson’s Ratio, E= Young’s modulus, G= Modulus of rigidity

E = 2G(1+ 1) = 3K (1-2u) =

e For a linearly elastic, isotropic and homogeneous material, the number of elastic
constants required to relate stress and strain is two. i.e. any two of the four must be

known.

e |f the material is non-isotropic (i.e. anisotropic), then the elastic modulii will vary with
additional stresses appearing since there is a coupling between shear stresses and
normal stresses for an anisotropic material.

Let us take an example: The modulus of elasticity and rigidity of a material are 200 GPa and 80

GPa, respectively. Find all other elastic modulus.

9KG

Answer: Using the relation E=2G(1+ ) =3K(1-2x)= KG we may find all other elastic modulus
+
easily
E E 200
Poi ’s Rati D A u=— S>pu=—-1=—--1=025
oisson’s Ratio (u) 7 G 7 G %80
Bulk Modulus (K) : 3K= _E =K= E = AL =133.33GPa
1-2u 3(1-2u) 3(1-2x0.25)
1.11 Poisson’s Ratio (p)
Initial shape
_ Transverse strain or lateral strain _ — €, e o A -

Longitudinal strain = ' . P
X P M e oo Il
(Under unidirectional stress in x-direction)

® The theory of isotropic elasticity allows Poisson's ratios in the range from -1 to 1/2.

® Poisson's ratio in various materials Page 8 of 429



Chapter-1 Stress and Strain S K Mondal’s

Steel 0.25-0.33 Rubber 0.48-0.5
Cl 0.23 - 0.27 Cork
Concrete 0.2

Nearly zero

Novel foam negative

® We use cork in a bottle as the cork easily inserted and removed, yet it also withstand the

pressure from within the bottle. Cork with a Poisson's ratio of nearly zero, is ideal in this
application.

1.12 For bi-axial stretching of sheet

Lfl ..
€ =In| — L, — Original length

ol

L

€,=In (ﬁJ L ,-Final length
02

Initial thickness(t,)

Final thickness (t;) = -
el x e

1.13 Elongation

e A prismatic bar loaded in tension by an axial force P

For a prismatic bar loaded in tension by
an axial force P. The elongation of the bar
can be determined as

[ —p

-:—L—h-q_a—“q

® FElongation of composite body

Elongation of a bar of varying cross section A1, Ag,......... Anof lengths 1, Is-......In respectively.

s Pl b 4}
E| 4 4, A4 A,

Page 9 of 429
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e FElongation of a tapered body
Elongation of a tapering rod of length ‘L.’ due to load ‘P’ at the end

(d:1 and d2 are the diameters of smaller & larger ends)

You may remember this in this way, 6= PL ie. EI:l
E (” d d, j c
4

Page 10 of 429
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® FElongation of a body due to its self weight

(1) Elongation of a uniform rod of length ‘L.’ due to its own weight ‘W’

WL
2AE

The deformation of a bar under its own weight as compared to that when subjected to

o=

a direct axial load equal to its own weight will be half.
(i1) Total extension produced in rod of length ‘L’ due to its own weight ‘w’ per with
ol
2EA

length. o=

(ii1) Elongation of a conical bar due to its self weight

5= pgl’ WL
6E  24_E

1.14 Structural members or machines must be designed such that the working stresses are less

than the ultimate strength of the material.

) o
Working stress(o,, )=—- n=1.5t0 2

n factor of safety
= Cur n,=2to3
n1
o}
=—r o, = Proof stress
n

o,or o, or o,

1.15 Factor of Safety: (n) =
o

w

1.16 Thermal or Temperature stress and strain

® When a material undergoes a change in temperature, it either elongates or contracts

depending upon whether temperature is increased or decreased of the material.

® If the elongation or contraction is not restricted, 1. e. free then the material does not

experience any stress despite the fact that it undergoes a strain.

® The strain due to temperature change is called thermal strain and is expressed as,
e=a(AT)

® Where a is co-efficient of thermal expansion, a material property, and AT is the change in

temperature.

® The free expansion or contraction of materials, when restrained induces stress in the
Page 12 of 429
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Where, E = Modulus of elasticity

® Thermal stress produces the same effect in the material similar to that of mechanical
stress. A compressive stress will produce in the material with increase in temperature

and the stress developed is tensile stress with decrease in temperature.

Page 13 of 429




Chapter-1 Stress and Strain S K Mondal’s
1.17 Thermal stress on Brass and Mild steel combination

A brass rod placed within a steel tube of exactly same length. The assembly is making in such a
way that elongation of the combination will be same. To calculate the stress induced in the brass

rod, steel tube when the combination is raised by t°C then the following analogy have to do.

b
o . Steel
(a) Original bar before heating. Brass
3 Steel
A oy Lot
= L —_— B
[ I I
3
e Steel B c
(b) Expanded position if the members are allowed to Bm_:s l
expand freely and independently after heating. B |
i —
Ex!brISIz?ez'lf Compression
of brass
o . . . b
(¢) Expanded position of the compound bar i.e. final ey
osition after heating. Brass
position r ing N —
® Compatibility Equation: Assumption:
_ _ 1.L=L =L
5‘5;;"'55/' =0, —5Bf s B
2.0,>a,

® Equilibrium Equation: 3 Steel — Tension

0,4, =04, Brass — Compression

Where, 6 = Expansion of the compound bar = AD in the above figure.

0, = Free expansion of the steel tube due to temperature rise t°C = ¢, Lt
= AB in the above figure.

S, = Expansion of the steel tube due to internal force developed by the unequal expansion.
= BD in the above figure.

0y = Free expansion of the brass rod due to temperature rise t°C = ¢ Lt
= AC in the above figure.

8y = Compression of the brass rod due to internal force developed by the unequal expansion.

= BD in the above figure.
And in the equilibrium equation
Tensile force in the steel tube = Compressive force in the brass rod

Where, o, = Tensile stress developed in the steel tube.
o, = Compressive stress developed in the brass rod.
A, = Cross section area of the steel tube.

A, = Cross section area of the brass rod.

Let us take an example: See the Conventional Question Answer section of this chapter and the

question is “Conventional Question IES-2008"3%5d 4 43swer.
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1.18 Maximum stress and elongation due to rotation

22 23 X
Mo =PoL na (5L)=pa’L QL_
8 12E

212 213
X
i) o, =P ana (sL)=£2L QL/
2 3E

For remember: You will get (i1) by multiplying by 4 of (1) I |

1.18 Creep

When a member is subjected to a constant load over a long period of time it undergoes a slow
permanent deformation and this is termed as “creep”. This is dependent on temperature. Usually at

elevated temperatures creep is high.

® The materials have its own different melting point; each will creep when the homologous

Testing temperature S

temperature > 0.5. Homologous temp = -
Melting temperature

0.5

A typical creep curve shows three distinct stages

with different creep rates. After an initial rapid

Frimary creep Secondory creep Tertlory creep
Frocture

elongation €, the creep rate decrease with time

until reaching the steady state.

1) Primary creep is a period of transient creep.

i o
== minimum Cregp rafe
1t

The creep resistance of the material increases

due to material deformation. : :
The constant creep rate in the

. _r second step represent the creep
2) Secondary creep provides a nearly constant € inte of the material,
creep rate. The average value of the creep rate }

Time £
during this period is called the minimum creep

rate. A stage of balance between competing.

Strain hardening and recovery (softening) of the material.

3) Tertiary creep shows a rapid increase in the creep rate due to effectively reduced cross-
sectional area of the specimen leading to creep rupture or failure. In this stage intergranular

cracking and/or formation of voids and cavities occur.
Creep rate =c1 0
Creep strain at any time = zero time strain intercept + creep rate XTime
=€, +c, 0% xt
Where, ¢, ,c, are constants o = stress

1.19 |If a load P is applied suddenly to a bar then the stress & strain induced will be double
than those obtained by an equal load applied gradually.

1.20 Stress produced by a load P in falling¥tdr haight *h’
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oy =0{1+,/1+&}} o,
el

€ being stress & strain produced by static load P & L=length of bar.

A 2AEh
=—| 1+, [l+——
p PL

1.21 Loads shared by the materials of a compound bar made of bars x & y due to load W,

po=w—AE
AE +AE,
L
g AE +AE,
. PL
1.22 Elongation of a compound bar, 6 =————
AE +AE,

1.23 Tension Test
A A @

0 &
[+H]
S
0 ) . MNecking
{Ultimate tensile strength
K Fracture
= H
Lo Necking :
Ay P ; i
Il Young's modulus = slope !
- Fracture : = sfress/strain
H i ]
i i 0
i i i
i i i
A i ' E
"y Elaztic E Uniform plasfic i
eformation deformation | deformation |
4 " R — i i ] Strai
s i Elastic i Plastic strain ' S
; i

H Total strain ' !

.........................................

i, strain

............................................................

i) True elastic limit: based on micro-strain measurement at strains on order of 2 x 106, Very low

value and is related to the motion of a few hundred dislocations.
ii) Proportional limit: the highest stress at which stress is directly proportional to strain.

iii) Elastic limit: is the greatest stress the material can withstand without any measurable
permanent strain after unloading. Elastic limit > proportional limit.

iv) Yield strength is the stress required to produce a small specific amount of -3

deformation. The offset yield strength can be determined by the stress

corresponding to the intersection of the stress-strain curve and a line

parallel to the elastic line offset by a strain of 0.2 or 0.1%. (¢ = 0.002 or

0.001).

Extension
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® The offset yield stress is referred to proof stress either at 0.1 or 0.5% strain used for design
and specification purposes to avoid the practical difficulties of measuring the elastic limit or

proportional limit.

v) Tensile strength or ultimate tensile strength (UTS) o, is the maximum load Pmax divided

by the original cross-sectional area A, of the specimen.

vi) % Elongation, = fL © , is chiefly influenced by uniform elongation, which is dependent on the

(¢}

strain-hardening capacity of the material.

A -A
vii) Reduction of Area: q :"A—f

[

® Reduction of area is more a measure of the deformation required to produce failure and

its chief contribution results from the necking process.

® Because of the complicated state of stress state in the neck, values of reduction of area
are dependent on specimen geometry, and deformation behaviour, and they should not be

taken as true material properties.

® RA is the most structure-sensitive ductility parameter and is useful in detecting quality

changes in the materials.

viii) Stress-strain response

L

Linear elastic Linear elastic—perféctly plastic

€ £
Linear elastic-hardening plastic Linear elastic-hardening plasticity
with unloading
1.24 Elastic strain and Plastic strain
The strain present in the material after unloading is called the residual strain or plastic strain
and the strain disappears during unloading is termed as recoverable or elastic strain.
Equation of the straight line CB is given by

0 =€ xE— € plastic xE =€ Ejastic xE

total
Carefully observe the following figures and understand which one is Elastic strain and which one is

Plastic strain

Page 17 of 429
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.\H; Residual strain |
Elastic strain

Elastic strain

Rasidu{strain

Elastic strain
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(vii) Plastic strain (& ) = &, — & =0.2000—0.0045 = 0.1955

1.25 Elasticity

This is the property of a material to regain its original shape
after deformation when the external forces are removed. When
the material i1s in elastic region the strain disappears
completely after removal of the load, The stress-strain
relationship in elastic region need not be linear and can be
non-linear (example rubber). The maximum stress value below
which the strain is fully recoverable is called the elastic limit.
It is represented by point A in figure. All materials are elastic
to some extent but the degree varies, for example, both mild
steel and rubber are elastic materials but steel is more elastic

than rubber.

1.26 Plasticity

When the stress in the material exceeds the elastic limit, the
material enters into plastic phase where the strain can no
longer be completely removed. Under plastic conditions
materials ideally deform without any increase in stress. A
typical stress strain diagram for an elastic-perfectly plastic
material is shown in the figure. Mises-Henky criterion gives a

good starting point for plasticity analysis.

1.27 Strain hardening

If the material is reloaded from point C, it will follow the
previous unloading path and line CB becomes its new elastic
region with elastic limit defined by point B. Though the new
elastic region CB resembles that of the initial elastic region
OA, the internal structure of the material in the new state has
changed. The change in the microstructure of the material is
clear from the fact that the ductility of the material has come
down due to strain hardening. When the material is reloaded,
it follows the same path as that of a virgin material and fails
on reaching the ultimate strength which remains unaltered

due to the intermediate loading and unloading process.

Page 19 of 429
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1.28 Stress reversal and stress-strain hysteresis loop

We know that fatigue failure begins at a local discontinuity and when the stress at the discontinuity
exceeds elastic limit there 1s plastic strain. The cyclic plastic strain results crack propagation and
fracture.

When we plot the experimental data with reversed loading and the true stress strain hysteresis
loops is found as shown below.

Ao

| Strain

- J'j.-Ep LEr | '-&E.:. -

L VL

True stress-strain plot with a number of stress reversals

Due to cyclic strain the elastic limit increases for annealed steel and decreases for cold drawn steel.

Here the stress range is Ao. Ag, and Aee are the plastic and elastic strain ranges, the total strain
range being Ae. Considering that the total strain amplitude can be given as
Ae = A€p+ Aee

Page 20 of 429
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Stress in a bar due to self-weight

GATE-1. Two identical circular rods of same diameter and same length are subjected to
same magnitude of axial tensile force. One of the rods is made out of mild steel
having the modulus of elasticity of 206 GPa. The other rod is made out of cast
iron having the modulus of elasticity of 100 GPa. Assume both the materials to
be homogeneous and isotropic and the axial force causes the same amount of
uniform stress in both the rods. The stresses developed are within the
proportional limit of the respective materials. Which of the following
observations is correct? [GATE-2003]
(a) Both rods elongate by the same amount
(b)  Mild steel rod elongates more than the cast iron rod
(¢) Cast iron rod elongates more than the mild steel rod
(d)  As the stresses are equal strains are also equal in both the rods

GATE-1. Ans. (¢) 6L = % or oL o % [AsP, L and A is same]

(5L)mi steel E 100
Cl

GATE-2. A steel bar of 40 mm X 40 mm square cross-section is subjected to an axial
compressive load of 200 kN. If the length of the bar is 2 m and E = 200 GPa, the

elongation of the bar will be: [GATE-2006]
(a) 1.25 mm (b) 2.70 mm (c) 4.05 mm (d) 5.40 mm
PL (200%1000)x 2
GATE-2. Ans. (a) 6L=—-= m=1.25mm

AE ~ (0.04x0.04)x200x10°

True stress and true strain

GATE-3. The ultimate tensile strength of a material is 400 MPa and the elongation up to
maximum load is 35%. If the material obeys power law of hardening, then the

true stress-true strain relation (stress in MPa) in the plastic deformation range
is: [GATE-2006]

(a) o =540£"% (®) o =775 (c) o =540£"% ) o=775&"%
GATE-3. Ans. (¢)

A true stress — true strain curve in

T om-ks"

tension o =kg"

k = Strength co-efficient = 400 X
(1.35) = 540 MPa

n = Strain — hardening exponent =
0.35

Tensile strengh (necking)

True stress 5

True stress ()

Elasticity and Plasticity

GATE-4. An axial residual compressive stress due to a manufacturing process is present

on the outer surface of a rotating shaft subjected to bending. Under a given
Page 21 of 429
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bending load, the fatigue life of the shaft in the presence of the residual
compressive stress is: [GATE-2008]

(a) Decreased
(b) Increased or decreased, depending on the external bending load
(¢) Neither decreased nor increased

(d) Increased

GATE-4. Ans. (d)

GATE-5.

— —-—1 +urm,..F-1— Tensile stress

Compressive —-i-(rr.-,... lq—
stress

A cantilever-loaded rotating beam, showing the normal distribution of surface stresses.
(i.e., tension at the top and compression at the bottom)

l=— Residual stress

—--A]G'R
— +
Plastic
A s —— - H— - daformation -

in surface
e loal—

The residual compressive stresses induced.

N —b-{ |-l— Trnax + U7

_"'J Frnaw + TR |“_

Net stress pattern obtained when loading a surface treated beam. The reduced
magnitude of the tensile stresses contributes to increased fatigue life.

A static load is mounted at the centre of a shaft rotating at uniform angular

velocity. This shaft will be designed for [GATE-2002]
(a) The maximum compressive stress (static) (b) The maximum tensile stress (static)
(¢) The maximum bending moment (static) (d) Fatigue loading

GATE-5. Ans. (d)

GATE-6.

Fatigue strength of a rod subjected to cyclic axial force is less than that of a

rotating beam of the same dimensions subjected to steady lateral force because

(a) Axial stiffness is less than bending stiffness [GATE-1992]

(b) Of absence of centrifugal effects in the rod

(¢) The number of discontinuities vulnerable to fatigue are more in the rod

(d) At a particular time the rod has only one type of stress whereas the beam has both
the tensile and compressive stresses.

GATE-6. Ans. (d)

Relation between the Elastic Modulii

GATE-7.

A rod of length L and diameter D is subjected to a tensile load P. Which of the
following is sufficient to calculate the resulting change in diameter?

(a) Young's modulus (b) Shear modulus [GATE-2008]
(c) Poisson's ratio (d) Both Young's modulus and shear modulus

Page 22 of 429
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GATE-7. Ans. (d) For longitudinal strain we need Young's modulus and for calculating transverse
strain we need Poisson's ratio. We may calculate Poisson's ratio from E =2G(1+ u)for

that we need Shear modulus.
GATE-8. In terms of Poisson's ratio (u) the ratio of Young's Modulus (E) to Shear
Modulus (G) of elastic materials is
[GATE-2004]
1 1
(@)2(1+ p) (0)2(1-p) (C)E(l + 1) (d) 5(1 — M)
GATE-8. Ans. (a)

GATE-9. The relationship between Young's modulus (E), Bulk modulus (K) and Poisson's

ratio (n) is given by: [GATE-2002]
@ E = 3K (1-2u) () K = 3E (1-2u)
©E =3K (1-px) @K =3E (1-px)
GATE-9. Ans. (a) Remember E=2G(1+u)=3K(1-2u) = IKG
3K+G

Stresses in compound strut

GATE-10. In a bolted joint two members
are connected with an axial
tightening force of 2200 N. If
the bolt used has metric
threads of 4 mm pitch, then
torque required for achieving
the tightening force is

(a) 0.7Nm (b) 1.0 Nm
GATE-10. Ans. (¢) T=Fxr =2200x 0.004 Nm=1.4Nm

T

GATE-11. The figure below shows a steel rod of 25 mm?2 cross sectional area. It is loaded

at four points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998]
1DON_K L'P_SON 200N " N4 50N
500 mm 400 mm
PN
1700 mm

Assume Egteel = 200 GPa. The total change in length of the rod due to loading is:
(a) 1 pm (b) -10 pm (c) 16 um (d) -20 um

GATE-11. Ans. (b) First draw FBD of all parts separately then

T . ) 1—»1&:“ — 50
L R = - v b

Total change in length = Z%

GATE-12. A bar having a cross-sectional area of 700mm? is subjected to axial loads at the
positions indicated. The value of stress in the segment QR is: [GATE-2006]
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GATE-12. Ans. (a)

GATE-13.

Stress and Strain S K Mondal’s

63 kN 35 kN 49 kN 21 kN

P Q R S
(a) 40 MPa (b) 50 MPa (c) 70 MPa (d) 120 MPa

63kN 63kN 28kN 28k 21k 21kN
P Q Q R R 3

F.B.D
Ogr = P = 28000 MPa = 40MPa

A 700
An ejector mechanism consists of a ';:_::._:._::._-:».:._:..
helical compression spring having a pe _-__-.'_-_-.'.;._i________. MASS
spring constant of K = 981 x 103 N/m. B e
It is pre-compressed by 100 mm o et et
from its free state. If it is used to "W \‘:'W}'
eject a mass of 100 kg held on it, the ﬁ‘;: \%ﬁ-.
mass will move up through a ﬂﬁ: =~ SPRING
distance of % '—'—',\
(a) 100mm (b) 500mm h\. ﬁx
(c) 981 mm (d) 1000mm SRS

GATE-13. Ans. (a) No calculation needed it is pre-

GATE-14.

compressed by 100 mm from its free
state. So it can’t move more than 100
mm. choice (b), (c) and (d) out.

The figure shows a pair of pin-jointed
gripper-tongs holding an object
weighing 2000 N. The co-efficient of
friction (u) at the gripping surface is
0.1 XX is the line of action of the
input force and YY is the line of
application of gripping force. If the
pin-joint is assumed to be
frictionless, then magnitude of force
F required to hold the weight is:

(2) 1000 N
(b) 2000 N
(c) 2500 N
(d) 5000 N

GATE-14. Ans. (d) Frictional force required = 2000 N

[GATE-2004]

100mm

i

2000

W
2000N

Force needed to produce 2000N frictional force at Y-Y section = o1 - 20000N

So for each side we need (Fy) = 10000 N force
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Taking moment about PIN

F, x50 10000 x50
100 100

=5000N

Fy><50:F><100 or F=

GATE-15. A uniform, slender cylindrical rod is made of a homogeneous and isotropic
material. The rod rests on a frictionless surface. The rod is heated uniformly. If
the radial and longitudinal thermal stresses are represented by o: and o,
respectively, then [GATE-2005]
(a)0.=0,0.=0 (b)o,.#0,0.=0 (c)o.=0,0.#0 (d)o,.#0,0.#0

GATE-15. Ans. (a) Thermal stress will develop only when you prevent the material to
contrast/elongate. As here it is free no thermal stress will develop.

Tensile Test
GATE-16. A test specimen is stressed slightly beyond the yield point and then unloaded.

Its yield strength will [GATE-1995]
(a) Decrease (b) Increase
(c) Remains same (d) Becomes equal to ultimate tensile strength
GATE-16. Ans. (b)
a B
F
0 ¢C >

GATE-17. Under repeated loading a
material has the stress-strain
curve shown in figure, which of
the following statements is
true?

(a) The smaller the shaded area,
the better the material damping

(b) The larger the shaded area, the i
better the material damping

(c) Material damping is an
independent material property
and does not depend on this
curve

(d) None of these [GATE-1999]
GATE-17. Ans. (a)

>3

Previous 20-Years IES Questions

Stress in a bar due to self-weight

IES-1. A solid uniform metal bar of diameter D and length L is hanging vertically
from its upper end. The elongation of the bar due to self weight is: [TES-2005]
(a) Proportional to L and inversely proportional to D2
(b)  Proportional to L2 and inversely proportional to D2
(¢)  Proportional of L but independent of D
(d)  Proportional of U but indepglé\éiee% Shby
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IES-1. Ans. (a) 6= WL = WL SoxL & 5><i
2AE xD? D?
2 x xE
IES-2. The deformation of a bar under its own weight as compared to that when
subjected to a direct axial load equal to its own weight will be: [TES-1998]
(a) The same (b) One-fourth (c) Half (d) Double
IES-2. Ans. (c¢)
IES-3. A rigid beam of negligible weight is supported in a horizontal position by two

rods of steel and aluminum, 2 m and 1 m long having values of cross - sectional
areas 1 cm2 and 2 cm? and E of 200 GPa and 100 GPa respectively. A load P is

applied as shown in the figure [TES-2002]
NENESRNEENA
NESENSEEENA
2m 1m
Steel Aluminium
| _] Rigid Beam
1P

If the rigid beam is to remain horizontal then
(a) The forces on both sides should be equal
(b)  The force on aluminum rod should be twice the force on steel
(¢) The force on the steel rod should be twice the force on aluminum
(d) The force P must be applied at the centre of the beam
IES-3. Ans. (b)

Bar of uniform strength

IES-4. Which one of the following statements is correct? [TIES 2007]
A beam is said to be of uniform strength, if
(a) The bending moment is the same throughout the beam
(b)  The shear stress is the same throughout the beam
(¢)  The deflection is the same throughout the beam

(d) The bending stress is the same at every section along its longitudinal axis
IES-4. Ans. (d)

IES-5. Which one of the following statements is correct? [IES-2006]
Beams of uniform strength vary in section such that
(a) bending moment remains constant (b) deflection remains constant

(c) maximum bending stress remains constant (d) shear force remains constant
IES-5. Ans. (c¢)

IES-6. For bolts of uniform strength, the shank diameter is made equal to [IES-2003]
(a) Major diameter of threads (b) Pitch diameter of threads
(c) Minor diameter of threads (d) Nominal diameter of threads

IES-6. Ans. (c¢)

IES-7. A bolt of uniform strength can be developed by [TES-1995]
(a) Keeping the core diameter of threads equal to the diameter of unthreaded portion
of the bolt Page 26 of 429

(b) Keeping the core diameter smaller than the diameter of the unthreaded portion
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(¢) Keeping the nominal diameter of threads equal the diameter of unthreaded portion
of the bolt
(d)  One end fixed and the other end free
IES-7. Ans. (a)

Elongation of a Taper Rod

IES-8. Two tapering bars of the same material are subjected to a tensile load P. The
lengths of both the bars are the same. The larger diameter of each of the bars is
D. The diameter of the bar A at its smaller end is D/2 and that of the bar B is
D/3. What is the ratio of elongation of the bar A to that of the bar B? [TES-2006]
(a)3:2 (b) 2: 3 (©04:9 (d)1:3

IES-8. Ans. (b) Elongation of a taper rod (dl) = PL

%¢%E

(o), _(d), (D/3)_2
m(&%‘]dgA_(D/zj__

3
IES-9. A bar of length L tapers uniformly from diameter 1.1 D at one end to 0.9 D at
the other end. The elongation due to axial pull is computed using mean
diameter D. What is the approximate error in computed elongation? [IES-2004]

(a) 10% (b) 5% (©) 1% (d) 0.5%

IES-9. Ans. (c) Actual elongation of the bar (51) = PL_ _ PL
(desz EZX1ADXOQDJE
. PL
Calculated elongation of the bar (81)_, = ———
a 7D
xE
4
ol)  —(ol 2
~.Error (%) :—( Juor = (e x100 = _Db -1(x100% =1%
(5I)cal 1.1D x0.9D
IES-10. The stretch in a steel rod of circular section, having a length 'l' subjected to a
tensile load' P' and tapering uniformly from a diameter d: at one end to a
diameter d: at the other end, is given [IES-1995]
Pl l. l.r 4pl
(a) () L © -2 @ —L—
4Ed d, Edd, 4Edd, nEdd,
PL

IES-10. Ans. (d) Actual elongation of the bar (cSI)act =
(desz

IES-11. A tapering bar (diameters of end sections being di and dz: a bar of uniform
cross-section ’d’ have the same length and are subjected the same axial pull.
Both the bars will have the same extension if’'d’ is equal to [TES-1998]

B N ZZ AN O N L O N

IES-11. Ans. (b)

Poisson’s ratio

IES-12. In the case of an engineering material under unidirectional stress in the x-
direction, the Poisson's ratio is equal to (symbols have the usual meanings)
[TIAS 1994, IES-2000]
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(a) 6‘_y (b) g_y (c) i (d i
gx Gx GX gx

IES-12. Ans. (a)

IES-13. Which one of the following is correct in respect of Poisson's ratio (v) limits for
an isotropic elastic solid? [TES-2004]

(a) —o<y < () 1/4<v<1/3 () —1=v<1/2 (d —1/2<v<1/2
IES-13. Ans. (c) Theoretically -1< ¢ <1/2 but practically 0 < x<1/2

IES-14. Match List-I (Elastic properties of an isotropic elastic material) with List-II
(Nature of strain produced) and select the correct answer using the codes

given below the Lists: [IES-1997]
List-I List-II
A. Young's modulus 1. Shear strain
B. Modulus of rigidity 2. Normal strain
C. Bulk modulus 3. Transverse strain
D. Poisson's ratio 4. Volumetric strain
Codes: A B C D A B C D
@ 1 2 3 4 (b) 2 1 3 4
(¢ 2 1 4 3 (d) 1 2 4 3

IES-14. Ans. (c¢)

IES-15. If the value of Poisson's ratio is zero, then it means that [TES-1994]
(@) The material is rigid.
(b) The material is perfectly plastic.
(¢)  There is no longitudinal strain in the material
(d) The longitudinal strain in the material is infinite.
IES-15. Ans. (a) If Poisson's ratio is zero, then material is rigid.

IES-16. Which of the following is true (u= Poisson's ratio) [TES-1992]
(@ O<u<l/2 M) I<u<0 (@ Il<u<-1 (d) < p << —00
IES-16. Ans. (a)

Elasticity and Plasticity

IES-17. If the area of cross-section of a wire is circular and if the radius of this circle
decreases to half its original value due to the stretch of the wire by a load, then
the modulus of elasticity of the wire be: [TES-1993]
(a) One-fourth of its original value (b) Halved (c) Doubled (d) Unaffected

IES-17. Ans. (d) Note: Modulus of elasticity is the property of material. It will remain same.

IES-18. The relationship between the Lame’s constant ‘A’, Young’s modulus ‘E’ and the

Poisson’s ratio ‘@’ [TIES-1997]
(a)i=— LH Y (c) A= (a)a=-LH
(1+u)(1-2u) (1+24)(1— p) 1+ u (1-p)
IES-18. Ans. (a)
IES-19. Which of the following pairs are correctly matched? [IES-1994]
1. Resilience............... Resistance to deformation.
2. Malleability .............. Shape change.
3. Creep ccceeverrnveeeeeeenens Progressive deformation.
4. Plasticity .... cecoeeeenennn Permanent deformation.
Select the correct answer using the codes given below:
Codes: (a) 2,3 and 4 (b) 1,2 and 3 (¢)1,2and 4 (d) 1,3 and 4

IES-19. Ans. (a) Strain energy stored by a body within elastic limit is known as resilience.
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Creep and fatigue

IES-20. What is the phenomenon of progressive extension of the material i.e., strain
increasing with the time at a constant load, called? [IES 2007]
(a) Plasticity (b) Yielding (b) Creeping (d) Breaking

IES-20. Ans. (c)

IES-21. The correct sequence of creep deformation in a creep curve in order of their
elongation is: [TES-2001]

(a) Steady state, transient, accelerated (b) Transient, steady state, accelerated
(c) Transient, accelerated, steady state (d) Accelerated, steady state, transient
IES-21. Ans. (b)

IES-22. The highest stress that a material can withstand for a specified length of time

without excessive deformation is called [TES-1997]
(a) Fatigue strength (b) Endurance strength
(c) Creep strength (d) Creep rupture strength

IES-22. Ans. (¢)

IES-23. Which one of the following features improves the fatigue strength of a metallic

material? [TES-2000]
(a) Increasing the temperature (b) Scratching the surface
(c) Overstressing (d) Under stressing

IES-23. Ans. (d)

IES-24. Consider the following statements: [TES-1993]
For increasing the fatigue strength of welded joints it is necessary to employ
1. Grinding 2. Coating 3. Hammer peening
Of the above statements
(a) 1 and 2 are correct (b) 2 and 3 are correct
(c) 1 and 3 are correct (d) 1, 2 and 3 are correct

IES-24. Ans. (c) A polished surface by grinding can take more number of cycles than a part with
rough surface. In Hammer peening residual compressive stress lower the peak tensile
stress

Relation between the Elastic Modulii

TIES-25. For a linearly elastic, isotropic and homogeneous material, the number of
elastic constants required to relate stress and strain is: [TAS 1994; IES-1998]
(a) Two (b) Three (c) Four (d) Six

IES-25. Ans. (a)

IES-26. E, G, K and n represent the elastic modulus, shear modulus, bulk modulus and
Poisson's ratio respectively of a linearly elastic, isotropic and homogeneous
material. To express the stress-strain relations completely for this material, at
least [TIES-2006]
(a) E, G and p must be known (b) E, K and p must be known
(c) Any two of the four must be known (d) All the four must be known

IES-26. Ans. (c)

IES-27. The number of elastic constants for a completely anisotropic elastic material
which follows Hooke's law is: [IES-1999]
(a) 3 (b) 4 (c) 21 (d) 25

IES-27. Ans. (c¢)

IES-28. What are the materials which show direction dependent properties, called?
(a) Homogeneous materials (b) Viscoelastic materials [IES 2007]
(c) Isotropic materials (d) Anisotropic materials

IES-28. Ans. (d)

IES-29. An orthotropic material, under*P1ZhT $i¥ess condition will have: [TES-2006]
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(a) 15 independent elastic constants (b) 4 independent elastic constants
(c) 5 independent elastic constants (d) 9 independent elastic constants
IES-29. Ans. (d)

IES-30. Match List-I (Properties) with List-II (Units) and select the correct answer

using the codes given below the lists: [TES-2001]
List I List II
A. Dynamic viscosity 1. Pa
B. Kinematic viscosity 2. m?/s
C. Torsional stiffness 3. Ns/m2
D. Modulus of rigidity 4. N/m
Codes: A B C D A B C D
(a) 3 2 4 1 (b) 5 2 4 3
(b) 3 4 2 3 (d) 5 4 2 1

IES-30. Ans. (a)

IES-31. Young's modulus of elasticity and Poisson's ratio of a material are 1.25 x 105
MPa and 0.34 respectively. The modulus of rigidity of the material is:
[TIAS 1994, IES-1995, 2001, 2002, 2007]
(a) 0.4025 X105 Mpa (b) 0.4664 x 10> Mpa
(c) 0.8375 x 105 MPa (d) 0.9469 x 105 MPa
IES-31. Ans.(b) E =2G(1+ 1) or 1.25x105 = 2G(1+0.34) or G = 0.4664 x 105> MPa

IES-32. In a homogenous, isotropic elastic material, the modulus of elasticity E in
terms of G and K is equal to [IAS-1995, IES - 1992]
G+3K 3G+K 9KG 9KG
(a) (b) (c) (d)
9KG 9KG G+3K K+3G
IES-32. Ans. (¢)
IES-33. What is the relationship between the linear elastic properties Young's modulus
(E), rigidity modulus (G) and bulk modulus (K)? [IES-2008]
@l 9.3 3. e 1 9 31 e 1.3
E K G E K G E K G E K G
9KG
IES-33. Ans. (d) E=2G(1 =3K(1-2u) =
ns- (@) (T a) =3 (1-20)= 3G

IES-34. What is the relationship between the liner elastic properties Young’s modulus

(E), rigidity modulus (G) and bulk modulus (K)? [TES-2009]
9KG 9KG 9KG
(@ E= b) E=—— (© E= @ E=
9K +G K+G K+3G 3K+G
9KG

IES-34. Ans. (d) E=2G(1+ u)=3K(1-2u4) = KL G
+

IES-35. If E, G and K denote Young's modulus, Modulus of rigidity and Bulk Modulus,
respectively, for an elastic material, then which one of the following can be

possibly true? [TES-2005]
(a) G=2K b)G=E ©K=E d)G=K=E
9IKG
IES-35. Ans. E=2G(1 =3K(1-2u) =
ns-(©) (1 u)=3K(1=24) = 3775

the value of x must be between 0 to 0.5 so E never equal to G but if = % then

E=k soans.isc

IES-36. If a material had a modulus of elasticity of 2.1 x 106 kgf/cm2 and a modulus of
rigidity of 0.8 x 10¢ kgf/cm? then the approximate value of the Poisson's ratio of
the material would be: Page 30 of 429 [TES-1993]
(a) 0.26 (b) 0.31 (c) 0.47 ) 0.5
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IES-36. Ans. (b) Use E =2G(1+ )

IES-37. The modulus of elasticity for a material is 200 GN/m?2 and Poisson's ratio is 0.25.

What is the modulus of rigidity? [TES-2004]
(a) 80 GN/m? (b) 125 GN/m? (c) 250 GN/m? (d) 320 GN/m?
IES-37. Ans. (a) E=2G(1+ ) or G= E__ 200 =80GN/m?
2(1+ y) 2% (1 +0.25)
IES-38. Consider the following statements: [TES-2009]
1. Two-dimensional stresses applied to a thin plate in its own plane
represent the plane stress condition.
2. Under plane stress condition, the strain in the direction perpendicular to
the plane is zero.
3. Normal and shear stresses may occur simultaneously on a plane.
Which of the above statements is /are correct?
(a) 1 only (b) 1 and 2 (¢c) 2and 3 (d) 1 and 3

IES-38. Ans. (d) Under plane stress condition, the strain in the direction perpendicular to the plane
is not zero. It has been found experimentally that when a body is stressed within elastic
limit, the lateral strain bears a constant ratio to the linear strain. [IES-2009]

Stresses in compound strut

IES-39. Eight bolts are to be selected for fixing the cover plate of a cylinder subjected
to a maximum load of 980-175 kN. If the design stress for the bolt material is
315 N/mm?, what is the diameter of each bolt? [TES-2008]
(a) 10 mm (b) 22 mm (c) 30 mm (d) 36 mm

2
IES-39. Ans. (b) Total load(P) =8 x o x "9 ord =\/ P \/ 980175 _ 95 25mm
4 2nc 27 x315

IES-40. For a composite consisting of a bar enclosed inside a tube of another material
when compressed under a load 'w' as a whole through rigid collars at the end
of the bar. The equation of compatibility is given by (suffixes 1 and 2) refer to
bar and tube respectively [TES-1998]

/4 W. /4 W,
(W, +W, =W OYW, +W, =Const. (¢)——=—2 (d)—=—"22
AE,  AE, AE, AE
IES-40. Ans. (¢) Compatibility equation insists that the change in length of the bar must be

compatible with the boundary conditions. Here (a) is also correct but it is equilibrium
equation.

IES-41. When a composite unit consisting of a steel rod surrounded by a cast iron tube
is subjected to an axial load. [IES-2000]
Assertion (A): The ratio of normal stresses induced in both the materials is
equal to the ratio of Young's moduli of respective materials.
Reason (R): The composite unit of these two materials is firmly fastened
together at the ends to ensure equal deformation in both the materials.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-41. Ans. (a)

IES-42. The figure below shows a steel rod of 25 mm? cross sectional area. It is loaded
at four points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998]
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100 N 250 N
| y 200 N | ' 50N

500 mm 400 mm
S E——

1700 mm

Assume Esteel = 200 GPa. The total change in length of the rod due to loading is
(@ 1pum (b)-10 pm (c) 16 um (d) -20 pm
IES-42. Ans. (b) First draw FBD of all parts separately then

o -— 150N spNe— 50 M
e N U I -

Total change in length = E%

IES-43. The reactions at the rigid A 4 B
supports at A and B for -1 C L~
the bar loaded as shown g ¢
. ~1 L~
in the figure are A 10kN

. —>
respectively. - L~
(a) 20/3 kN,10/3 kN 7 g
(b) 10/3 kN, 20/3 kN A >
(c) 5 kN, 5 kN ’/’ Im 2m #
(d) 6 kN, 4 kN A T L

[TES-2002; IAS-
2003]
IES-43. Ans. (a) Elongation in AC = length reduction in CB
Ryx1 Rgx2
AE AE
And Ra+Rp=10

IES-44. Which one of the following is correct? [TES-2008]
When a nut is tightened by placing a washer below it, the bolt will be subjected
to
(a) Compression only (b) Tension
(c) Shear only (d) Compression and shear

IES-44. Ans. (b)

IES-45. Which of the following stresses are associated with the tightening of nut on a
bolt? [IES-1998]

1. Tensile stress due to the stretching of bolt

2. Bending stress due to the bending of bolt

3. Crushing and shear stresses in threads

4, Torsional shear stress due to frictional resistance between the nut and
the bolt.

Select the correct answer using the codes given below

Codes: (a)1,2and 4 (b) 1,2 and 3 (¢)2,3and4 (d)1,3and 4

IES-45. Ans. (d)

Thermal effect

IES-46. A 100 mm X 5 mm X 5 mm steel bar free to expand is heated from 15°C to 40°C.
What shall be developed? [TES-2008]
(a) Tensile stress (b) Compressive stress (c) Shear stress (d) No stress
IES-46. Ans. (d) If we resist to expand then only stress will develop.

IES-47. Which one of the following statements is correct? [GATE-1995; IES 2007]
If a material expands freely due tédaéaein#, it will develop
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(a) Thermal stress  (b) Tensile stress (c) Compressive stress (d) No stress
IES-47. Ans. (d)

IES-48. A cube having each side of length a, is constrained in all directions and is
heated uniformly so that the temperature is raised to T°C. If a is the thermal
coefficient of expansion of the cube material and E the modulus of elasticity,

the stress developed in the cube is: [IES-2003]

@ alE ) aTE © aTE @ aTE

a — ¢ —_—

4 (1—27/) 2y (1+27/)
= 31+ aT) -8
IES-48. Ans. (b) = =7 p) _2'( il ) -2
74 K a
Or + =3aT
3 (1 — 27)

TIES-49. Consider the following statements: [TES-2002]

Thermal stress is induced in a component in general, when
1. A temperature gradient exists in the component
2. The component is free from any restraint
3. It is restrained to expand or contract freely
Which of the above statements are correct?
(a) 1 and 2 (b) 2 and 3 (c) 3 alone (d) 2 alone
IES-49. Ans. (c¢)

IES-50. A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200
GPa and a =12 x 106 per °C. If the rod is not free to expand, the thermal stress

developed is: [IAS-2003, TES-1997, 2000, 2006]
(a) 120 MPa (tensile) (b) 240 MPa (tensile)
(c) 120 MPa (compressive) (d) 240 MPa (compressive)

IES-50. Ans. (d) aEAt=(12x107°)x(200x10°)x (120 -20) = 240MPa

It will be compressive as elongation restricted.

IES-51. A cube with a side length of 1 cm is heated uniformly 1° C above the room
temperature and all the sides are free to expand. What will be the increase in
volume of the cube? (Given coefficient of thermal expansion is a per °C)

(a) 3acm? (b) 2 acm? (c) a cm? (d) zero [TES-2004]

IES-51. Ans. (a) co-efficient of volume expansion () = 3x co — efficient of linear expansion(a)

IES-52. A bar of copper and steel form a composite system. [IES-2004]
They are heated to a temperature of 40 ° C. What type of stress is induced in the
copper bar?

(a) Tensile (b) Compressive (c) Both tensile and compressive (d) Shear

IES-52. Ans. (b)

IES-53. a=12.5x10°/°C, E=200GPa If the rod fitted strongly between the supports as

shown in the figure, is heated, the stress induced in it due to 20°C rise in
temperature will be: [TES-1999]
(a) 0.07945 MPa (b) -0.07945 MPa (c) -0.03972 MPa (d) 0.03972 MPa
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k=50kN/m

0.5m |

I ™

IES-53. Ans. (b) Let compression of the spring =x m

IES-54.

Therefore spring force = kx kN
Expansion of the rod due to temperature rise = LaAt

(kX)xL
AE

Reduction in the length due to compression force =

(kX)xL C
AE

6
Or X — 0.5x12.5x10"° x20 0.125mm

50x0.5
7 x0.010?

Now LaAt —

1+

x 200 x10°

.. Compressive stress = _kx = —M =-0.07945MPa

A 7x0.010%
4

The temperature stress is a function of [TES-1992]

1. Coefficient of linear expansion 2. Temperature rise 3. Modulus of elasticity
The correct answer is:

(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d)1,2and 3

IES-54. Ans. (d) Stress in the rod due to temperature rise = (aAt) xE

Impact loading

IES-55.

Assertion (A): Ductile materials generally absorb more impact loading than a
brittle material [IES-2004]
Reason (R): Ductile materials generally have higher ultimate strength than
brittle materials

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is not the correct explanation of A

(¢) Ais true but R is false

(d) Ais false but R is true

IES-55. Ans. (¢)

IES-56.

IES-56. An

Assertion (A): Specimens for impact testing are never notched. [TES-1999]
Reason (R): A notch introduces tri-axial tensile stresses which cause brittle
fracture.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Ais true but R is false

(d) Ais false but R is true

s. (d) A is false but R is correct.
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Tensile Test

IES-57. During tensile-testing of a specimen using a Universal Testing Machine, the
parameters actually measured include [TES-1996]
(a) True stress and true strain (b) Poisson’s ratio and Young's modulus

(c) Engineering stress and engineering strain  (d) Load and elongation
IES-57. Ans. (d)

IES-58. In a tensile test, near the elastic limit zone [TES-2006]
(a) Tensile stress increases at a faster rate
(b) Tensile stress decreases at a faster rate
(¢) Tensile stress increases in linear proportion to the stress

(d) Tensile stress decreases in linear proportion to the stress
IES-58. Ans. (b)

IES-59. Match List-I (Types of Tests and Materials) with List-II (Types of Fractures)
and select the correct answer using the codes given below the lists:

List I List-I1 [TES-2002; IAS-2004]
(Types of Tests and Materials) (Types of Fractures)
A. Tensile test on CI 1. Plain fracture on a transverse plane
B. Torsion test on MS 2. Granular helecoidal fracture
C. Tensile test on MS 3. Plain granular at 45° to the axis
D. Torsion test on CI 4. Cup and Cone
5. Granular fracture on a transverse plane

Codes:

A B C D A B C D
(@ 4 2 3 1 (©) 4 1 3 2
(b)y 5 1 4 2 (d) 5 2 4 1

IES-59. Ans. (d)

IES-60. Which of the following materials generally exhibits a yield point? [TES-2003]

(a) Cast iron (b) Annealed and hot-rolled mild steel
(c) Soft brass (d) Cold-rolled steel

IES-60. Ans. (b)

IES-61. For most brittle materials, the ultimate strength in compression is much large
then the ultimate strength in tension. The is mainly due to [TES-1992]

(a) Presence of flaws and microscopic cracks or cavities
(b) Necking in tension
(c) Severity of tensile stress as compared to compressive stress
(d) Non-linearity of stress-strain diagram
IES-61. Ans. (a)

IES-62. What is the safe static tensile load for a M36 x 4C bolt of mild steel having yield
stress of 280 MPa and a factor of safety 1.5? [TES-2005]
(a) 285 kN (b) 190 kN (c) 142.5 kN (d) 95 kN

2
IES-62. Ans. (b) o, = W2 or W =, x d
zd 4

4

2 2
o = N _goxmxd_280x7x367\_4g0kN
fos fosx 4 1.5x4

IES-63. Which one of the following properties is more sensitive to increase in strain
rate? [TIES-2000]
(a) Yield strength (b) Proportional limit (c) Elastic limit (d) Tensile strength
IES-63. Ans. (b)
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IES-64. A steel hub of 100 mm internal diameter and uniform thickness of 10 mm was
heated to a temperature of 300°C to shrink-fit it on a shaft. On cooling, a crack
developed parallel to the direction of the length of the hub. Consider the

following factors in this regard: [TES-1994]
1. Tensile hoop stress 2. Tensile radial stress

3. Compressive hoop stress 4. Compressive radial stress

The cause of failure is attributable to

(a) 1 alone (b) 1 and 3 (¢)1,2and 4 (d) 2,3 and 4

IES-64. Ans. (a) A crack parallel to the direction of length of hub means the failure was due to
tensile hoop stress only.

IES-65. If failure in shear along 45° planes is to be avoided, then a material subjected
to uniaxial tension should have its shear strength equal to at least [TES-1994]
(a) Tensile strength (b) Compressive strength

(c) Half the difference between the tensile and compressive strengths.
(d) Half the tensile strength.
IES-65. Ans. (d)

IES-66. Select the proper sequence [IES-1992]
1. Proportional Limit 2. Elastic limit 3. Yielding 4. Failure
(a)2,3,1,4 (b)2,1,3,4 ©1,3,24 1,2 3,4

IES-66. Ans. (d)

C A True stress-strain curve

Engineering stress-strain curve

» £

Previous 20-Years IAS Questions

Stress in a bar due to self-weight

TAS-1. A heavy uniform rod of length 'L' and material density '6' is hung vertically
with its top end rigidly fixed. How is the total elongation of the bar under its

own weight expressed? [TAS-2007]
2817 oL’ ol ol
(a) 2228 m =8 © Z=& @ =8
E E V2E 2F

L O0ALg)L 2
IAS-1. Ans. (d) Elongation due to self weight = il = ( g) = oL'g
2AE 2AE 2F

IAS-2. A rod of length I’ and cross-section area ‘A’ rotates about an axis passing
through one end of the rod. The extension produced in the rod due to
centrifugal forces is (w is the weight of the rod per unit length and @ is the

angular velocity of rotation of the rod). [TAS 1994]
owl’ o’ wl’ o’ wl’ 3gE
(a) (b) (c) (d) ——=
gE 3gE gE " wl

TIAS-2. Ans. (b)

Page 36 of 429



Chapter-1 Stress and Strain S K Mondal’s
Elongation of a Taper Rod

IAS-3. A rod of length, ":" tapers uniformly from a diameter "D1' to a diameter "D:' and
carries an axial tensile load of "P". The extension of the rod is (E represents the
modulus of elasticity of the material of the rod) [TAS-1996]

4P1 4PE1 7EP1 7Pl
@) ——— (b) © d) ———
7ED,D, 7DD, 4D,D, 4ED,D,

IAS-3. Ans. (a) The extension of the taper rod = P

7z
[ DD, j E
4

Poisson’s ratio

IAS-4. In the case of an engineering material under unidirectional stress in the x-
direction, the Poisson's ratio is equal to (symbols have the usual meanings)
[TIAS 1994, IES-2000]

& g, o o,
(@) = (b) — © — d —
&, o, o, £,

IAS-4. Ans. (a)

IAS-5. Assertion (A): Poisson's ratio of a material is a measure of its ductility.
Reason (R): For every linear strain in the direction of force, Poisson's ratio of
the material gives the lateral strain in directions perpendicular to the
direction of force. [TAS-1999]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(¢) Ais true but R is false
(d) Ais false but R is true

IAS-5. ans. (d)

IAS-6. Assertion (A): Poisson's ratio is a measure of the lateral strain in all direction
perpendicular to and in terms of the linear strain. [TAS-1997]
Reason (R): The nature of lateral strain in a uni-axially loaded bar is opposite
to that of the linear strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-6. Ans. (b)

Elasticity and Plasticity

TIAS-7. A weight falls on a plunger fitted in a container filled with oil thereby
producing a pressure of 1.5 N/mm? in the oil. The Bulk Modulus of oil is 2800
N/mm?2. Given this situation, the volumetric compressive strain produced in the

oil will be: [TAS-1997]
(a) 400 x 10-6 (b) 800 x 108 (c) 268 x 108 (d) 535 x 106
IAS-7. Ans. (d) Bulk modulus of elasticity (K) = P oreg, = P = B =535x10"°
£ K 2800

v

Relation between the Elastic Modulii

IAS-8. For a linearly elastic, isotropic and homogeneous material, the number of
elastic constants required to relate stress and strain is: [TAS 1994; IES-1998]
(a) Two (b) Three (c) Four (d) Six

IAS-8. Ans. (a)
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IAS-9. The independent elastic constants for a homogenous and isotropic material are
@E GKv (b) E, G, K ©EG,v DE,G [TAS-1995]

IAS-9. Ans. (d)

IAS-10. The unit of elastic modulus is the same as those of [TAS 1994]
(a) Stress, shear modulus and pressure (b) Strain, shear modulus and force
(c) Shear modulus, stress and force (d) Stress, strain and pressure.

IAS-10. Ans. (a)

IAS-11. Young's modulus of elasticity and Poisson's ratio of a material are 1.25 x 105
MPa and 0.34 respectively. The modulus of rigidity of the material is:
[TAS 1994, TES-1995, 2001, 2002, 2007]
(a) 0.4025 x 105 MPa (b) 0.4664 x 105 MPa
(c) 0.8375 x 105 MPa (d) 0.9469 x 105 MPa
IAS-11. Ans.(b) E =2G(1+ 4) or 1.25x105 = 2G(1+0.34) or G = 0.4664 x 105 MPa

IAS-12. The Young's modulus of elasticity of a material is 2.5 times its modulus of
rigidity. The Posson's ratio for the material will be: [TAS-1997]
(a) 0.25 (b) 0.33 (c) 0.50 ) 0.75
E E 2.5
TIAS-12. Ans. E=2G(1 1 =— = —-1|=|—-1|=0.25
ns. (a) (1+u) =1+u G = u (ZG j (2 j
IAS-13. In a homogenous, isotropic elastic material, the modulus of elasticity E in
terms of G and K is equal to [TAS-1995, IES - 1992]
G+3K 3G+ K 9KG 9KG
(@ (b) (© (d)
9KG 9KG G+3K K +3G

IAS-13. Ans. (¢)

IAS-14. The Elastic Constants E and K are related as (u« is the Poisson’s ratio) [[AS-1996]
@E=2k(1-2u) b)E=3k(1-2u) eE=3k1+ u) (DE=2K(1+2u)
IAS-14. Ans. (b) E=2G (1 + p) =3k (1-2 )

IAS-15. For an isotropic, homogeneous and linearly elastic material, which obeys
Hooke's law, the number of independent elastic constant is: [IAS-2000]
(a) 1 (b) 2 (¢)3 (d) 6

IAS-15. Ans. (b) E, G, K and p represent the elastic modulus, shear modulus, bulk modulus and
poisons ratio respectively of a ‘linearly elastic, isotropic and homogeneous material.” To
express the stress — strain relations completely for this material; at least any two of the

9KG
3K+G

four must be known. E = 2G(l+,u) = 3K(1—3,u) =

IAS-16. The moduli of elasticity and rigidity of a material are 200 GPa and 80 GPa,
respectively. What is the value of the Poisson's ratio of the material? [IAS-2007]
(a) 0-30 (b) 026 (c) 025 (d) 024

E 200
TAS-16. Ans. E=2G (1+ =—-1= -1=0.25
ns- (©) rp)or = 1552380

Stresses in compound strut

IAS-17. The reactions at the rigid supports at A and B for the bar loaded as shown in
the figure are respectively. [IES-2002; IAS-2003]
(a) 20/3 kN,10/3 Kn (b) 10/3 kN, 20/3 kN (¢) 5kN, 5 kN (d) 6 kN, 4 kN
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A B
- C L
A %
1 L~
A -

>
g 10kN [0
A L
-
A -
T 1m . 2m g
A T L

IAS-17. Ans. (a) Elongation in AC = length reduction in CB
Rax1 Rgx2

AE AE
And Ra+Re=10

Thermal effect

IAS-18. A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200
GPa and a =12 x 106 per °C. If the rod is not free to expand, the thermal stress

developed is: [IAS-2003, TES-1997, 2000, 2006]
(a) 120 MPa (tensile) (b) 240 MPa (tensile)
(c) 120 MPa (compressive) (d) 240 MPa (compressive)

TAS-18. Ans. (d) aEAt= (1 2x107° ) x (200 x10° ) x (120 - 20) = 240MPa

It will be compressive as elongation restricted.

IAS-19. A. steel rod of diameter 1 cm and 1 m long is heated from 20°C to 120°C. Its

a=12x10"°/K and E=200 GN/m?2. If the rod is free to expand, the thermal
stress developed in it is: [IAS-2002]
(a) 12 x 104 N/m2 (b) 240 kN/m?2 (c) zero (d) infinity

IAS-19. Ans. (¢) Thermal stress will develop only if expansion is restricted.

IAS-20. Which one of the following pairs is NOT correctly matched? [TAS-1999]
(E = Young's modulus, a = Coefficient of linear expansion, T = Temperature
rise, A = Area of cross-section, 1= Original length)

(a) Temperature strain with permitted expansion &6 ... (aTl-0)

(b) Temperature stress . aTE

(c) Temperature thrust . alEA
E(aTl-9)

(d) Temperature stress with permitted expansion ...

[

IAS-20. Ans. (a) Dimensional analysis gives (a) is wrong

Impact loading

IAS-21. Match List I with List II and select the correct answer using the codes given

below the lists: [TAS-1995]
List I (Property) List II (Testing Machine)
A. Tensile strength 1. Rotating Bending Machine
B. Impact strength 2. Three-Point Loading Machine
C. Bending strength 3. Universal Testing Machine
D. Fatigue strength 4. Izod Testing Machine
Codes: A B C D A B C D
(a) 4 3 2 1 (b) 3 2 1 4
() 2 1 4 3 (d) 3 4 2 1

IAS-21. Ans. (d)
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Tensile Test

IAS-22. A mild steel specimen is tested in tension up to fracture in a Universal Testing
Machine. Which of the following mechanical properties of the material can be
evaluated from such a test? [TAS-2007]
1. Modulus of elasticity 2. Yield stress 3. Ductility
4. Tensile strength 5. Modulus of rigidity
Select the correct answer using the code given below:

(a)1,3,5and 6 (b) 2, 3,4 and 6 (©1,2,5and 6 (d)1,2,3and 4

TAS-22. Ans. (d)

IAS-23. In a simple tension test, Hooke's law is valid upto the [TAS-1998]
(a) Elastic limit  (b) Limit of proportionality (c) Ultimate stress (d) Breaking point
IAS-23. Ans. (b)

IAS-24. Lueder' lines on steel specimen under simple tension test is a direct indication
of yielding of material due to slip along the plane [TAS-1997]
(a) Of maximum principal stress (b) Off maximum shear
(c) Of loading (d) Perpendicular to the direction of loading

IAS-24. Ans. (b)

IAS-25. The percentage elongation of a material as obtained from static tension test
depends upon the [TAS-1998]
(a) Diameter of the test specimen (b) Gauge length of the specimen
(c) Nature of end-grips of the testing machine (d) Geometry of the test specimen

IAS-25. Ans. (b)

IAS-26. Match List-I (Types of Tests and Materials) with List-IT (Types of Fractures)
and select the correct answer using the codes given below the lists:

List I List-I1 [IES-2002; IAS-2004]
(Types of Tests and Materials) (Types of Fractures)
A. Tensile test on CI 1. Plain fracture on a transverse plane
B. Torsion test on MS 2. Granular helecoidal fracture
C. Tensile test on MS 3. Plain granular at 45° to the axis
D. Torsion test on CI 4. Cup and Cone
5. Granular fracture on a transverse plane

Codes: A B C D A B C D

(a) 4 2 3 1 (c) 4 1 3 2

(b) 5 1 4 2 (d) 5 2 4 1

IAS-26. Ans. (d)

IAS-27. Assertion (A): For a ductile material stress-strain curve is a straight line up to
the yield point. [IAS-2003]
Reason (R): The material follows Hooke's law up to the point of proportionality.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

TIAS-27. Ans. (d)

IAS-28. Assertion (A): Stress-strain curves for brittle material do not exhibit yield
point. [IAS-1996]
Reason (R): Brittle materials fail without yielding.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-28. Ans. (a) Up to elastic limit.
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IAS-29. Match List I (Materials) with List II (Stress-Strain curves) and select the

correct answer using the codes given below the Lists: [TAS-2001]
List I List IT
G
A_Mild Steel 1.
g
5]
E. Pure copper Z
g
a1
C. Cast iron 3. ,-_’
3
a1
D. Pure aluminfimm =
3
Codes: A B C D A B C D
(a) 3 1 4 1 (b) 3 2 4 2
(¢ 2 4 3 1 (d) 4 1 3 2
IAS-29. Ans. (b)
IAS-30. The stress-strain curve of an ideal elastic strain hardening material will be as
E —» E —» g —» E —
@ () © @
[TAS-1998]
IAS-30. Ans. (d)
IAS-31. An idealised stress-strain curve for a perfectly plastic material is given by
ol a o &
(@ ———
® © G .
£ £ £ &
[TAS-1996]

IAS-31. Ans. (a)

IAS-32. Match List I with List II and select the correct answer using the codes given
below the Lists: [IAS-2002]

List I paydsit B azo

A. Ultimate strength 1. Internal structure
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B. Natural strain 2. Change of length per unit instantaneous length
C. Conventional strain 3. Change of length per unit gauge length
D. Stress 4. Load per unit area
Codes: A B C D A B C D
(a 1 2 3 4 (b) 4 3 2 1
c 1 3 2 4 (d) 4 2 3 1

IAS-32. Ans. (a)

IAS-33. What is the cause of failure of a short MS strut under an axial load? [IAS-2007]
(a) Fracture stress (b) Shear stress (c) Buckling (d) Yielding

IAS-33. Ans. (d) In compression tests of ductile materials fractures is seldom obtained.
Compression is accompanied by lateral expansion and a compressed cylinder ultimately
assumes the shape of a flat disc.

IAS-34. Match List I with List II and select the correct answer using the codes given
the lists: [IAS-1995]
List I List IT

A. Rigid-Perfectly plastic
1. o [
2.

€
B. Elastic-Perfectly plastic o '
€
o
C. Rigid-Strain hardening
3.
‘€
D. Linearly elastic
V
: I
Codes: A B C D A B C D
(a) 3 1 4 2 (b) 1 3 2 4
() 3 1 2 4 (d) 1 3 4 2
IAS-34. Ans. (a)
IAS-35. Which one of the following materials is highly elastic? [TAS-1995]
(a) Rubber (b) Brass (c) Steel (d) Glass

IAS-35. Ans. (c) Steel is the highly elastic material because it is deformed least on loading, and
regains its original from on removal of the load.

IAS-36. Assertion (A): Hooke's law is the constitutive law for a linear elastic material.
Reason (R) Formulation of the theory of elasticity requires the hypothesis that there
exists a unique unstressed state of the body, to which the body returns
whenever all the forces are removed. [IAS-2002]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is not the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IAS-36. Ans. (a)

IAS-37. Consider the following statemen®sge 42 of 429 [IAS-2002]
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There are only two independent elastic constants.

Elastic constants are different in orthogonal directions.

Material properties are same everywhere.

Elastic constants are same in all loading directions.

The material has ability to withstand shock loading.

Whlch of the above statements are true for a linearly elastic, homogeneous and
isotropic material?

AR

IAS-37. Ans. (a)

TAS-38.

(@)1, 3,4and 5 (b) 2, 3 and 4 (¢)1,3and 4 (d) 2and 5

Which one of the following pairs is NOT correctly matched? [TAS-1999]

(a) Uniformly distributed stress .... Force passed through the centroid of the
cross-section

(b) Elastic deformation Work done by external forces during
deformation is dissipated fully as heat

(c) Potential energy of strain Body is in a state of elastic deformation

(d) Hooke's law Relation between stress and strain

IAS-38. Ans. (b)

TAS-39.

A tensile bar is stressed to 250 N/mm? which is beyond its elastic limit. At this
stage the strain produced in the bar is observed to be 0.0014. If the modulus of
elasticity of the material of the bar is 205000 N/mm? then the elastic component
of the strain is very close to [TAS-1997]
(a) 0.0004 (b) 0.0002 (c) 0.0001 (d) 0.00005

IAS-39. Ans. (b)
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Previous Conventional Questions with Answers

Conventional Question IES-2010

Q. If a load of 60 kN is applied to a rigid
bar suspended by 3 wires as shown
in the above figure what force will
be resisted by each wire?

(A
The outside wires are of Al, cross-
sectional area 300 mm?2 and length 4 "
m. The central wire is steel with area
200 mm? and length 8 m-

Initially there is no slack in the

wires E=2x10°N/mm? for Steel
=0.667x10°N / mm? for Aluminum

<— Alum. wircs

+ Steel wire

-

¥ 60 kN
[2 Marks]

Ans.
1 /7 /12727

ANN\N
AN NN

Y4 A4

> Aluminium wire

/\Fst A Fai
T ¥2 Steel wire

Fai

P =60 kN
a,; =300mm? 1,, =4m
ay =200mm?
E,, = 0.667x10°N / mm?>
E, =2x10°N/mm?

Force balance along vertical direction

2F,, + F,, = 60 kN 1)

Elongation will be same in all wires because rod is rigid remain horizontal after

l,=8m

loading
FA1 X 1A1 — Fst 'lst

2
ag By agEg

Fy, x4 _ F,x8
300x0.667x10° 200x2x10°
F,, =1.0005 F,, (3)
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3
From equation (1) F = 60107 =19.99 kN or 20 kN
3.001
F,, =20 kN
Fp; =20 kN
Answer.
F, = 20 kN

Conventional Question GATE

Question: The diameters of the brass and steel segments of the axially loaded bar
shown in figure are 30 mm and 12 mm respectively. The diameter of the
hollow section of the brass segment is 20 mm.

Determine: (i) The maximum normal stress in the steel and brass (i) The displacement of the free
end ; Take Es = 210 GN/m?2 and E» = 105 GN/m?

,

7

y114 4474 ?

10 kN t 5KN ! Z
—] 12 mm ¢ — 30 mm ¢ 20 mm ¢ g
7

A  Steel L /////z”/’f/::

B  Brass c D[f

le— 0.15 m—sfe— 0.2 m ———}¢- 0.125 m—»|
w

Answer: A, =7 x (12)° =36zmm? =367 x 10 °m?
(A =%x(3o)2 = 2257mm? = 2257 x10°m?

(A) e =%>< (307 - 20%) = 1257 mm® = 1257 x10°m’

(1) The maximum normal stress in steel and brass:

3
. :%MOGMN/W — 88.42MN /m’”
T X
3
(o) zzzgx—%x']OBMN/mz — 7.07MN/m?
T X
3
(0 )eg :%xmﬁmmm2 ~12.73MN/m?
T X

(i1) The displacement of the free end:
ol = (§Is )AB + (&b )BC + (5Ib )CD

_88.42x0.15 . 7.07x0.2 N 12.73%x0.125 ) ol
210x10°x10°® 105x10°x10° 105x10° x10°®

=9.178x10°m = 0.09178 mm

Conventional Question IES-1999
Question: Distinguish between fatigue strength and fatigue limit.
Answer: Fatigue strength as the value of cyclic stress at which failure occurs after N cycles. And

fatigue limit as the limiting value of stress at which failure occurs as N becomes very
large (sometimes called infinite cycle)
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Question: List at least two factors that promote transition from ductile to brittle
fracture.
Answer: (1)  With the grooved specimens only a small reduction in area took place, and the
appearance of the facture was like that of brittle materials.

(i1) By internal cavities, thermal stresses and residual stresses may combine with
the effect of the stress concentration at the cavity to produce a crack. The
resulting fracture will have the characteristics of a brittle failure without
appreciable plastic flow, although the material may prove ductile in the usual
tensile tests.

Conventional Question IES-1999

Question: Distinguish between creep and fatigue.

Answer: Fatigue is a phenomenon associated with variable loading or more precisely to cyclic
stressing or straining of a material, metallic, components subjected to variable loading
get fatigue, which leads to their premature failure under specific conditions.

When a member is subjected to a constant load over a long period of time it undergoes
a slow permanent deformation and this is termed as "Creep". This is dependent on
temperature.

Conventional Question IES-2008
Question: What different stresses set-up in a bolt due to initial tightening, while used as
a fastener? Name all the stresses in detail.
Answer: (1) When the nut is initially tightened there will be some elongation in the bolt so
tensile stress will develop.
(11) While it is tightening a torque across some shear stress. But when tightening will
be completed there should be no shear stress.

Conventional Question IES-2008

Question: A Copper rod 6 cm in diameter is placed within a steel tube, 8 cm external
diameter and 6 cm internal diameter, of exactly the same length. The two
pieces are rigidly fixed together by two transverse pins 20 mm in diameter,
one at each end passing through both rod and the tube.

Calculated the stresses induced in the copper rod, steel tube and the pins if
the temperature of the combination is raised by 50°C.

[Take Es=210 GPa, a, = 0.0000115/° C ; Ec=105 GPa, o, = 0.000017/° C]

Answer:

/—Steel tube Pin ( 20 mm ¢)

Is

o
4+ ==Al(a, —
E, E, (@ —a.)
rd* w6 Y ) -3 2
Area of copper rod(A ) = =—|—| m =2.8274x10"m
4 4(100

rd> 7|8 Y 6\ ) 3 5
Area of steel tube (A,) = =— — m-=2.1991x10"m
‘ 4 4100 100

Rise in temperature,At = 50°C
Free expansion of copper bar=a, LAt
Free expansion of steel tube Pagd 48 429
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Difference in free expansion =(a, —a;, ) LAt
=(17-1 1 .5)><10’6 x L x50=2.75%10"L m

A compressive force (P) exerted by the steel tube on the copper rod opposed the extra
expansion of the copper rod and the copper rod exerts an equal tensile force P to pull
the steel tube. In this combined effect reduction in copper rod and increase in length of
steel tube equalize the difference in free expansions of the combined system.

Reduction in the length of copper rod due to force P Newton=

(sL), - PL _ PL

¢ AE, (2.8275x10°)(105x10°
Increase in length of steel tube due to force P
(aL). — PL _ P.L -

S AE, (2.1991x107°)(210x10°)
Difference in length is equated
(AL), +(sL), =2.75x10*L

PL P.L

(2.8275x107°)(105x10°) * (2.1991x107°)(210x 10°)
Or P = 49.695 kN

)m

=2.75x107"L

Stress in copper rod, 0. = Lid = 49695 —MPa=17.58MPa
¢ A 2.8275x10
P 49695

Stress in steel tube, 0, = — = —————MPa = 22.6MPa

A, 2.1991x10°°
Since each of the pin is in double shear, shear stress in pins (7
P 49695 —79 MPa

XAy g “(0.02)

pin )

Conventional Question IES-2002

Question: Why are the bolts, subjected to impact, made longer?

Answer: If we increase length its volume will increase so shock absorbing capacity will
increased.

Conventional Question IES-2007
Question: Explain the following in brief:
(i) Effect of size on the tensile strength
(ii) Effect of surface finish on endurance limit.

Answer: (1) When size of the specimen increases tensile strength decrease. It is due to the
reason that if size increases there should be more change of defects (voids) into
the material which reduces the strength appreciably.

(1) If the surface finish is poor, the endurance strength is reduced because of
scratches present in the specimen. From the scratch crack propagation will start.

Conventional Question IES-2004

Question: Mention the relationship between three elastic constants i.e. elastic modulus
(E), rigidity modulus (G), and bulk modulus (K) for any Elastic material. How
is the Poisson's ratio (1) related to these modulli?

9KG
3K+G

E=3K(1—2p)=2G(1+p)=
Page 47 of 429

Answer: E =

9KG




Chapter-1 Stress and Strain S K Mondal’s

Conventional Question IES-1996
Question: The elastic and shear moduli of an elastic material are 2x10!! Pa and 8x1010
Pa respectively. Determine Poisson's ratio of the material.

9KG
A : We k that E =2G(1+u) = 3K(1-2p) =
nswer e know tha (1+p) (1-2p) 3K+ G
or,1+ _E
b IJ' 2G
11
orp:£—1:A_1:0.25

2G 2x(8x10")

Conventional Question IES-2003

Question: A steel bolt of diameter 10 mm passes through a brass tube of internal
diameter 15 mm and external diameter 25 mm. The bolt is tightened by a nut
so that the length of tube is reduced by 1.5 mm. If the temperature of the
assembly is raised by 40°C, estimate the axial stresses the bolt and the tube
before and after heating. Material properties for steel and brass are:

E,=2x10° N/mm’ «a,=1.2x10"/°C and Ex=1x105 N/mm? a,=1.9x10-15/oC

L

mnHn,my =

=

Area of steel bolt (A,) _ZX (0.010m* = 7.854 x10°m?

Answer:

Area of brass tube (A, )=%[(o.025)2 ~(0.015| =3.1416x10"*

Stress due to tightening of the nut

Compressive force on brass tube= tensile fore on steel bolt
or, 6, A, = 6 A,

s° s

or, E, (Agl)b A =0A . E=

Let assume total length (¢)=1m

1.5%x10°%)

Therefore (1x10° x10°8)x < %(3.1416x10*) = 0, x 7.854x10°

or o, =600MPa (tensile)

and o,=E, (A1),

-3
= (1%10°) x WMP::: =150MPa(Compressive)
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So before heating
Stress in brass tube (o, ) = 150MPa(compressive)
Stress in steel bolt(c, ) = 600MPa(tensile)

Stress due to rise of temperature

Let stress 6, &6, are due to brass tube and steel bolt.
If the two members had been free to expand,

Free expansion of steel = q;; XAt X1

Free expansion of brass tube = oy, XAt X1

Since oy, > 0, free expansion of copper is greater than the free expansion of steel. But
they are rigidly fixed so final expansion of each members will be same. Let us assume
this final expansion is ', The free expansion of brass tube is grater than 0, while the

free expansion of steel is less than 6. Hence the steel rod will be subjected to a tensile
stress while the brass tube will be subjected to a compressive stress.

For the equilibrium of the whole system,

Total tension (Pull) in steel =Total compression (Push) in brass tube.

-5
6. A, = G.A or, G, —c,x e840 7+ 4554
A~ 3.14x10

Final expansion of steel =final expansion of brass tube

a, (A1) A+ x 1= o, (Al x 1— 2o %1
Es b
or,(1.2><10’5>><40><1+6—;:(1.9><10’5)><40><1—L——(ii)
2x10°x10° 1x10° x10°
From(i) & (ii) we get
1 0.25 .
o, 22107 + 0" =2.8x10"*

or,c, = 37.33 MPa (Tensile stress)

or, 0,= 9.33MPa (compressive)
Therefore, the final stresses due to tightening and temperature rise

Stress in brass tube =0, +0, =150+9.33MPa=159.33MPa
Stress in steel bolt =o_+0,= 600 + 37.33 = 637.33MPa.

Conventional Question IES-1997

Question:

Answer:

A Solid right cone of axial length h is made of a material having density p

and elasticity modulus E. It is suspended from its circular base. Determine its
elongation due to its self weight.

See in the figure MNH is a solid right cone of

length 'h'.

Let us assume its wider end of diameter’d’ fixed

rigidly at MN.

Now consider a small strip of thickness dy at a

distance y from the lower end.

Let 'ds' is the diameter of the strip.

2
. Weight of portion UVH=%L“ZSJy x pg — (i)
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From the similar triangles MNH and UVH,
MN_d_¢
Uv d, vy
or,d, :d—Z’—— — (i)

i’ .fMIfIJ(IFJIIJ_fff{f}'NfJ

. Stress at section UV = force. at UV _ Weight of UVH
cross — section area at UV ndj
4
1 nd, y-rg
_3 4 7 _1
a2 3 yprg
4
1
[3ypg]-dy
So, extension in dy= =
h 1 d

.. Total extension of the bar =f 3
| E 6E

From stress-strain relation ship

_6 9 _%
—E_dlor,dé—
14

Conventional Question IES-2004

Question:

Answer:

Which one of the three shafts listed hare has the highest ultimate tensile
strength? Which is the approximate carbon content in each steel?

(i) Mild Steel (ii) cast iron (iii) spring steel

Among three steel given, spring steel has the highest ultimate tensile strength.
Approximate carbon content in

(1)  Mild steel 1s (0.3% to 0.8%)

(11) Cost iron (2% to 4%)

(111) Spring steel (0.4% to 1.1%)

Conventional Question IES-2003

Question:

Answer:

If a rod of brittle material is subjected to pure torsion, show with help of a
sketch, the plane along which it will fail and state the reason for its failure.
Brittle materials fail in tension. In a torsion test the maximum tensile test Occurs at
45° to the axis of the shaft. So failure will occurs along a 45° to the axis of the shaft. So
failure will occurs along a 45° helix

Lo

So failures will occurs according toPege plafid29
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Conventional Question IAS-1995

Question: The steel bolt shown in Figure has a thread pitch of 1.6 mm. If the nut is
initially tightened up by hand so as to cause no stress in the copper spacing
tube, calculate the stresses induced in the tube and in the bolt if a spanner is
then used to turn the nut through 90°.Take E: and Es as 100 GPa and 209 GPa
respectively.

Answer: Given: p = 1.6 mm, E.= 100 GPa ; Es = 209 CPa.

Copper spacing
_ tube Steel bolt

10 mm dia)
12 1 18 .
mme¢ mmd¢ -

e———— 100 mm ——

Stresses induced in the tube and the bolt, o, 0 :

z (10 Y .
A, ==x|——=| =7.584x10"m
4 11000

2 2
A =Ex [ B ) (12 ) _q4.14x10 5
4" |{1000) (1000

Tensile force on steel bolt, Ps = compressive force in copper tube, P. = P
Also, Increase in length of bolt + decrease in length of tube = axial displacement of nut

e (A1), +(d) =1.6x 22 —0.4mm=0.4x10°m
s ¢ 360
or L Pl _gax10® (L, =1 =)
ASES ACEC

or P x 100 _5:] 5+ _51 - [=0.4x10"°
1000 /| 7.854x107° x209x10° 14.14x107° x100x10
or P =30386N

A£=386.88MP8 and A£=2‘I4.89MPa

S Cc

Conventional Question AMIE-1997

Question: A steel wire 2 m long and 3 mm in diameter is extended by 0:75 mm when a
weight W is suspended from the wire. If the same weight is suspended from a
brass wire, 2:5 m long and 2 mm in diameter, it is elongated by 4 -64 mm.
Determine the modulus of elasticity of brass if that of steel be 2.0 x 105 N /
mm?

Answer: Given, |, =2m, ds=3 mm, Jl, = 075 mm; Es=2-0X 105N/ mm?; |, =2.5m, d»

=2 mm ol, =4.64m m and let modulus of elasticity of brass = Ep

Hooke's law gives, ol = AE [Symbol has usual meaning]

Case I: For steel wire:
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PR
ASES
P x(2x1000 —
or 0.75= x(2x1000) 1 ®
7 %32 [x2.0x10° x
4 2000
Case II: For bass wire:
5, - PI,
AbEb
Px(2.5x1000
464 - £ % (2:5x1000) )
(Z X ZZJ xE,
or P=4.64x(£x22ijbe
4 2500

From (i) and (i1), we get

0.75x(%x32)x2.0x105 o

2000
or E, =0.909 x 10°N/ mm?

N
2500

=4.64x£%x22ijb

Conventional Question AMIE-1997

Question:

Answer:

A steel bolt and sleeve assembly is shown in figure below. The nut is
tightened up on the tube through the rigid end blocks until the tensile force
in the bolt is 40 kN. If an external load 30 kN is then applied to the end
blocks, tending to pull them apart, estimate the resulting force in the bolt
and sleeve.

Steel bolt Gteel sleeve
25mm @ 62.5mm 0D

\ / 50.0mm ID -

L AN NS NSNS NSNS SS SN2

o
End block End block
b LOOMM — -
- 500mm
25 Y 42
Area of steel bolt, A, =| —— | =4.908x10"m
1000
2 2
Area of steel sleeve, AS:z (62'5j —[ 50 j =1.104x10"°m?
411000 1000

Forces in the bolt and sleeve:
(1) Stresses due to tightening the nut:
Let o, = stress developed in steel bolt due to tightening the nut; and

o, = stress developed in steel sleeve due to tightening the nut.
Tensile force in the steel bolt = 40 kN = 004 MN
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o, xA, =0.04
or oy x4.908x10* =0.04

0.04
Oy =7
4.908 x10

Compressive force in steel sleeve = 004 MN

o, xA, =0.04
or 0,x1.104x107° =0.04

0.04
o, =———
* 1.104x107°

(11) Stresses due to tensile force:
Let the stresses developed due to tensile force of 30 kN = 0:03 MN in steel bolt and
sleeve be o', and o' respectively.

Then, o' xA, +o';xA,=0.03

=81.5MN/m?(tensile)

=36.23MN/m? (compressive)

o"b><4.908><104+o"s><1.‘|04><1073=0.03 ———(i)
In a compound system with an external tensile load, elongation caused in each will be
the same.

S, = Eb <1,

or = % x0.5  (Given,l, =500mm=0.5)
b

and 4l = ‘; 2x0.4  (Given,l, =400mm =0.4)

S

But §l, =,
90,05=2:2x04
Eb Es
or o' =080, (GivenE, =E,) ---(2)

Substituting this value in (1), we get
0.80',x4.908 x 1 0"+ o' x1.104 x1 0°=0.03

gives o', =20MN/m?(tensile)
and o', =0.8x20=16MN/m?’(tensile)
Re sulting stress in steel bolt,

(0,). =0, +0', =81.5+16 =97.5MN/m?
Resulting stress in steelsleeve,

(0,), =0, +0', =36.23-20 =16.23MN/m? (compressive)
Resulting force in steel bolt,= (o, )r x A,

=97.5x4.908 x10™* =0.0478MN(tensile)

Resulting force in steelsleeve = (o, ) x A,

=16.23x1.104x107° =0.0179MN(compressive
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Theory at a Glance (for IES, GATE, PSU)
2.1 States of stress

® Uni-axial stress: only one non-zero Area

principal stress, i.e. 01 ,ﬂf"/ //J'

Right side figure represents Uni-axial state of 1
a1

stress. g

® Bi-axial stress: one principal stress o
equals zero, two do not, i.e. 01 >03; 02=0

Right side figure represents Bi-axial state of _ .

stress. oA

® Tri-axial stress: three non-zero oz

principal stresses, i.e. 01 > 02 > 03 A

Right side figure represents Tri-axial state of

stress. - /

T3
oz

® Jsotropic stress: three principal i
e

stresses are equal, 1.e. 01 = 02 = 03

Right side figure represents isotropic state of —

stress. e /

® Axial stress: two of three principal }///S'

stresses are equal, i.e. 01 = 02 or 02= 03 //
Right side figure represents axial state of S
stress.
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® Hydrostatic pressure: weight of column of

fluid in interconnected pore spaces. G

Phydrostatic = privia gh (density, gravity, depth)

® Hydrostatic stress: Hydrostatic stress is a /

used to describe a state of tensile or o r
compressive stress equal in all directions

within or external to a body. Hydrostatic

stress causes a change in volume of a ¢
material. Shape of the body remains %
unchanged i.e. no distortion occurs in the —

body. o

Right side figure represents Hydrostatic state of G

stress.

2.2 Uni-axial stress on oblique plane

Let us consider a bar of uniform cross sectional area A under direct tensile load P giving rise to axial
normal stress P/A acting on a cross section XX. Now consider another section given by the plane YY

inclined at & with the XX. This is depicted in following three ways.

Fig. (c)

Area of the YY Plane =

; Let us assume the normal stress in the YY plane is O, and there is

coséd n
a shear stress T acting parallel to the YY plane.
Now resolve the force P in two perpendicular direction one normal to the plane YY = Pcosé and

another parallel to the plane YY = PcosB
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Therefore equilibrium gives, o, = Pcost or
cosd
. P .
and 7TX =Psin& or 7=—sinfcosf or
cos A
°

Note the variation of normal stress O 0 and shear stress T with the variation ofé.

When 6 =0, normal stress 0, is maximum i.e. (o, )max =— and shear stress7=0. As 6 is

! A

increased, the normal stress o, diminishes, until when8=0,0,=0. But if angle
. . . P z 0
0 increased shear stress 7increases to a maximum value 7, = 24 at 0= 7 =45° and then

diminishes to 7=0 at 8 =90°

The shear stress will be maximum when Sin26 =1 or 6 =45°

. P
And the maximum shear stress,

max =ﬂ

In ductile material failure in tension is initiated by shear stress i.e. the failure occurs across

the shear planes at 45° (where it is maximum) to the applied load.
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e Complementary stresses

Now if we consider the stresses on an oblique plane Y'Y’ which is perpendicular to the previous

plane YY. The stresses on this plane are known as complementary stresses. Complementary

normal stress is O, r: and complementary shear stress isT " The following figure shows all
the four stresses. To obtain the stresses O, r: and 7' we need only to replace & by 6+ 90’ in the

previous equation. The angle @+90° is known as aspect angle.

Therefore

It is clear O-r: +O'n ZK and T,=—T

i.e. Complementary shear stresses are always equal in magnitude but opposite in sign.

® Sign of Shear stress

For sign of shear stress following rule have to be followed:
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The shear stress T on any face of the element will be considered positive when it has a

clockwise moment with respect to a centre inside the element. If the moment is counter-

clockwise with respect to a centre inside the element, the shear stress in negative.
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c,=/5MPa
o, =25MPa

B r'=43.3MPa

7 = 433MPa
o, 175MPa

2.3 Complex Stresses (2-D Stress system)

i.e. Material subjected to combined direct and shear stress

We now consider a complex stress system below. The given figure ABCD shows on small element of

material
[ f
A .
Ly
—_—
A B

| .

. Tw/ \P Ty

I

I

| N B O

Oy l= T %Gx A
Tood ] L — — n
s Tuy
== D =— 1 C
b A
f! T]rx 1 Txy
‘L ¥ Oy
Oy
Stresses in three dimensional element Stresses in cross-section of the element

o, and o, are normal stresses and may be tensile or compressive. We know that normal stress

may come from direct force or bending moment. 7 xy is shear stress. We know that shear stress may
comes from direct shear force or torsion and 7 xy and 7 yx are complementary and

T = Tyx

Let 0, isthe normal stress and 7 is the shear stress on a plane at angle 0.
Considering the equilibrium of the element we can easily get
c.+to, 0,-0

Normal stress(an) == ~c0s20+ 17, sin26

and

, 0

o
Shear stress(z) = Tysinze - 7,,C0S20

Above two equations are coming from conslijderiS%g f(i%lilibrium. They do not depend on material
age 590

properties and are valid for elastic and in elastic behavior.
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¢ Location of planes of maximum stress

(a) Normal stress, (O'n )max

For 0, maximum or minimum

9% _ ), where o, = (. ;GY) + ( ;Gy)c0520+ z,, sin20
or — (G%Gy) x(sin20)x2+7,,(cos20)x2=0 or tan26,= o i";y)

(b) Shear stress, 7,

For 7 maximum or minimum

or Oy~ 0O H
— =0, where 7 = L sin20-17,, cos26
00 2 g

or & 20y (cos20)x2-7,,(-sin20)x2=0

Ty

or cot26 =

o,—0,
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I'ﬂ’:.n =15 MPa

B
1 = 10 MPa

ax =30 MPa
Fa

C

2.4 Bi-axial stress

Let us now consider a stressed element ABCD where 7,, =0, ie. only o, and o, is there. This type

of stress is known as bi-axial stress. In the previous equation if you put 7,, =0 we get Normal stress,

o, and shear stress, 7 on a plane at angle 6.

o +0o, O, —0O Oy
e Normal stress, 0, = — > Ly 5 L cos20 I
A B
_ o, -0, . « \P
e Shear/Tangential stress, 7 = Tsm 20
. . o
0 G 0 .
e For complementary stress, aspect angle = &+ 90 .
e Aspect angle ‘0’ varies from 0 to 77/2 o .
e Normal stress o, varies between the values [
Oy

0.(0=0)& o, (0=7/2)
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]Ur=5ﬂ MPa
A B
r=16KIFPa
- | =95 a% .
Ox ki ax =100 MPa
o, =94MPa

® We may derive uni-axial stress on oblique plane from

_o.,+0, 0,0

o, = + >c0s260+7,,sin26
2 2
d 6,—60, .
M= Y in20 - r_cos26

2 Xy

Just put o, =0 and 7,,=0 A 5 B
T

Therefore,

— 1 —
an=0"+0+a" Ocosze=1ax(1+c0320)=axcosz0 Ox B O

2 2 2 Gy

and 7 = 0x2—0 sin26 =%sin20 D C

2.5 Pure Shear

® Pure shear is a particular case of bi-axial stress where

Note: o, or o, which one is compressive that is immaterial but one should be tensile and

other ~should be compressive and equal magnitude. If o, =100MPathen

o, mustbe—100MPa otherwise if o, =100MPa then o, mustbe—100MPa .

® |n case of pure shear on 45° planes

; 0,=0 and o =0

® We may depict the pure shear in an element by following two ways
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(a) In a torsion member, as shown below, an element ABCD is in pure shear (only shear
stress is present in this element) in this member at 45° plane an element A'B'C'D'is also

in pure shear where o, =—0, but in this element no shear stress is there.

(b) In a bi-axial state of stress a member, as shown below, an element ABCD in pure shear

where o, =—0, but in this element no shear stress is there and an element A'B'C'D" at

45° plane is also in pure shear (only shear stress is present in this element).

lﬁ-,-:—ijx:—’[ A
A B
T/ T
o=t — -1 D 5
1 . N\ A/
TG}-: -0 = —T C'

Let us take an example: See the in the Conventional question answer section in this chapter and

the question is “Conventional Question IES-2007”

2.6 Stress Tensor

® State of stress at a point ( 3-D)

Stress acts on every surface that passes through the point. We can use three mutually
perpendicular planes to describe the stress state at the point, which we approximate as a cube
each of the three planes has one normal component & two shear components therefore, 9
components necessary to define stress at a point 3 normal and 6 shear stress.

Therefore, we need nine components, to define the state of stress at a point

For cube to be in equilibrium (at rest: not moving, not spinning)
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Chapter-2
Tox
—=— Ty = Ty If they don’t offset, block spins therefore,
T, = T, only six are independent.
r
XE fyz = sz

Oy 01 Oy

O yx xy xz Tax z-xy Txz Oy Xy xz
o;,=\o, o0, O,|O 1,=\1, T, T,|=|T, O, T,|=|0y Op Oy
O-zx O-zy O-zz sz sz z-zz sz zy O-z 0-3 1 0-32 O-33

This is the stress tensor
Components on diagonal are normal stresses; off are shear stresses

Z
O-Z
i 1,/’2" / Y
Tax s, “
=— Txy
*yx
O-X
/ r:;zl\ I}fz
O'},
-
0 X
® State of stress at an element (2-D)
& a5y
AT
Ty
Jy = -0 Oy
D =—1—— C

2.7 Principal stress and Principal plane
When examining stress at a point, it is possible to choose three mutually perpendicular

[ ]
planes on which no shear stresses exist in three dimensions, one combination of
orientations for the three mutually perpendicular planes will cause the shear stresses on all

three planes to go to zero this is the state defined by the principal stresses.
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o Principal stresses are normal stresses that are orthogonal to

each other
e Principal planes are the planes across which principal
stresses act (faces of the cube) for principal stresses (shear

stresses are zero)

e Major Principal Stress

¢ Minor principal stress

e Position of principal planes

e Maximum shear stress

Page 65 of 429



Chapter-2 Principal Stress and Strain S K Mondal’s

ReferencePlane BC
S

o, ~51.4MPa

o, =-111.4MPa
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2.8 Mohr's circle for plane stress
o The transformation equations of plane stress can be represented in a graphical form which is
popularly known as Mohr's circle.
o Though the transformation equations are sufficient to get the normal and shear stresses on

any plane at a point, with Mohr's circle one can easily visualize their variation with respect

to plane orientation 0.

o Equation of Mohr's circle

o,+to, o,-0
2

We know that normal stress, o, = + 3 L cos260 + T, sin 20

. Gx Gy .
And Tangential stress, T = Tsm29 -T,, 0826

. o.+0,| o0,-0, ) '
Rearranging we get, | 0, — 5 = 3 c0s20+7,,8in20 ............... @)

Gx 6y . ..
and T= TstO -T,00820 ... (ii)

A little consideration will show that the above two equations are the equations of a circle with o,

and T as its coordinates and 20 as its parameter.

If the parameter 20 is eliminated from the equations, (i) & (ii) then the significance of them will

become clear.

o, +o o, -0
O'avg=—x2 ~and R = —xz ol I

Or (0' -0 )2+1'2 =R’

n avg Xy

It is the equation of a circle with centre,
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2

O —0O
X y +T2

2 xy

and radius, R=

e Construction of Mohr’s circle

Convention for drawing

S K Mondal’s

o AT Xy that is clockwise (positive) on a face resides above the O axis;a T Xy

anticlockwise (negative) on a face resides below O axis.

® Tensile stress will be positive and plotted right of the origin O. Compressive stress

will be negative and will be plotted left to the origin O.

® An angle @ on real plane transfers as an angle 2 @ on Mohr's circle plane.

We now construct Mohr’s circle in the following stress conditions

I. Bi-axial stress when o, and O'y known and Txy =0

II. Complex state of stress (O, Gy and Z'Xy known)

I. Constant of Mohr’s circle for Bi-axial stress (when only O, and Gy known)

If 0, and O y both are tensile or both compressive sign of O, and O y will be same and this state of

stress is known as “ like stresses” if one is tensile and other is compressive sign of O, and O y will

be opposite and this state of stress is known as ‘unlike stress’.

® Construction of Mohr’s circle for like stresses (when O, and O, are same type of stress)

Step-I: Label the element ABCD and draw all stresses.

D A
O  Tox
C B

l Ty

Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as

ordinate) i.e. in Y-axis
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Principal Stress and Strain S K Mondal’s

Step-I1I: Using sign convention and some suitable scale, plot the stresses on two adjacent faces
e.g. AB and BC on the graph. Let OL and OM equal to O, and O'y respectively on the

axis OO .

_'t‘

Step-IV: Bisect ML at C. With C as centre and CL or CM as radius, draw a circle. It is the

Mohr’s circle.

L

_t‘

M L
l'\ Ty C .l' gy O
(@ + @)
P E—

Step-V: At the centre C draw a line CP at an angle 20 , in the same direction as the normal to

the plane makes with the direction of O, . The point P represents the state of

stress at plane ZB.

GK‘_
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S K Mondal’s

Step-VI: Calculation, Draw a perpendicular PQ and PR where PQ = 7 and PR = o,

T
R .
T
Lo
-© Of Yo C Q Ja ©
[V
DR S
-1
o, +0 o, — O
oc=—" Yandmc=cL=cp= >V
2 2
o, +0 o, — O
PR=an: X y+ X ycos29
2 2
(2 —Uy
PQ =7 =CPsin 20 = sin26
2

[Note: In the examination you only draw final figure (which is in Step-V) and follow the

procedure step by step so that no mistakes occur.]

® Construction of Mohr’s circle for unlike stresses (when G, and o, are opposite in sign)

Follow the same steps which we followed for construction for ‘like stresses’ and finally will get

the figure shown below.

lﬁ:" t
D z A
T o
L]
{57 e —
G Ox B M
3 ley O
cC B

A

-T

y

Note: For construction of Mohr’s circle for principal stresses when (Oyand O, is known) then follow

the same steps of Constant of Mohr’s circle for Bi-axial stress (when only O, and O y known) just

change the O

= O'1and O'y =0,
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L

II. Construction of Mohr’s circle for complex state of stress (o, O'y and Z'Xy known)

Step-I: Label the element ABCD and draw all stresses.

L. G}
T
» 1
D A
rX}'
O O
Ty
oy a— —
Ty
y Oy

Step-II: Set up axes for the direct stress (as abscissa) 1.e., in x-axis and shear stress (as
ordinate) 1.e. in Y-axis

A

T

Step-I1I: Using sign convention and some suitable scale, plot the stresses on two adjacent faces
e.g. AB and BC on the graph. Let OL and OM equal to O, and O y respectively on the

axis O O . Draw LS perpendicular to OO0 axis and equal to Txy de. LS= Txy . Here LS
is downward as T xy o0 AB face is (- ive) and draw MT perpendicular to OO axis and

equal to Z'Xy 1e. MT= Z'Xy . Here MT is upward as Z'Xy BC face is (+ ive).
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T

Step-IV: Join ST and it will cut OO axis at C. With C as centre and CS or CT as radius, draw
circle. It i1s the Mohr’s circle.

Step-V: At the centre draw a line CP at an angle 26 in the same direction as the normal to the

plane makes with the direction of O X

Z\ ., K .
Oy B Ox
& h
] B
Oy

Step-VI: Calculation, Draw a perpendicular PQ and PR where PQ = 7 and PR = 0,
o, +0 y

Centre, OC =
2

c,—O
Radius CS = (CL)2+(LS)2 = [XzyJ +7xy2 =CT=CP

Gx+6y GX—Gy .
PR_on_ 5 + 5 00329+1Xysm20

Ox—Oy .
PQ=71= —">—2-sin26-1,, c0S206.
2 Xy

[Note: In the examination you only draw final f%ure £(which is in Step-V) and follow the
Page 72 of 42
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Note: The intersections of OO axis are two principal stresses, as shown below.

Let us take an example: See the in the Conventional question answer section in this chapter and

the question is “Conventional Question IES-2000”

2.9 Mohr's circle for some special cases:

i) Mohr’s circle for axial loading: ™
y & D
IR \
of 7
A
\_i//
E
o= PiA

B i A
Tr \

r,.=—;, 0,=0,=0 ——

v Ty Ty i X
It is a case of pure shear
iii) In the case of pure shear T

(01= - 02and 03 e 73 of 429
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c,=-0,

T o = X0,

max

iv) A shaft compressed all round by a hub |

VL —

I

01 = 02 = 03 = Compressive (Pressure)

v) Thin spherical shell under internal pressure l

D
o, =0, =L = Z—t (tensile)

2t

D pr d pr
o, = i = pr (tensile) and o, = pa = Pr (tensile)
2t t 4t 2t
vii) Bending moment applied at the free end of a cantilever

M 0]

-~
\ . _

M
Only bending stress, o, = Ty and 0, =7,, =0

rd
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2.10 Strain

Normal strain

Let us consider an element AB of infinitesimal length &x. After deformation of the actual body if

: : . ou L : .
displacement of end A is u, that of end B is u+a—.5X. This gives an increase in length of element AB
X

: ou ou . T ou
is| U+—.0X -U |= — X and therefore the strain in x-direction is &, = —
OX X
. . L ov
Similarly, strains in y and z directions are & =—— and g, =—.
OX 0z
Therefore, we may write the three normal strain components
ou ov ow
gxz_’ gy:—, and 822—.
ox oy 0z
ou _
U+ =—0X
[ oX
_ B |
oX
1 All IH
o—]

Change in length of an infinitesimal element.
Shear strain

Let us consider an element ABCD in x-y plane and let the displaced position of the element be

A'B'C'D' .This gives shear strain in x-y plane asy, =oc +f where o is the angle made by the

displaced live B'C'with the vertical and f is the angle made by the displaced line A'D’with the

ou ov
&5y ou 67 X oy
horizontal. This givesc = “>—=—and f=*2——=—
oy oy OX OX
We may therefore write the three shear strain components as
ou ov. ov ow ow ou
Yy=—t—r Vp=—+— and y, =—+_—
oy ©Ox oz oy oXx 0z

Therefore the state of strain at a point can be completely described by the six strain components
and the strain components in their turns can be completely defined by the displacement components

u,v, and w.

Therefore, the complete strain matrix can be written as
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2 0 0
19).4
P I
X ay
&
"I'lo o <2
gz _ 0z L
Vxy o 9 0
Ve ox oy
y o 9
i oy oz
9 5 9
| 0z OoX
v
11——r5}'
fu .
o 9¥
C‘__' w
8 B C
Vo
25T g .
:%L/ Lr A
VI : | ax

SR
cu

u+—0ax
ox

Shear strain associated with the distortion of an infinitesimal element.

Strain Tensor
The three normal strain components are
e -2 _ov )
X XX oX ’ y yy ay z 2z oz

The three shear strain components are

:yi:l 8_U+6_V : c :&:l a_V+@ and €, = 7ZX:1[8_U+6WJ
oy 0OX

e —
vo2 02 ¥ 2 2\oz oy 2 2\oz ox
Therefore the strain tensor is
_ v ) _
EXX 2 52
Sxx exy Sxz
— _ v yx e yz
Sl S €z | T Sy 2
Ex ezy € 4 }/zy
ZX
A eZZ

Constitutive Equation

The constitutive equations relate stresses and strains and in linear elasticity. We know from the

Hook’s law (O') =E.¢
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. . o, . . .
It is known that o, produces a strain of EX in x-direction

. . o, . . . o, . . .
and Poisson’s effect gives —,uEX in y-direction and —,uEX in z-direction.

Therefore we my write the generalized Hook’s law as
e=r[o,-u(o,+a.)]. e =r[o,-u(o.+5,)] and e=—[o. -u(c, +0)]
E > F E )

It is also known that the shear stress, 7 = Gy, where G is the shear modulus and ¥ is shear strain.
We may thus write the three strain components as
Fry bye and y, = T

g’ TG G

In general each strain is dependent on each stress and we may write

Yy =

K,; K
&y Kz Koo Ko Koy KsKyg |19y
& | _ Kai Kaz Ko Kyy Kys Ky || 0,
Vxy Kot Ko Kz Ky Kis Ky | |7y
Vyz Koy Kyp Koy Koy Kos Ky Ty
Y ax _K61 K62 K63 K64 Kes Kee_ T

.. The number of elastic constant is 36 (For anisotropic materials)

For isotropic material

1
K11 :Kzz = K33 :E
1
Kas =Kss =Kos :5
Kip =K =Kyy =Kpy =Ky =K, = £
12 13 21 23 31 32

E

Rest of all elements in K matrix are zero.

For isotropic material only two independent elastic constant is there say E and G.

e 1-D Strain L, .
-(:.—[ A, — P
Let us take an example: A rod of cross sectional area Ao is I i =
loaded by a tensile force P. ' L
, P
It’s stresses o, =A—, o, = 0, and o,=0

1-D state of stress or Uni-axial state of stress

o, 00 z, 0 0 o, 00
o;={ 0 0 Ojorg;=0 0 O0|=0 00O
0 0O 0 0O 0 00O

Therefore strain components are
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_ 0, O, _ x
Ex_ E ;Ey:—/,l =—HE,: and Ez__ll“l E —_IUEX
1-D state of strain or Uni-axial state of strain
9% 9 0
& 0 0 E p, 0 0O
g=|0 -us, 0 |=|0 —yi_x 0 |=|0 g, ©
0 0 —ue, . . o, 0 0 gq,
e 2-D Strain (0. =0)
1
@) Ex—EI:O'x—,UO'y}
| ]
Ey_f O'y—,UO'x

z

€ :—%[ax +Gy:|

[Where, €,,€,,€, are strain component in X, Y, and Z axis respectively]

(ii) O, =#|:€x +,Ll€y:|
o, —ﬁ[ey +e,]

e 3-D Strain

(i) e =

€,= |:O'Z—IL1(O'x+O' ):|
G 0, = (1+ﬂ)fl_2ﬂ)[(l—ﬂ) e +u(s, +e.)]
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o, = (1+,u)1(21—2,u) [(l—y) €, +,u(ez + ex)]
o, = (1+ﬂ)El_2ﬂ)[(l—,u) €, +ﬂ(€x +ey)}

2.12 An element subjected to strain components < ,e ) &%‘y

Consider an element as shown in the figure given. The strain component In X-direction is €, , the

strain component in Y-direction is €, and the shear strain component is Yy -

y

Now consider a plane at an angle & with X- axis in this plane a normal strain €,and a shear

strain y,. Then

€ +e€ € —¢€
¢ €,= x2 L4 x2 ycos20+77xysin26? o
ef—j {;&ex
e —¢€ e
. Q:—Msin29+y—xyc0520 ge
2 2
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We may find principal strain and principal plane for strains in the same process which we
followed for stress analysis.
In the principal plane shear strain is zero.

Therefore principal strains are

e+ e e —€
e Bt R
T2 2 2

The angle of principal plane

j/xy

tan2¢9p =

¢ Maximum shearing strain is equal to the difference between the 2 principal strains i.e

(yxy )max :El o EZ

Mohr's Circle for circle for Plain Strain
We may draw Mohr’s circle for strain following same procedure which we followed for drawing

Mohr’s circle in stress. Everything will be same and in the place of O, write €, , the place of

yxy

o} y write € y and in place of T Xy write
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X
2 Sy
=t
y D
. __,-r-""""_._r_'_'_ [
|
r |
W " E. — E.,
b | max _ "1 1
=y |
Z | C 1 .
2 : 261 “'FI"!K &
’ 2
| ¥ Il .
I LY
= : R 28 3
L_E.H_._'_‘.,-" v L 4
€ +€y  Ep +Ey g +€, =, -
= = = = EI:I = E L
2 2 2 e R
= -
=
<1
2.15 Volumetric Strain (Dilation)
e Rectangular block, L
AV + + /
— =€ S €
x y z L
Vs
L
Proof: Volumetric strain L(1+2,)
L L
AV V-V g .
—_—= 2 (1+2,)
VE) VO L - LN |
+z,
L(l+e)xL(1+¢, )xL(1+e)-L L
- L3 .
Before deformation, After deformation,
=€, t€, +¢€,
Volume (Vo) = 13 Volume (V)
(neglecting second and third order =L (1 x )XL (1 ey ) x L(1 * 82)
term, as very small)
e In case of prismatic bar,
dv L .
Volumetric strain,—— = & (1 -2 ,u) P F A —> P
Vv ;
Ve ' - h,
Proof: Before deformation, the volume of the P < I ‘T: | >P

bar, V=AL
After deformation, the length (L') =L (1 + 8)

and the new cross-sectional area (A') =A (1 - ,ug)2

N _ Al '= _ 2
Therefore now volume (V ) =A'L Papélé Q tfﬁ%gp ,ug)
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AV V'V AL(1+¢)(1-ue) AL

=e(1-2
VAR, AL #(1-24)
AV
—=g(1-2
v -¢(1-24)
e Thin Cylindrical vessel
o . O o pr
€ 1=Longitudinal strain =—— y—=-"—[1-2
Tons g HE "aml
€, =Circumferential strain =22 — 4,21 = ﬂ[2 - u]
E E 2Kt

AV pr
—=€,+2e,=—[5-4
v I 2 2Et[ (]

o

® Thin Spherical vessels

r
€=& =6~ p_[l_ﬂ]

2Ft
£:3e=3ﬂ 1- 4]
v, 2Et

® In case of pure shear

Therefore

dv
Therefore ¢, =—=¢, +¢,+¢,=0
v

2.16 Measurement of Strain

Unlike stress, strain can be measured directly. The most common way of measuring strain is by use

of the Strain Gauge.

Strain Gauge
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A strain gage is a simple device, comprising of a thin

electric wire attached to an insulating thin backing
material such as a bakelite foil. The foil is exposed to the

surface of the specimen on which the strain is to be

—

measured. The thin epoxy layer bonds the gauge to the | ——

Thin foil
or electric
were part of the specimen being strained. wire

surface and forces the gauge to shorten or elongate as if it

A change in length of the gauge due to longitudinal strain

creates a proportional change in the electric resistance, ' .
and since a constant current is maintained in the gauge, a + =

proportional change in voltage. (V = IR).

-H-hl—
The voltage can be easily measured, and through Bakelite

calibration, transformed into the change in length of the

original gauge length, i.e. the longitudinal strain along the STRAIN GAUGE
gauge length.

Strain Gauge factor (G.F)

Measured from Bridge voltage

—
GF_:ARIR:ARIR
~ AETE £ o

Given Calculated

The strain gauge factor relates a change in resistance with strain.

Strain Rosette

The strain rosette is a device used to measure the state of strain at a point in a plane.

It comprises three or more independent strain gauges, each of which is used to read normal strain
at the same point but in a different direction.

The relative orientation between the three gauges is known as o, p and &

The three measurements of normal strain provide sufficient information for the determination of the
complete state of strain at the measured point in 2-D.

We have to find out €,, €, and y,, form measured value €,, €,, and €,
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General arrangement:
The orientation of strain gauges is given in the ED\ ‘Y

figure. To relate strain we have to use the

following formula.

/
EC | Ea‘
“‘%M
o X
9]

N _
e,= TS LSS 60520+ 2 sin26

2 2 2
We get

N _
c,= S ST o520 + D sin2a

2 2 2

e +e e —c

6= LSS os2(a+ f)+ 2 sin2(a + p)

2 2 2

N _
e;png+€X;%amaa+ﬂ+5ﬁj%$m%a+ﬁ+@

From this three equations and three unknown we may solve €,, €, and y,,

e Two standard arrangement of the of the strain rosette are as follows:

()

(ii)

45° strain rosette or Rectangular strain rosette.

In the general arrangement above, put

a=0° p=45° ands=45°

Putting the value we get

[ J ea:ex
e +€ .
_ —x X Y
et 2
[ J eczey

y

60° strain rosette or Delta strain rosette

In the general arrangement above, put

a=0°% f=60° ando =60°

Putting the value we get

. ea:ey
+3
R R
4 4"
€ +3¢€, 3
¢« E=—————7,
4 4 "

Solving above three equation we get
S TS

1
Sy = §|:2.Eh +2.5, -5

2
Ky_ﬁie\c _EI:-:I

y
N

60° 120°

v
x

or
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Stresses due to Pure Shear

GATE-1. A block of steel is loaded by a tangential force on its top surface while the
bottom surface is held rigidly. The deformation of the block is due to
[GATE-1992]
(a) Shear only (b) Bending only  (c) Shear and bending (d) Torsion
GATE-1. Ans. (a) It is the definition of shear stress. The force is applied tangentially it is not a
point load so you cannot compare it with a cantilever with a point load at its free end.

GATE-2. A shaft subjected to torsion experiences a pure shear stress 7 on the surface.
The maximum principal stress on the surface which is at 45° to the axis will

have a value [GATE-2003]
(a) 7 cos 45° (b) 27 cos 45° (c) 7 cos? 45° (d) 2 7 sin 45° cos 45°
o,+o, O0,-0O .
GATE-2. Ans. (d) o, = 5 L+ 5 Lc0s20 +1,,5in20

Here 0, =0, =0, 7, =7, §=45°

GATE-3. The number of components in a stress tensor defining stress at a point in three
dimensions is: [GATE-2002]
(a) 3 (b) 4 (c)6 @9

GATE-3. Ans. (d) It is well known that,

Ty =TT =Tx @nd 7, =7,

so that the state of stress at a point is given by six components 0,,0,,0, andr, 7,7

xy? “yzrtzx

Principal Stress and Principal Plane

GATE-4. A body is subjected to a pure tensile stress of 100 units. What is the maximum
shear produced in the body at some oblique plane due to the above? [IES-2006]
(a) 100 units (b) 75 units (c) 50 units (d) O unit
GATE-4. Ans. (¢) 7, =2 ;”2 = 1002_0 = 50 units.

GATE-5. In a strained material one of the principal stresses is twice the other. The
maximum shear stress in the same case is 7_,, .Then, what is the value of the

maximum principle stress? [TES 2007]
(a) Tmax (b) 2 Tmax (C) 4 Tmax (d) 8 Tmax

0,0,

GATE-5. Ans. (¢) 7,,, = or c=20,=47,

X

lo
_ % -
,0,=20,0r7,, = 5 o o, =27,

GATE-6. A material element subjected to a plane state of stress such that the maximum
shear stress is equal to the maximum tensile stress, would correspond to
[TAS-1998]
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G,T G,T 51

o o] o a] o] a, 5'1 GI 1
@ “l “I “J
(b) (© (d)
GATE-6. Ans. (d) 7, = ;"2 =2 _;_"1) -0,

GATE-7. A solid circular shaft is subjected to a maximum shearing stress of 140 MPs.
The magnitude of the maximum normal stress developed in the shaft is:
[TAS-1995]
(a) 140 MPa (b) 80 MPa (c) 70 MPa (d) 60 MPa

o, —O.
GATE-7. Ans. (a) 7., =——2% Maximum normal stress will developed if o, =—0, =0

2

GATE-8. The state of stress at a point in a loaded member is shown in the figure. The

magnitude of maximum shear stress is [IMPa = 10 kg/cm?] [TAS 1994]
(a) 10 MPa (b) 30 MPa (c) 50 MPa (d) 100MPa
1o, = 408Pa

— 4~ 7 =30MPa

G, = -40MPa o, =—40MPa

£, =30MPa~ |
o, = A0MPa

v

2 2
O,—0O — —
GATE-8. Ans. (¢) 7,,, = (%} + z'xyz = \/ #j +30? =50 MPa

GATE-9. A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50
MPa. It is further subjected to a torque of 10 kNm. The maximum principal

stress experienced on the shaft is closest to [GATE-2008]
(a) 41 MPa (b) 82 MPa (c) 164 MPa (d) 204 MPa

16T 16x10000

5 +Pa=50.93 MPa
d 7x(0.1)

GATE-9. Ans. (b) Shear Stress (7 )=
O O, ?
Maximum principal Stress = 7” + (7[’) +17° =82 MPa

GATE-10. In a bi-axial stress problem, the stresses in x and y directions are (ox = 200 MPa

and oy =100 MPa. The maximum principal stress in MPa, is: [GATE-2000]
(a) 50 (b) 100 (c) 150 (d) 200
o, +o o, — 0O ? )
GATE-10. Ans. (d) g, = L4 [ yj +72 if 7, =0
2 2 xy Xy
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2
o, t+o, [GX—O'V]
= =+ =0

2 2 *
GATE-11. The maximum principle stress for the stress a
state shown in the figure is 4
(@) o M) 20 4 >0
()30 (d) 150
T a
o~ |

[GATE-2001]
GATE-11. Ans. (b) 0, =0, 0,=0, 7, =0

Xy
2
o, + O O, — O, o+ o 2
(07), = > L+ [ 5 y] +72, = 5 +4/(0)" +0% =20

GATE-12. The normal stresses at a point are ox = 10 MPa and, oy = 2 MPa; the shear stress

at this point is 4MPa. The maximum principal stress at this point is:
[GATE-1998]

(a) 16 MPa (b) 14 MPa (c) 11 MPa (d) 10 MPa
2 2
GATE-12. Ans. (¢) o, = 2%y [Zx=% | o0 1042 F10=21 4o 44 66 MPa
2 2 Y 2 2
GATE-13. In a Mohr's circle, the radius of the circle is taken as: [TES-2006; GATE-1993]
(o2 (o) ? (U (o2 )2
.~ O, 2 .0, 2
(@) (Tj +(z,) 0 > (z,)

© (%Jz ~(z,) @ \(o.-0,) +(z,)

Where, ox and oy are normal stresses along x and y directions respectively and txy is the

shear stress.
GATE-13. Ans. (a)

Y By
A Oy
c
—_ N
N
[s;
r X - N (T Tyx)
0 it
al
Ty N
T: p B( Smax,0)
ﬂ Al(Tmin,0) 0 L Oyx
L | 20 M
M (Ox Tuy)

GATE-14. A two dimensional fluid element rotates like a rigid body. At a point within the
element, the pressure is 1 unit. Radius of the Mohr's circle, characterizing the
state of stress at that point, is: [GATE-2008]
(a) 0.5 unit (b) 0 unit (c) 1 unit (d) 2 units

GATE-14. Ans. (b)
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GATE-15. The Mohr's circle of plane stress ({MPa)
for a point in a body is shown.
The design is to be done on the

basis of the maximum shear
stress theory for yielding. Then,
a(MPa)

yielding will just begin if the
designer chooses a ductile ‘u
material whose yield strength is: -10

(a) 45 MPa (b) 50 MPa -100
() 90 MPa (d) 100 MPa

[GATE-2005]

GATE-15. Ans. (¢)
Given o¢,=-10MPa, o, =-100MPa
Maximum shear stresstheory give 7, = i ;GZ = %

or 0,-0, =0, = &, =—10—(~100) = 90MPa

stress at a certain point in a
stressed body. The magnitudes of
normal stresses in the x and y
direction are 100MPa and 20 MPa
respectively. The radius of < Xy
Mohr's stress circle representing
this state of stress is:

(a) 120 (b) 80
-

GATE-16. The figure shows the state of +(5
Y

(c) 60 (d) 40

[GATE-2004]

GATE-16. Ans. (c)
o, =100MPa, o, =-20MPa

) , o,—o, 100-(-20)
Radius of Mohr'scircle = 5 y = >

Data for Q17-Q18 are given below. Solve the problems and choose correct answers.
[GATE-2003]

The state of stress at a point "P" in a two dimensional loading is such that the Mohr's
circle is a point located at 175 MPa on the positive normal stress axis.

=60

GATE-17. Determine the maximum and minimum principal stresses respectively from the
Mohr's circle

(a) + 175 MPa, —175MPa (b) +175 MPa, +175 MPa
(c) 0, -175 MPa (do,0
GATE-17. Ans. (b) . T
‘ T, - :2 -0, =0,
: e, =
.‘— —'.x

o,=0,=0,=0,=+175 MPa

]

GATE-18. Determine the directions of maximum and minimum principal stresses at the
point “P” from the Mohr's circle F29¢ 88 of 429 [GATE-2003]
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(a) 0, 90° (b) 90°, 0 (c) 45°, 135° (d) All directions
GATE-18. Ans. (d) From the Mohr’s circle it will give all directions.

Principal strains

GATE-19. If the two principal strains at a point are 1000 X 106 and -600 x 106, then the
maximum shear strain is: [GATE-1996]
(a) 800 x 106 (b) 500 X 106 (¢) 1600 x 106 (d) 200 x 106
GATE-19. Ans. (c) Shear strain e, —e,, ={1000-(-600)} x 10° =1600 x 10°

Previous 20-Years IES Questions

Stresses due to Pure Shear

IES-1. If a prismatic bar be subjected to an axial tensile stress o, then shear stress

induced on a plane inclined at 0 with the axis will be: [TES-1992]
o . (o2 (o2 o .
(a)—=sin26 (b)=cos20 (c)=cos* 6 (d) =sin’@
2 2 2 2

IES-1. Ans. (a)

IES-2. In the case of bi-axial state of normal stresses, the normal stress on 45° plane is
equal to [TES-1992]
(a) The sum of the normal stresses (b) Difference of the normal stresses
(c) Half the sum of the normal stresses (d) Half the difference of the normal stresses

o,+o, 0,-0O .
IES-2. Ans. (¢) o, = 5 L+ 5 c0s20 +1,,5in20
o, +o

At0=45°andr,, =0; o, = 5 !

IES-3. In a two-dimensional problem, the state of pure shear at a point is
characterized by [IES-2001]
(@) ¢ =¢, and 7y =0 b) €, =-¢, and Vo %20
) &, =2¢,andy,, #0 (d) &,=05¢,andy,, =0

IES-3. Ans. (b)

IES-4. Which one of the following Mohr’s circles represents the state of pure shear?

[TIES-2000]

() (b)

]

\—/

T

N
/

i

o

IES-4. Ans. (¢)
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IES-5. For the state of stress of pure shear 7 the strain energy stored per unit volume
in the elastic, homogeneous isotropic material having elastic constants E and

v will be: [TES-1998]
2 2 2 2

T T 2T
(a) E(1+v) (b) E(Hv) (©) ?(lw) G\
IES-5. Ans. (a) o, =7, o0,=-1, 0,=0

_i 2 _ 2_ _ _1+/l 2
U—ZE[T +( z’) Zyz'( T)}V— 3 °V

2T—E(2+v)

IES-6. Assertion (A): If the state at a point is pure shear, then the principal planes
through that point making an angle of 45° with plane of shearing stress carries
principal stresses whose magnitude is equal to that of shearing stress.
Reason (R): Complementary shear stresses are equal in magnitude, but
opposite in direction. [IES-1996]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-6. Ans. (b)

IES-7. Assertion (A): Circular shafts made of brittle material fail along a helicoidally
surface inclined at 45° to the axis (artery point) when subjected to twisting
moment. [IES-1995]
Reason (R): The state of pure shear caused by torsion of the shaft is equivalent
to one of tension at 45° to the shaft axis and equal compression in the
perpendicular direction.

(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IES-7. Ans. (a) Both A and R are true and R is correct explanation for A.

IES-8. A state of pure shear in a biaxial state of stress is given by [TES-1994]

o 0 o 0 o, T,
(a) (b) (c) (d) None of the above
0 o 0 -0 T, O,

IES-8. Ans. (b) 0,=7, o0,=-1, 0,=0

IES-9. The state of plane stress in a plate of 100 mm thickness is given as [IES-2000]
oxx = 100 N/mm?2, oyy = 200 N/mm?2, Young's modulus = 300 N/mm?2, Poisson's ratio
= 0.3. The stress developed in the direction of thickness is:

(a) Zero (b) 90 N/mm?2 (c) 100 N/mm? (d) 200 N/mm?

IES-9. Ans. (a)

IES-10. The state of plane stress at a point is described by o, =0 = oand T, = 0. The

normal stress on the plane inclined at 45° to the x-plane will be: [IES-1998]
(a)O' (b) \/50' (c)\/ga (d)20'
o,+o, 0,-0 )
IES-10. Ans. (a) o, = 5 L+ 5 ~-c0820 +7,, 5in20
IES-11. Consider the following statements: [IES-1996, 1998]

State of stress in two dimensions at a point in a loaded component can be
completely specified by indicating the normal and shear stresses on

1. A plane containing the point

2. Any two planes passing through the point

3. Two mutually perpendiculaiegsah@ddipassing through the point
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Of these statements
(a) 1, and 3 are correct (b) 2 alone is correct
(c) 1 alone 1s correct (d) 3 alone is correct

IES-11. Ans. (d)

Principal Stress and Principal Plane

IES-12. A body is subjected to a pure tensile stress of 100 units. What is the maximum
shear produced in the body at some oblique plane due to the above? [IES-2006]

(a) 100 units (b) 75 units (c) 50 units (d) 0 unit

IES-12. Ans. (¢) 7, = ;"2 = 1002‘0 =50 units.

IES-13. In a strained material one of the principal stresses is twice the other. The
maximum shear stress in the same case is 7., . Then, what is the value of the
maximum principle stress? [IES 2007]
(a) Tmax (b) 2 Tmax (C) 4 Tmax (d) 8 Tmax

0,-0,

(o)
,0,=20,0r7,, =—=or0,=21, oroc=20,=471_

IES-13. Ans. (¢) 7,,,, = N
2 2

IES-14. 1In a strained material, normal stresses on two mutually perpendicular planes
are ox and oy (both alike) accompanied by a shear stress txy One of the principal
stresses will be zero, only if [IES-2006]

_ Gx X O-y _ _ d _ 2 2
(a) T, _T (b) r,=0,X0, (c) T, =40.%X0, (d) T, =40, t0O,

2 2

2
+ —
it o, =0 30" o _ |99 i
2 2 Y

2 2
o, +0 o, —0C
or | X—Y| =| 22| +¢% orr, =0, %0
2 2 Yy Yy y

o, +o, o, —0o, ? )
IES-14. Ans. (¢) o, = + +7,

IES-15. The principal stresses o1, 02 and o3 at a point respectively are 80 MPa, 30 MPa

and —-40 MPa. The maximum shear stress is: [TES-2001]
(a) 25 MPa (b) 35 MPa (c) 55 MPa (d) 60 MPa
- —-(-40
IES-15. Ans. (d) 7, = 202 _80 é ) _ 60 MPa

IES-16. Plane stress at a point in a body is defined by principal stresses 30 and o. The
ratio of the normal stress to the maximum shear stresses on the plane of

maximum shear stress is: [TES-2000]
(@)1 (b) 2 (©)3 (d) 4
27,
IES-16. Ans. (b) tan20 = Y =60=0
o, —0,
c,-0, 30-0
Tmax = = =0
2 2
. .. . 3o0+o0
Major principal stress on the plane of maximum shear = o, = T =20
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IES-17.  Principal stresses at a point in plane stressed element are 0, =0, = 500 kg/cmz.

Normal stress on the plane inclined at 45° to x-axis will be: [IES-1993]
(a0 (b) 500 kg/cm? (c) 707 kg/cm?2 (d) 1000 kg/cm?
IES-17. Ans. (b) When stresses are alike, then normal stress on on plane inclined at angle 45° is

2 2
o,=0,c08’f+0,sin’ =0, (Lj +0o, (Lj =500 {%+%} =500kg/cm’

7)o\

IES-18. If the principal stresses corresponding to a two-dimensional state of stress are
0, and O, is greater than 0, and both are tensile, then which one of the

following would be the correct criterion for failure by yielding, according to

the maximum shear stress criterion? [TES-1993]
(01 -0, ) o, o, o, o, o,
a =+ b)—=1— c)—==x— d)o, =120
(a) 5 5 (b) 5 5 () 5 5 (d)o, »

IES-18. Ans. (a)

IES-19. For the state of plane stress. 10MBg
Shown the maximum and L0Mpy
minimum principal stresses are:
(a) 60 MPa and 30 MPa '
(b) 50 MPa and 10 MPa 5()ME| 50Mpg
(c) 40 MPa and 20 MPa
(d) 70 MPa and 30 MPa 40Mpg OMP
[TES-1992]
o, +0 o,—C ’ )
IES-19. Ans. (d) o,, = Ly L1+,
3 2 2 Y
2
o, - 50+(_10)i 50+10 L 40°
’ 2 2
Onax =70 and o, =-30
IES-20. Normal stresses of equal magnitude p, but of opposite signs, act at a point of a

strained material in perpendicular direction. What is the magnitude of the
resultant normal stress on a plane inclined at 45° to the applied stresses?

[TES-2005]
@) 2p o) p/2 (©) pl4 () Zero
o, +o, 0,-0
IES-20. Ans. (d) o, = 5 L4 5 Y cos26
o, = P;P +PHP cos2x45 -0

IES-21. A plane stressed element is subjected to the state of stress given by

o,=1,=100 kgf/cm® and oy = 0. Maximum shear stress in the element is equal

to [TES-1997]

(a) 504/3 keflem? (b)100kgflem®  (c) 50v/5 kgflem®  (d)150kgf/em?
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2
IBS-21. Ans. (@) (o), = 20 J_r\/( Ux;Oj +73 =50F 5045

2

Maximum shear stress = M = 50\/§

IES-22. Match List I with List IT and select the correct answer, using the codes given

below the lists: [TES-1995]
List I(State of stress) List II(Kind of loading)
A. i 1. Combined bending and torsion of circular shalt.
| i
B. — 2. Torsion of circular shaft.

c. — 3. Thin cylinder subjected to internal pressure.

4. Tie bar subjected to tensile force.

Codes: A B C D A B C D
(@ 1 2 3 4 (b) 2 3 4 1
() 2 4 3 1 (d) 3 4 1 2
IES-22. Ans. (c)
Mohr's circle
IES-23. Consider the Mohr's circle shown TN

above:

What is the state of stress
represented by this circle?
(@)o,=0,#0,7,=0

b0+0y:O,z'xy¢0 _— —_> Cl'n

X
X

(b)
(c)o, =0, o, =7, #0
(d)

d)o ;t0,0'y :Txy:0

X

[IES-2008]
IES-23. Ans. (b) It is a case of pure shear. Just put o, =-0,
IES-24. For a general two dimensional stress system, what are the coordinates of the
centre of Mohr’s circle?
()O'X—O'y 0 (b) 0 o, t+0, ()O'x+0'y 0 @0 o,—0,
a —7 ) - C - ) b -
2 2 2 2

IES-24. Ans. (c¢)

IES-25. In a Mohr's circle, the radius of the circle is taken as: [TES-2006; GATE-1993]

o, ) (0.-0,)
(a) [%} +(TxY)2 (b) \/%JF(TW)Z

2
o,—0
(C) { 2 y J B (Txy )2 Page 93 of 429 (d) \/( Ox ™ O-)’ )2 + (Txy )2

[1]
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Where, ox and oy are normal stresses along x and y directions respectively and txy is the
shear stress.

IES-25. Ans. (a)

Ty
/
A O
C
S BN
N r OxXx
0 M | =X N (o Tyx)
Txy NI
Tyx o B(%max.0)
v Al(omin,0) 0 P Cye
20 M
M (O [ Tuy)
IES-26. Maximum shear stress in a Mohr's Circle [TES- 2008]

(a) Is equal to radius of Mohr's circle

(c) Is less than radius of Mohr's circle
IES-26. Ans. (a)

(b) Is greater than radius of Mohr's circle
(d) Could be any of the above

F 3

.1L

|

GITL-'-“

N

TCl
J

IES-27. At a point in two-dimensional stress system ox = 100 N/mm?2, oy = txy = 40 N/mm?2.

What is the radius of the Mohr circle for stress drawn with a scale of: 1 cm = 10

(a) 3cm (b) 4 cm (¢) 5cm (d) 6 cm
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IES-27. Ans. (c) Radius of the Mohr circle

2 2
_ \/["ngyj +1,7 /10 :N(Mj +402]/10:50/1O:50m

IES-28. Consider a two dimensional state of stress given for an element as shown in the
diagram given below: [TES-2004]
v 100 MPa
'S
200 MPa
200 MPa
—> X T1 00 MPa

What are the coordinates of the centre of Mohr's circle?
(a) (0, 0) (b) (100, 200) (c) (200, 100) (d) (50, 0)

+ —
IES-28. Ans. (d) Centre of Mohr’s circle is (G* . % ,o] - (200 > 100 ,oj - (50,0)

IES-29. Two-dimensional state of stress at a point in a plane stressed element is
represented by a Mohr circle of zero radius. Then both principal stresses
(a) Are equal to zero [TES-2003]
(b)  Are equal to zero and shear stress is also equal to zero
(¢)  Are of equal magnitude but of opposite sign

(d)  Are of equal magnitude and of same sign
IES-29. Ans. (d)

IES-30. Assertion (A): Mohr's circle of stress can be related to Mohr's circle of strain by
some constant of proportionality. [IES-2002]
Reason (R): The relationship is a function of yield stress of the material.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-30. Ans. (c¢)

IES-31. When two mutually perpendicular principal stresses are unequal but like, the
maximum shear stress is represented by [IES-1994]
(a) The diameter of the Mohr's circle
(b) Half the diameter of the Mohr's circle
(¢)  One-third the diameter of the Mohr's circle
(d)  One-fourth the diameter of the Mohr's circle

IES-31. Ans. (b)

IES-32. State of stress in a plane element is shown in figure I. Which one of the
following figures-II is the correct sketch of Mohr's circle of the state of stress?
[TES-1993, 1996]

—_

S |

|-~

Ay 1N
] :
_ @ (&) \J/ [\aj

e Page 95 of 429

Figure-I Figure-II
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IES-32. Ans. (¢)

Strain

IES-33. A point in a two dimensional state of strain is subjected to pure shearing strain
of magnitude y, radians. Which one of the following is the maximum principal

strain? [TES-2008]
@) 7, ®) 7,2 © 7,12 @27,
IES-33. Ans. (¢)

IES-34. Assertion (A): A plane state of stress does not necessarily result into a plane
state of strain as well. [IES-1996]
Reason (R): Normal stresses acting along X and Y directions will also result
into normal strain along the Z-direction.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-34. Ans. (a)

Principal strains
IES-35. Principal strains at a point are 100x107° and -200x10°°. What is the maximum

shear strain at the point? [TES-2006]
() 300 x 10-6 (b) 200 x 10-6 (c) 150 x 10-6 (d) 100 x 10-6
IES-35. Ans. (a) 7. =& —& =100-(-200)x10° =300x10°
don't confuse withMaximumShear stress(z,,,, ) = %
in strain 22 = £ 7% ang T = % that is the difference.
IES-36. The principal strains at a point in a body, under biaxial state of stress, are
1000%10-6 and —600 x 10-6, What is the maximum shear strain at that point?
[TES-2009]
(a) 200 x 10-6 (b) 800 X 10-6 (¢) 1000 x 10-6 (d) 1600 x 10-6

IES-36. Ans. (d)

=1000x10°° —(—600x10’6) =1600x10°°

= 5 = d)xy =€, —€§,

IES-37. The number of strain readings (using strain gauges) needed on a plane surface
to determine the principal strains and their directions is: [TES-1994]
(a) 1 (b) 2 ()3 (d) 4

IES-37. Ans. (¢) Three strain gauges are needed on a plane surface to determine the principal
strains and their directions.

Principal strain induced by principal stress

IES-38. The principal stresses at a point in two dimensional stress system are o1 and
o2 and corresponding principal strains are & and ¢,. If E and v denote

Young's modulus and Poisson's ratio, respectively, then which one of the
following is correct? [TES-2008]

E
(a) o, =Eg¢, (b)o, = m[a +ve, |

(c)o, = %[51 - ng] Pag@gmfﬁg[ﬁ - V‘gz]
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IES-38. Ans. (b) ¢, = S u& and ¢, = % _ ,uﬂ From these two equation eliminate o, .
E E E E
IES-39. Assertion (A): Mohr's construction is possible for stresses, strains and area
moment of inertia. [TES-2009]

Reason (R): Mohr's circle represents the transformation of second-order tensor.
(a) Both A and R are individually true and R is the correct explanation of A.
(b) Both A and R are individually true but R is NOT the correct explanation of A.
(¢) Ais true but R is false.
(d) Ais false but R is true.
IES-39. Ans. (a)

Previous 20-Years IAS Questions

Stresses due to Pure Shear

IAS-1. On a plane, resultant stress is inclined at an angle of 45° to the plane. If the
normal stress is 100 N /mm?2, the shear stress on the plane is: [IAS-2003]
(a) 71.5 N/mm? (b) 100 N/mm? (c) 86.6 N/mm? (d) 120.8 N/mm?2

IAS-1. Ans. (b) Weknowo, = ocos’6 and r=osindcosé
100 = o cos?’45 or o =200
7=200sin45c0s45 =100

IAS-2. Biaxial stress system is correctly shown in [TAS-1999]
304 410 404 404
—t .20 |30 20 20| .20 220
4 b
20 10 19 10 39 30 30 3;9
" L " "
200 2095 20— 20 20— —
30r 1r1 0 40‘" 40“
@ ®) © @

IAS-2. Ans. (c¢)

v

A
.

IAS-3. The complementary shear stresses of — e T A
intensity 7 are induced at a point in D
the material, as shown in the figure.

Which one of the following is the .rl T
correct set of orientations of principal T
planes with respect to AB?
(a) 30° and 120° (b) 45° and 135° C B
(c) 60° and 150° (d) 753563 6pi20 —r

[IAS-1998]
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IAS-3. Ans. (b) It is a case of pure shear so principal planes will be along the diagonal.

IAS-4. A uniform bar lying in the x-direction is subjected to pure bending. Which one
of the following tensors represents the strain variations when bending moment
is about the z-axis (p, q and r constants)? [TAS-2001]

py 0 O py 0 O
@| 0 gy O ®| 0 gy O
0 0 nry 0O 0 O
py 0 0 pyp 0 O
©| 0 py O @] 0 g 0
0 0 py 0 0 gy

TIAS-4. Ans. (d) Stress in x direction = ox
Therefore & I & 9 & 9

erefore & = R =— R ==
! Y H E H E

IAS-5. Assuming E = 160 GPa and G = 100 GPa for a material, a strain tensor is given

as: [TAS-2001]
0.002 0.004 0.006
0.004 0.003 0
0.006 0 0

The shear stress, 7 is:

(a) 400 MPa (b) 500 MPa (c) 800 MPa (d) 1000 MPa

IAS-5. Ans. (c¢)

8xx gxy gxz
Y

£, €,6,. | and & =
gZJC gZy gZZ

7, =G 7, =100x10" x(0.004x 2) MPa=800MPa

Principal Stress and Principal Plane

IAS-6. A material element subjected to a plane state of stress such that the maximum
shear stress is equal to the maximum tensile stress, would correspond to
[TAS-1998]
i 1 1
o a] a q) a] i, 5‘1 Gll
(a) E]i GI G]T
(b) (© (d)
IAS-6. Ans. @) r,, =22 %) _
2 2
IAS-7.

A solid circular shaft is subjected to a maximum shearing stress of 140 MPs.
The magnitude of the maximum normal stress developed in the shaft is:
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(a) 140 MPa (b) 80 MPa (c) 70 MPa (d) 60 MPa
IAS-7. Ans. (a) 7., = 1 ;(72 Maximum normal stress will developed if o, =-0, =0
IAS-8. The state of stress at a point in a loaded member is shown in the figure. The

magnitude of maximum shear stress is [IMPa = 10 kg/cm?] [TAS 1994]

(a) 10 MPa (b) 30 MPa (c) 50 MPa (d) 100MPa

A
ag,= 40P
~ T =30MPa
k
o, = —A0MPa o, = 40MPa
\
L 3004Pa”
T, = 40P
v
o —o. Y 40-40Y’

IAS-8. Ans. (¢) 7,,, = (%) + Txyz = \/(T] +30° = 50 MPa
IAS-9. A horizontal beam under bending has a maximum bending stress of 100 MPa

and a maximum shear stress of 20 MPa. What is the maximum principal stress

in the beam? [TAS-2004]

(a) 20 (b) 50 (c) 50 + /2900 (d) 100

IAS-9. Ans. (¢) 0v=100MP. 7 =20 mP,

2
O O
01,2:—b+ (Tbj + Tz

2
2 2
m,z=%+,/(%j +72 =%+ /(%j +20° =(50++/2900 ) MPa

IAS-10. When the two principal stresses are equal and like: the resultant stress on any

plane is: [TAS-2002]
(a) Equal to the principal stress (b) Zero
(c) One half the principal stress (d) One third of the principal stress
o +0 o —0O0
IAS-10. Ans. (a) 0, =— 5 Ly —= 5 Y cos26

[We may consider thisas 7,, =0] o, =0,=0(say) So o, =0 foranyplane

IAS-11. Assertion (A): When an isotropic, linearly elastic material is loaded biaxially,
the directions of principal stressed are different from those of principal
strains. [TAS-2001]
Reason (R): For an isotropic, linearly elastic material the Hooke's law gives
only two independent material properties.

(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IAS-11. Ans. (d) They are same.
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IAS-12. Principal stress at a point in a stressed solid are 400 MPa and 300 MPa
respectively. The normal stresses on planes inclined at 45° to the principal

planes will be: [TAS-2000]
(a) 200 MPa and 500 MPa (b) 350 MPa on both planes
(c) 100MPaand6ooMPa (d) 150 MPa and 550 MPa

TIAS-12. Ans. (b)

o.+0, o.—0 -
0',1:{ "2 y]+( x2 yjcos2(9:400;300+4002300cos2x45":350MPa

IAS-13. The principal stresses at a point in an elastic material are 60N/mm?2 tensile, 20
N/mm? tensile and 50 N/mm?2 compressive. If the material properties are: p =
0.35 and E = 105 Nmm2, then the volumetric strain of the material is: [IAS-1997]
(a) 9 x 10-5 (b) 3 x 104 (c) 10.5 x 10-5 (d) 21 x 10-5
IAS-13. Ans. (a)

e =T &+2 e—&— 92, 9% | ande,=2z- &+&
<E HMETE)YTE YAETE = E M ETE

o, +
€, =€, +€ +ezzm—2—#(ax+a +o—z)
y E E y
+o,+ _
:(1—2ﬂ)[0* sz sz=(60+1202 50)(1—2x0.35):9x105

Mohr's circle
TAS-14. Match List-I (Mohr's Circles of stress) with List-II (Types of Loading) and select

the correct answer using the codes given below the lists: [TAS-2004]
List-I List-1I
(Mohr's Circles of Stress) (Types of Loading)

Ai
o VT\ 1. A shaft compressed all round by a hub
C

2. Bending moment applied at the free
B. Ol C end of a cantilever
C. .
3. Shaft under torsion
j |
i |
C O
4. Thin cylinder under pressure
i
D. O E:. 5. Thin spherical shell under internal
pressure
Codes: A B C D A B C D
(a 5 4 3 2 (b) 2 4 1 3
(c) 4 3 2 5 (d) 2 3 1 5

IAS-14. Ans. (d)

Page 100 of 429



Chapter-2 Principal Stress and Strain S K Mondal’s

IAS-15. The resultant stress on a certain plane makes an angle of 20° with the normal
to the plane. On the plane perpendicular to the above plane, the resultant
stress makes an angle of 0 with the normal. The value of 0 can be: [IAS-2001]
(a) 0° or 20° (b) Any value other than 0° or 90°
(c) Any value between 0° and 20° (d) 20° only

IAS-15. Ans. (b)

IAS-16. The correct Mohr's stress-circle drawn for a point in a solid shaft compressed
by a shrunk fit hub is as (O-Origin and C-Centre of circle; OA = o1 and OB = 032)

[IAS-2001]
O/ 1 O N\ 9y ©
) T

IAS-16. Ans. (d)

IAS-17. A Mohr's stress circle is drawn for a body subjected to tensile stress fx and fy

in two mutually perpendicular directions such that fx >fy. Which one of the
following statements in this regard is NOT correct? [TAS-2000]

s

(a) Normal stress on a plane at 45° to f is equal to

2
=1,

(b) Shear stress on a plane at 450 to fx is equal to
(c) Maximum normal stress is equal to fx .

St
2

(d) Maximum shear stress is equal to

IAS-17. Ans. (d) Maximum shear stress is

fi—1,
2

TAS-18. For the given stress condition o0 ,=2 N/mm? o, =0 andey =0, the correct

Mohr’s circle is: [IAS-1999]
i Y

/»\\ oM /mm™)

@ ®) © @

+
IAS-18. Ans. (d) Centre Ox zay,on(szro,oj:(l 0)

2 0

radius = +0 =1

IAS-19. For which one of the following two-dimensional states of stress will the Mohr's
stress circle degenerate into a point? [TAS-1996]
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T t

N
e o M iﬁ%

@) (b)

IAS-19. Ans. (c) Mohr’s circle will be a point.

(c)

. . O'X — O,
Radius of the Mohr’s circle = [ 2 : J +7,, .~.1,=0ando, =0, =0
Principal strains
IAS-20. In an axi-symmetric plane strain problem, let u be the radial displacement at r.
Then the strain components¢,,&,, Yeg are given by [IAS-1995]
@ ¢ ug ou o%u b & Gug Uy o
a =—, =—, B = B =—, =—, , =
’ o’ orod o’
u ou ou ou o%u
(C) gr:_’gﬁz_’YrH:() (d) 8r:_’89:_’ o =
r or or 00 orof

IAS-20. Ans. (b)

IAS-21. Assertion (A): Uniaxial stress normally gives rise to triaxial strain.
Reason (R): Magnitude of strains in the perpendicular directions of applied
stress is smaller than that in the direction of applied stress. [IAS-2004]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-21. Ans. (b)

IAS-22. Assertion (A): A plane state of stress will, in general, not result in a plane state
of strain. [TAS-2002]
Reason (R): A thin plane lamina stretched in its own plane will result in a state
of plane strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-22. Ans. (¢) R is false. Stress in one plane always induce a lateral strain with its orthogonal
plane.
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Previous Conventional Questions with Answers

Conventional Question IES-1999
Question: What are principal in planes?
Answer: The planes which pass through the point in such a manner that the resultant stress

across them is totally a normal stress are known as principal planes. No shear stress
exists at the principal planes.

Conventional Question IES-2009

Q. The Mohr’s circle for a plane stress is a circle of radius R with its origin at + 2R

on ¢ axis. Sketch the Mohr’s circle and determinec .., G,ins Cav (Txy) for

max

this situation. [2 Marks]
Ans. Here 6,,,« = 3R

Omin = R

3R+R
G,y = =2R
oV 2
c — Oy 3R-R
and Txy — —max min _ -R
2 2
N

7
@
Conventional Question IES-1999

Question: Direct tensile stresses of 120 MPa and 70 MPa act on a body on mutually
perpendicular planes. What is the magnitude of shearing stress that can be
applied so that the major principal stress at the point does not exceed 135

MPa? Determine the value of minor principal stress and the maximum shear
stress.

Answer: Let shearing stress is '7' MPa.

pd
~

A\ 4

70Mpa
The principal stresses are 3

J
120 470 120—70Y
%12 = 2 + \/[ 2 ] +r 120Mpa 120Mpa

Major principal stress is J J

. 120+70  [(120—-70)
Gy = 5 + \/[ 5 ] +7
=135(Given) or,™ = 31.2MPa. 70Mpa

(o]
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Minor principal stress is

2
o, = 120; 0 —\/(1202_ 70) +31.2* =55MPa

_ 0, -0, _ 135-55 _ 40MPa
2 2

Conventional Question IES-2009

Q. The state of stress at a point in a loaded machine member is given by the
principle stresses. [ 2 Marks]

(i) What is the magnitude of the maximum shear stress?
(ii) What is the inclination of the plane on which the maximum shear stress
acts with respect to the plane on which the maximum principle stress
G, acts?
Ans. (i) Maximum shear stress,
o, -G53 _600—(-600)
2 2
=600 MPa

(ii) At 0 =45° max. shear stress occurs with O ,plane. Since 0, and O, are principle

T=

. . o . . .
stress does not contains shear stress. Hence max. shear stress is at 45° with principle
plane.

Conventional Question IES-2008
Question: A prismatic bar in compression has a cross- sectional area A = 900 mm?2 and

carries an axial load P = 90 kN. What are the stresses acts on

(i) A plane transverse to the loading axis;

(ii) A plane at 0= 60°to the loading axis?
Answer: (1) From figure it is clear A plane

transverse to loading axis, 0=0c

Lo, = Ecos2 9=—90000 N/ mm?

A 900
=100N / mm?

and T=iSin26= 90000 x sin6=0
2A 00

(i11) A plane at 60° to loading axis,
0 =60°-30° =30°
P

— ZCOSZ 9=20000 1230
= 75N | mm? i .
7= P sinog = 20090 5 60° p -
2A 2x900
=43.3N [/ mm®

Conventional Question IES-2001
Question: A tension member with a cross-sectional area of 30 mm? resists a load of 80

kN, Calculate the normal and shear stresses on the plane of maximum shear
stress.
n

Answer: o, = ECOSZ 0 T= i sin20
A 2A
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/-crn

P «—

For maximum shear stress sin20 =1, or, 0 = 45°

3 3
(6,,) = M x cos® 45 =1333MPa and Troax = i = M —1333MPa
30 2A 30x2

Conventional Question IES-2007
Question: At a point in a loaded structure, a pure shear stress state 7 = 3400 MPa
prevails on two given planes at right angles.
(i) What would be the state of stress across the planes of an element taken at
+45° to the given planes?
(ii) What are the magnitudes of these stresses?

Answer: (1) For pure shear
G, =—0,; =+06 = +400MPa

\

N i
"

O 4] k) O
r\ ¥ 2
— -\"‘=0 Mohr's Clrcle In pure shear
q =0 s, G,

(1)) Magnitude of these stresses
c,=r1,Sin20 =7, Sin90° =7, =400MPa and 7= (-7, c0s20)=0

Conventional Question IAS-1997

Question: Draw Mohr's circle for a 2-dimensional stress field subjected to
(a) Pure shear (b) Pure biaxial tension (c) Pure uniaxial tension and (d) Pure
uniaxial compression

Answer: Mohr's circles for 2-dimensional stress field subjected to pure shear, pure biaxial
tension, pure uniaxial compression and pure uniaxial tension are shown in figure
below:

1 T 1 T4 bt

I
() — N

o a, 0 g °
N o
a, 92
PN ) > -
! © (d)

{a) (b)

Conventional Question IES-2003
Question: A Solid phosphor bronze shgg%ﬁgsr&q&én diameter is rotating at 800 rpm and
transmitting power. It is subjected torsion only. An electrical resistance
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strain gauge mounted on the surface of the shaft with its axis at 45° to the
shaft axis, gives the strain reading as 3.98 x 10-4. If the modulus of elasticity
for bronze is 105 GN/m2 and Poisson's ratio is 0.3, find the power being
transmitted by the shaft. Bending effect may be neglected.

Answer:

|,
1

L Zﬁ.xis of the Shaft

Let us assume maximum shear stress on the cross-sectional plane MU is 7. Then

Principal stress along, VM = -% 47% = -7 (compressive)

Principal stress along, LU = %\/472 = 7(tensile)
Thus magntude of the compressive strain along VM is
=é(1 +u)=3.98%x10"*

3.98><10’4><(105><109)

=32.15MPa
(1+0.3)

orr=

.. Torque being transmitted (T) = 7 x%x d’

=(32.15x10°) x%x0.063=1363.5 Nm

2nN

.".Power being transmitted, P =T'W=T'[E] =1363.5><[

M]W:114.23/<W

Conventional Question IES-2002

Question: The magnitude of normal stress on two mutually perpendicular planes, at a
point in an elastic body are 60 MPa (compressive) and 80 MPa (tensile)
respectively. Find the magnitudes of shearing stresses on these planes if the
magnitude of one of the principal stresses is 100 MPa (tensile). Find also the
magnitude of the other principal stress at this point.
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Answer: Above figure shows stress condition assuming N
shear stressis' 7 ' 80Mpa
JXY
Principal stresses
2
G, +o, G, —0,
0]’2 = :|: \/[ ] _|_7- 60MpaLI ’ 60Mpa
ny
—60 + 80 —60—
or,c,, = + + Tfy
J
80Mpa
—60 + 80 —60—
or,6,, = + —|— Tfy

To make pr1nc1pal stress 100 MPa we have to consider +'

6, =100MPa =10+,/70’ + 72 ; or, 7, = 56.57MPa
Therefore other principal stress will be

2
5 _ —60+80 [[—60-80 . (56.57)
? 2 2

i.e. 80 MPa(compressive)

Conventional Question IES-2001

Question: A steel tube of inner diameter 100 mm and wall thickness 5 mm is subjected to a
torsional moment of 1000 Nm. Calculate the principal stresses and
orientations of the principal planes on the outer surface of the tube

Polar moment of Inertia (J)=%[(o.1 10)* —(0.100)°

Answer:

=4.56x10"°m*

5mm
Now }:lor ,_ T.R _1000x(0.055)

J 4.56x10°°
= 12.07MPa

27,
Now,tan26, = Y

o, —0,

H 0 0
gives 6, =45 or 135

:O(,

o, = 7,,Sin20 = 12.07 x 5in90°
—12.07 MPa
and o, =12.07sin270°
= —12.07MPa

Conventional Question IES-2000

Question: At a point in a two dimensional stress system the normal stresses on two

mutually perpendicular planes are o _ and o, and the shear stress is 7 xy. At

what value of shear stress, one of the principal stresses will become zero?
Answer: Two principal stressdes are

o, +0 G -0
Gl’z— 2 :l:\/[ x2 Y

2
+Ty
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Considering (-)ive sign it may be zero

2 2 2

6, +0 c.—0O c.+o0 G.—O
X y _ X y 2 X y o x y 2
= +7,, or, = +7,

2 2 2 2

6. _+o0 ? c c ?

2 x y x Oy 2 __ —

or,7,, = 5 ] — 2 ] or,7, =060, OI,7, =%£,00,

Conventional Question IES-1996

Question:

Answer:

A solid shaft of diameter 30 mm is fixed at one end. It is subject to a tensile
force of 10 kN and a torque of 60 Nm. At a point on the surface of the shaft,
determine the principle stresses and the maximum shear stress.

Given: D =30 mm = 0.03 m; P =10 kN; T= 60 Nm

Principal stresses(o;,0,) and maximum shear stress(z,,, ):

: 10x10° 6 2 2
Tensile stress o, =0, =—— =14.15x10°N/m* or 14.15 MN/m
4 2
—x0.03
4
T
a, a,
T
, T T
As per torsion equation,—=—
J R
.. Shear stress, T=B= TR _ 60x0.015 =11.32x10°N/m?
b Zpt 2 (0.03)

32 32
or 11.32 MN/ m?

The principal stresses are calculated by using the relations:

2
o, +0 o, —O. )
0'1,2=( 5 y]i [[ 5 y]:l_‘_z-xy

Here O'X=14.15MN/m2,O'y=0;Txy=f=11.32 MN / m?

2
0'1,2:14'215i\/[14'215j . (11.32)

=7.07 £13.35=20.425 MN/m?,-6.275MN / m?.
Hence,major principal stress, o, =20.425 MN/m?(tensile)
Minor principal stress, o, =6.275MN/m? (compressive)
o, 0, 24.425-(-6275)

Maximum shear stress,z,, = 5 > =13.35mm /m?

Conventional Question IES-2000

Question:

Two planes AB and BC which are at right angles are acted upon by tensile
stress of 140 N/mm?2 and a compressive stress of 70 N/mm? respectively and
also by stress 35 N/mm2. Determine the principal stresses and principal

planes. Find also the maximum shear stress and planes on which they act.

Sketch the Mohr circle and mark the relevant data.
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Given 70N/mnt
0,=140MPa(tensile) c ; B
0,=-70MPa(compressive)
35Nmm?
Ty = 35MPa 140N/mnf
Principal stresses; c,,0,;

We know that, ¢, , = \/[ ]

140 70 \/[140+7o]

+35° =35+110.7

Therefore 6,=145.7 MPa and ¢, = —75.7MPa

Position of Principal planes 6,,6,

2
c,—o, 140+70
Maximum shear stress, 7, =% 262 = 145 ;75'7 =110.7MPa
Mobhr cirle: Y

OL=c, =140MPa

OM =c, = —-70MPa

SM=LT =7, =35MPa u
Joining ST that cuts at 'N'

SN=NT=radius of Mohr circle =110.7 MPa

OV=c, =145.7MPa

OV =0, =—-75.7MPa

Conventional Question IES-2010

Q6.

Ans.

The data obtained from a rectangular strain gauge rosette attached to a
stressed steel member are € =—220X10_6, 6252 120><100_6, and

€q9 =220x107°. Given that the value of E = 2x10° N/ mm? and Poisson’s

Ratiop=0.3, calculate the values of principal stresses acting at the point and

their directions. [10 Marks]
A rectangular strain gauge rosette strain

=-220x10° € ,=120x10" €4=220x10"°

E =2x10"'N/m? poisson ratio u=0.3
Find out principal stress and their direction.
Let e, =€, e,=€, and e, =€,

We know that principal strain are

€,= Ca ;eb \/(ea —e, )2 + (e, — e, )2
(—220 x107¢ + 120 x 10-‘*)
2

. i\/((_220_120)+10—6)2+((120—220)10_6)2

= -50x107°+ —354 40x10°°
\/7 Page 109 of 429



Chapter-2

Principal Stress and Strain S K Mondal’s
€,,=>-50x107° £250.6x107°

€,=2.01x10™*
€,=-3.01x10™"
Direction can be find out : -
—-e, — -6
tan20, — 26 =Cuec  2x120x107
’ €.~ €, 220x107° +220x10"
= & =0.55
440
20, = 28.81

0, = 14.45° clockwise form principal strain t,

Principal stress:-

E(e, +ne,) 2x10" (2 +0.3(-3)x 10—4)
1-p® 1-0.3%

=241.78x10° N/ m*

=-527.47x10° N/ m?

1

Conventional Question IES-1998

Question:

Answer:

When using strain-gauge system for stress/force/displacement measurements

how are in-built magnification and temperature compensation achieved?

In-built magnification and temperature compensation are achieved by

(a) Through use of adjacent arm balancing of Wheat-stone bridge.

(b) By means of self temperature compensation by selected melt-gauge and dual
element-gauge.

Conventional Question AMIE-1998

Question:

Answer:

A cylinder (500 mm internal diameter and 20 mm wall thickness) with closed
ends is subjected simultaneously to an internal pressure of 0-60 MPa, bending
moment 64000 Nm and torque 16000 Nm. Determine the maximum tensile
stress and shearing stress in the wall.

Given: d =500 mm =05 m; t =20 mm =002 m; p =060 MPa = 0.6 MN/m?2;

M = 64000 Nm = 0064 MNm; T= 16000 Nm = 0016 MNm.

Maximum tensile stress:

First let us determine the principle stresseso, and o, assuming this as a thin

cylinder.

We know, o, =p—d=M=7.5l\/|N/m2
2t 2x0.02

and _Pd_08x05_475uN/m?

G frd —_—

2 4t 4x0.02
Next consider effect of combined bending moment and torque on the walls of the
cylinder. Then the principal stresses o', and o', are given by
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' =1—§3[M+\/M2 +T2}
T
and o' = [M N V2N TZJ

727 7d®
' 16 2 2 2
o' =— | 0.064+/0.0647 +0.0167 | =5.29MN/m
7z><(0.5)
and o', = #[0.064 ~/0.0647 +0.0167 | ~-0.08MN / m’
7z><(0.5)
Maximum shearing stress, 7, :
We Know, 7. :%
o, =0,+0',=3.75-0.08 =3.67MN/m?(tensile)
T _12.79-367 _ 4 seMN/m?
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3.l Moment of Inertia and Centroid

Theory at a Glance (for IES, GATE, PSU)
3.1 Centre of gravity

The centre of gravity of a body defined as the point through which the whole weight of a body may be

assumed to act.

3.2 Centroid or Centre of area

The centroid or centre of area is defined as the point where the whole area of the figure is assumed

to be concentrated.

3.3 Moment of Inertia (MOI)

e About any point the product of the force and the perpendicular distance between them is
known as moment of a force or first moment of force.

e This first moment is again multiplied by the perpendicular distance between them to obtain
second moment of force.

e In the same way if we consider the area of the figure it is called second moment of area or
area moment of inertia and if we consider the mass of a body it is called second moment of
mass or mass moment of Inertia.

e Mass moment of inertia is the measure of resistance of the body to rotation and forms the
basis of dynamics of rigid bodies.

e Area moment of Inertia is the measure of resistance to bending and forms the basis of

strength of materials.

3.4 Mass moment of Inertia (MOI)

. 2
I=2mr
l

¢ Notice that the moment of inertia ‘T’ depends on the distribution of mass in the system.

e The furthest the mass is from the rotation axis, the bigger the moment of inertia.

e For a given object, the moment of inertia depends on where we choose the rotation axis.

e In rotational dynamics, the moment of inertia ‘I’ appears in the same way that mass m does
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e Solid disc or cylinder of mass M and radius R, about perpendicular axis through its

centre, I = %MR2

e Solid sphere of mass M and radius R, about an axis through its centre, I = 2/5 M R2

e Thin rod of mass M and length L, about a perpendicular axis through
its centre.
1 L
I=—Mr
12
‘+——>
L

¢ Thin rod of mass M and length L, about a perpendicular axis through its

end.

I:EML2
3

3.5 Area Moment of Inertia (MOI) or Second moment of area

e To find the centroid of an area by the first moment of the area  ” T
about an axis was determined ([ x dA) : // R\
e Integral of the second moment of area is called moment of I | """ ] e '

e (Consider the area (A)

| \1
inertia (| x2dA) : \\ /

e By definition, the moment of inertia of the differential area o o
about the x and y axes are dlx and dlyy

o dl.=y2dA L.=]y2dA

e dly=x2dA Ly =] x2dA

3.6 Parallel axis theorem for an area

Total Area = A

The rotational inertia about any axis is the sum of
second moment of inertia about a parallel axis

through the C.G and total area of the body times

square of the distance between the axes. X —
INnn =1Icc + Ah? T
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3.7 Perpendicular axis theorem for an area

If x, v & z are mutually perpendicular axes as shown, then e
1,(J)=1,+1I, |

Z-axis is perpendicular to the plane of x — y and vertical to this page as

shown in figure. G .

® To find the moment of inertia of the differential area about the pole (point of origin) or z-axis,
(r) is used. (r) is the perpendicular distance from the pole to dA for the entire area
J=[r2dA = | (x?+y?)dA =L« + Iy (since r? = x2 + y?)

Where, J = polar moment of inertia

3.8 Moments of Inertia (area) of some common area
(i) MOI of Rectangular area Y

Moment of inertia about axis XX which passes

through centroid. ry

Take an element of width ‘dy’ at a distance y

from XX axis.
.". Area of the element (dA) = bX dy.
and Moment of Inertia of the element about XX CG.

axis=dA x y? =b.y>dy ,

..Total MOI about XX axis (Note it is area

moment of Inertia)
s "
I, = I by’dy =2 jbyzdy =
-y 0

bh’ Y
12 '

3
= o
12

Similarly, we may find, I, = h—b3
. M T
3 3
.".Polar moment of inertia (J) = Ixx+ Iyy = ﬂ+ ho
12 12
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If we want to know the MOI about an axis NN passing

through the bottom edge or top edge.
Axis XX and NN are parallel and at a distance h/2.
Therefore Inn = Lx + Area X (distance) 2

3 2 3
O x| ) BB
12 2 3

Case-I: Square area

Case-II: Square area with diagonal as axis

a4

Ixx =~ T a
12

Case-III: Rectangular area with a centrally

rectangular hole

Moment of inertia of the area = moment of inertia of BIG

rectangle — moment of inertia of SMALL rectangle
I BH® bh’®
* 12 12
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(ii) MOI of a Circular area Y
The moment of inertia about axis XX this passes through '
the centroid. It is very easy to find polar moment of inertia dr
about point ‘O’. Take an element of width ‘dr’ at a distance /- ! w D
Y from centre. Therefore, the moment of inertia of this &y
element about polar axis /
i
d@) =d(,, +1 )= area of ring x (radius)®
or d(J) =2zrdrxr’ Y
Integrating both side we get
R 4 4
J = _[27rr3dr _zR _zD
; 2 32
Due to summetry I =1 W
4
Therefore, I, = 1, = L =70
= > 2 64
4 4
zD D
I =1 = — andJ = —
XX yy 3 2
Case-I: Moment of inertia of a circular l\r.r
area with a concentric hole. //— | [
Moment of inertia of the area = moment of inertia of
BIG circle — moment of inertia of SMALL circle.
| | zD*  xd* d X— - o) X 2
== e er |
_ T (pt_ gt i
“eaP D) N / 1
V4
andJ = —(D*-d*
32( ) Y
Case-II: Moment of inertia of a semi-
circular area.
Iy = é of the momemt of total circular lamina N
N ..... —
_ 1 zD"'\ D'
2 64 128
We know that distance of CG from base is Y

4r 2D
—=—-=h
3t 3w (Say)

i.e. distance of parallel axis XX and NN is (h)

.. According to parallel axis theory
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Iy =1 + Area x (distance)’

4 2
or 7D I +l(%]x(h)2

128 =79
D’ 1 [;zpzj (21)]
or —=1_ +—x x| 2=
128 2 4 37
_ 4
I_=0.11R

Case - III: Quarter circle area

or

Ixx = one half of the moment of Inertia of the Semi-

circular area about XX.

I = %x(O.llR“) =0.055 R*

I, =0.055R*

Inn = one half of the moment of Inertia of the Semi-

circular area about NN.
7 _lx zD' 7D’
M 97 g4 128

(iii) Moment of Inertia of a Triangular area
(a) Moment of Inertia of a Triangular area of

a axis XX parallel to base and passes through
C.G.

bh®
I —
X 36

(b) Moment of inertia of a triangle about an

axis passes through base

bh’
I. . =
NN 12 N-- -
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(iv) Moment of inertia of a thin circular ring: Y
Polar moment of Inertia '
(J) =R? xarea of whole ring
=R?*x27Rt=27R%t
X ——X
'y

(v) Moment of inertia of a elliptical area

130 mm
- —Neutral Axis

3.9 Radius of gyration
Consider area A with moment of inertia I... Imagine

that the area is concentrated in a thin strip parallel to
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the x axis with equivalent L. A y
I =Fk.A or -
kxx =radius of gyration with respect to the x axis. i.‘.n.
x 0] x
Similarly iy

Iyy = kfyA or

R =k AR

Page 119 of 429



Chapter-3 Moment of Inertia and Centroid

Page 120 of 429



Chapter-3 Moment of Inertia and Centroid

OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Moment of Inertia (Second moment of an area)

GATE-1. The second moment of a circular area about the diameter is given by (D is the

diameter) [GATE-2003]
zD* zD* zD* zD*
d
(a) . )] T (c) 5 (d) o1

GATE-1. Ans. (d)

GATE-2. The area moment of inertia of a square of size 1 unit about its diagonal is:
[GATE-2001]

1 1 1 1
(@) 3 ®) 7 © =5 (d) s

a (1)
GATE-2. Ans. (¢) I, ===

Radius of Gyration

Data for Q3-Q4 are given below. Solve the problems and choose correct

answers.

A reel of mass “m” and radius of gyration “k” is rolling down smoothly from rest with one
end of the thread wound on it held in the ceiling as depicted in the figure. Consider the
thickness of the thread and its mass negligible in comparison with the radius “r” of the
hub and the reel mass “m”. Symbol “g” represents the acceleration due to gravity.

[GATE-2003]
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thread

r (hub radius)

GATE-3. The linear acceleration of the reel is:

2 2 2
gr gk grk mgr
@ (b) —— © 55 D =
(r2+k2) (r2+k2) (r2+k2) (r2+k2)
GATE-3. Ans. (a) For downward linear motion mg — T = mf, where f = linear tangential
acceleration = ra, a = rotational acceleration. Considering rotational motion
Tr = Ia.
2
or, T = mk? xé therefore mg — T = mf gives f = _8r
r (r2 + kK’ )
thread
reel
T —
1 (hub radius)
mg
GATE-4. The tension in the thread is:
mgr® mgrk mgk® mg
@ ——— b) ———— ©) ——— d) —=—
(r2+k2) (r2+k2) (r2+k2) (r2+k2)
2 2
GATE-4. Ans. (¢) T =mk* x L= mi? x— 8 ____msk
r

rz(r2 +k2) (r2 +k2)

Previous 20-Years IES Questions

Centroid
IES-1. Assertion (A): Inertia force always acts through the centroid of the body and is
directed opposite to the acceleration of the centroid. [TES-2001]

Reason (R): It has always a tendency to retard the motion.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IES-1. Ans. (¢) It has always a tendency to oppose the motion not retard. If we want to retard a
motion then it will wand to accelerate.
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Radius of Gyration

IES-2. Figure shows a rigid body of mass
m having radius of gyration k

about its centre of gravity. It is to E

be replaced by an equivalent

dynamical system of two masses

placed at A and B. The mass at A

should be:

() XM (b) 2
a+b a+b A @ @ Ii-

© Zx2 @ 2 e— a—>——— b——H""
3 b 2 a " l »

[TES-2003]
IES-2. Ans. (b)

IES-3. Force required to accelerate a cylindrical body which rolls without slipping on a
horizontal plane (mass of cylindrical body is m, radius of the cylindrical
surface in contact with plane is r, radius of gyration of body is k and
acceleration of the body is a) is: [TES-2001]

@ m(k* /7" +1).a () (mk*/1*).a (c) mk*.a @ (mk*/7+1).a
IES-3. Ans. (a)

IES-4. A body of mass m and radius of gyration k is to be replaced by two masses m: and
m: located at distances h: and h: from the CG of the original body. An
equivalent dynamic system will result, if [IES-2001]

@h +h =k ) b +h =k’ © hh, =k’ @) h, =k’
IES-4. Ans. (c¢)

Previous 20-Years IAS Questions

Radius of Gyration

IAS-1. A wheel of centroidal radius of gyration 'k' is rolling on a horizontal surface
with constant velocity. It comes across an obstruction of height 'h' Because of
its rolling speed, it just overcomes the obstruction. To determine v, one should

use the principle (s) of conservation of [TIAS 1994]
(a) Energy (b) Linear momentum
(c) Energy and linear momentum (d) Energy and angular momentum
IAS-1. Ans. (a)
v
h
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Previous Conventional Questions with Answers

Conventional Question IES-2004

Question: When are I-sections preferred in engineering applications? Elaborate your
answer.

Answer: I-section has large section modulus. It will reduce the stresses induced in the material.
Since I-section has the considerable area are far away from the natural so its section
modulus increased.
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Force Diagram

4. Bending Moment and Shear

Theory at a Glance (for IES, GATE, PSU)

4.1 Shear Force and Bending Moment

At first we try to understand what shear force is and what is bending moment?

We will not introduce any other co-ordinate system.
We use general co-ordinate axis as shown in the
figure. This system will be followed in shear force and
bending moment diagram and in deflection of beam.
Here downward direction will be negative i.e.
negative Y-axis. Therefore downward deflection of the

beam will be treated as negative.

Some books fix a co-ordinate axis as shown in the
following figure. Here downward direction will be
positive 1.e. positive Y-axis. Therefore downward
deflection of the beam will be treated as positive. As
beam is generally deflected in downward directions
and this co-ordinate system treats downward
deflection is positive deflection.

Consider a cantilever beam as shown subjected to
external load ‘P’. If we imagine this beam to be cut by
a section X-X, we see that the applied force tend to
displace the left-hand portion of the beam relative to
the right hand portion, which is fixed in the wall.
This tendency is resisted by internal forces between
the two parts of the beam. At the cut section a
resistance shear force (Vx) and a bending moment
(Mx) is induced. This resistance shear force and the
bending moment at the cut section is shown in the
left hand and right hand portion of the cut beam.

Using the three equations of equilibrium

DF=0,>F=0and)M=0

We find that V, =—P and M, =-P.x

In this chapter we want to show pictopg%gyng&zg

Y

= X

We use above Co-ordinate system

Y

Some books use above co-ordinate system
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variation of shear force and bending moment in a
beam as a function of ‘x' measured from one end of X

the beam.

Shear Force (V) = equal in magnitude but opposite in direction

to the algebraic sum (resultant) of the components in the

direction perpendicular to the axis of the beam of all external ‘ ol r _l: ! ' E_r
loads and support reactions acting on either side of the section :

being considered.

Bending Moment (M) equal in magnitude but opposite in . .
direction to the algebraic sum of the moments about (the :J I: C 6. f"f:' G;’f—?
centroid of the cross section of the beam) the section of all i - T g "
external loads and support reactions acting on either side of @

the section being considered.

What are the benefits of drawing shear force and bending moment diagram?

The benefits of drawing a variation of shear force and bending moment in a beam as a function of ‘x'
measured from one end of the beam is that it becomes easier to determine the maximum absolute
value of shear force and bending moment. The shear force and bending moment diagram gives a
clear picture in our mind about the variation of SF and BM throughout the entire section of the
beam.

Further, the determination of value of bending moment as a function of ‘X' becomes very important

so as to determine the value of deflection of beam subjected to a given loading where we will use the

2

formula, El vy =M

dx?

4.2 Notation and sign convention
e Shear force (V)

Positive Shear Force
A shearing force having a downward direction to the right hand side of a section or upwards
to the left hand of the section will be taken as ‘positive’. It is the usual sign conventions to be

followed for the shear force. In some book followed totally opposite sign convention.
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X
P

|
|
|
|
|
|
|
[
[
[
[
[
[
|
|
P X
The upward direction shearing The downward direction
force which is on the left hand shearing force which is on the

of the section XX is positive right hand of the section XX is

shear force. positive shear force.

Negative Shear Force
A shearing force having an upward direction to the right hand side of a section or downwards

to the left hand of the section will be taken as ‘negative’.

P LS
|
|
|
|
|
|
|
|
|
|
|
|
|

X P

The downward direction The upward direction shearing
shearing force which is on the force which is on the right
left hand of the section XX is hand of the section XX is

negative shear force. negative shear force.

e Bending Moment (M)
Positive Bending Moment
A bending moment causing concavity upwards will be taken as ‘positive’ and called as

sagging bending moment.
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+M_I /1 ¢
(e

Y

\

o
=

Sagging

X
If the bending moment of

of the

If the bending moment of A bending moment causing

the left hand of the section the right hand

XX is

concavity upwards will be

XX is clockwise then it is a  section anti- taken as ‘positive’ and

positive bending moment. clockwise then it is a called as sagging bending

positive bending moment. moment.

Negative Bending Moment

X
|
|
|
|
|
|
|
|
|

X

If the bending moment of
the left hand of the
section XX is anti-
clockwise then it is a

positive bending moment.

If the bending moment of
the right hand of the
section XX is clockwise
then it is a positive

bending moment.

-M @-M

Hogging
A bending moment causing
convexity upwards will be
taken as ‘negative’ and called

as hogging bending moment.

Way to remember sign convention

® Remember in the Cantilever beam both Shear force and BM are negative (-ive).

4.3 Relation between S.F (V,), B.M. (M,) & Load (w)
dV

X —
. = -W (load) The value of the distributed load at any point in the beam is

dx

equal to the slope of the shear force curve. (Note that the sign of this rule may change

depending on the sign convention used for the external distributed load).

dM

X —
o —  — VX The value of the shear force at any point in the beam is equal to the slope

dx

. P. 128 of 429
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4.4 Procedure for drawing shear force and bending moment diagram

Construction of shear force diagram

From the loading diagram of the beam constructed shear force diagram.

First determine the reactions.

Then the vertical components of forces and reactions are successively summed from the left
end of the beam to preserve the mathematical sign conventions adopted. The shear at a
section is simply equal to the sum of all the vertical forces to the left of the section.

The shear force curve is continuous unless there is a point force on the beam. The curve then
“jumps” by the magnitude of the point force (+ for upward force).

When the successive summation process is used, the shear force diagram should end up with
the previously calculated shear (reaction at right end of the beam). No shear force acts
through the beam just beyond the last vertical force or reaction. If the shear force diagram
closes in this fashion, then it gives an important check on mathematical calculations. i.e. The

shear force will be zero at each end of the beam unless a point force is applied at the end.

Construction of bending moment diagram

The bending moment diagram is obtained by proceeding continuously along the length of
beam from the left hand end and summing up the areas of shear force diagrams using proper

sign convention.

The process of obtaining the moment diagram from the shear force diagram by summation is

exactly the same as that for drawing shear force diagram from load diagram.

The bending moment curve is continuous unless there is a point moment on the beam. The

curve then “yumps” by the magnitude of the point moment (+ for CW moment).

We know that a constant shear force produces a uniform change in the bending moment,
resulting in straight line in the moment diagram. If no shear force exists along a certain
portion of a beam, then it indicates that there is no change in moment takes place. We also
know that dM/dx= Vx therefore, from the fundamental theorem of calculus the maximum or

minimum moment occurs where the shear is zero.

The bending moment will be zero at each free or pinned end of the beam. If the end is built
in, the moment computed by the summation must be equal to the one calculated initially for

the reaction.

4.5 Different types of Loading and their S.F & B.M Diagram

(i) A Cantilever beam with a concentrated load ‘P’ at its free end.
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Shear force: Y,
At a section a distance x from free end consider the forces to P;-ix b
the left, then (Vi) =- P (for all values of x) negative in sign XL “|k e
i.e. the shear force to the left of the x-section are in downward ’ X
direction and therefore negative. -IE’IE“ 3 Ig;a]gram |

X
Bending Moment: W -PL

B.M Diagram
S.F and B.M diagram

Taking moments about the section gives (obviously to the left
of the section) M. = -P.x (negative sign means that the
moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as negative
according to the sign convention) so that the maximum
bending moment occurs at the fixed end i.e. Mmax = - PL

(atx=1L)

(ii) A Cantilever beam with uniformly distributed load over the whole length

When a cantilever beam is subjected to a uniformly v K% w/unit length
distributed load whose intensity is given w /unit length. A

Shear force: P - X
Consider any cross-section XX which is at a distance of x from Iy

the free end. If we just take the resultant of all the forces on

the left of the X-section, then VxT .
Vx=-w.x for all values of x'. . l_\.,q_ "X
Atx=0, Vx=0 Mx SF Dia r

Atx =1L, Vx=-wL (i.e. Maximum at fixed end) : gram

Plotting the equation Vx = -w.x, we get a straight line »X
because it is a equation of a straight line y (Vx) = m(- w) .x - j_x-.L’
Bending Moment: B.M Diagram ! 2

Bending Moment at XX is obtained by treating the load to the
left of XX as a concentrated load of the same value (w.x) S.F and B.M diagram
acting through the centre of gravity at x/2.

Therefore, the bending moment at any cross-section XX is

X w.x?
M =(—W.X).E=— >

X
Therefore the variation of bending moment is according to parabolic law.

The extreme values of B.M would be
atx=0, Mx=0

wl?

andx=L, M= -
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2
wL

Maximum bending moment, M max — at fixed end

Another way to describe a cantilever beam with uniformly distributed load (UDL) over it’s whole

length.

Y ¥ YYY Y YYY VY Y YO

Ry

¥y _

L

(iii) A Cantilever beam loaded as shown below draw its S.F and B.M diagram

In the region 0 <x<a Y
Following the same rule as followed previously, we get P
= |
V. =-P; and M, =-P.x i X

In the regiona<x <L

Pl L
V,=-P+P=0; andM,=-P.x+P(x-a)=P.a V4 i i

I X

M 4 S.F.Diagram |

~Z

B.M Diagram v

i 3

S.F and B.M diagram

(iv) Let us take an example: Consider a cantilever bean of 5 m length. It carries a uniformly
distributed load 3 KN/m and a concentrated load of 7 kN at the free end and 10 kN at 3 meters from
the fixed end.

7kN 10 kN 3 kKMN/m
il

L

TR

=2 m-=
= Em =

Draw SF and BM diagram.
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Answer: In the region 0 <x<2m X
. . . 7 kM | 10 kM 3 kN/m
Consider any cross section XX at a distance x from free end. Lz
Shear force (Vi) = -7- 3x ! : X
X 4
So, the variation of shear force is linear. —
at x=0, Vx=-7TkN < | Em =
at x=2m,Vx=-7-3x2=-13kN }|{
at point Z Vx=-7-3x2-10=-23 kN
Y
x  3x?

Bending moment (M) = -T7x - (3x). E = —7 —7X

So, the variation of bending force is parabolic.

atx =0, Mx=0

2
atx=2m, Mx=-Tx2-(3x2) x Ez- 20 kNm
i <x<
In the region2m<x<5m 10 kN y 3 kN/m
Consider any cross section YY at a distance x from free . I{NY 7 !
end ! ; : X
: i
Shear force (Vy) =-7 - 3x—10=-17- 3x < X =
=2 M= U

So, the variation of shear force is linear. - 5m o

atx=2m, Vx=-23 kN
atx=5m, Vix=-32kN

Bending moment (My) = - 7x — (3x) x[%} -10 (x-2)

3 _17x 420
2

So, the variation of bending force is parabolic.
at x =2 m, Mx =—g><22 -17x2+20 =-20 kNm

at x =5 m, Mx=-102.5 kNm
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Y,
10 kN 3 kN/m
X
X
-32 kN
» X
£
=
=
LI
3 o
—Ex’ —17x+ 20 =
B.M Diagram

(v) A Cantilever beam carrying uniformly varying load from zero at free end and w/unit

length at the fixed end

wiunit length

T

[
L —

Consider any cross-section XX which is at a distance of x from the free end.

w
At this point load (wx) = r.x

L L
Therefore total load (W) = J-WXdX = J‘K.de L
5 oL 2

Shear force (Vx) = area of ABC (load triangle)

1(w wx?
=——|—X|Xx=-
2\ L 2L

.. The shear force variation is parabolic.
atx=0,V, =0

atx=L,V, = —% i.e. Maximum Shear force (V. )= —V2VL at fixed end
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Bending moment (M, ) = load x distance from centroid of triangle ABC
owx® (2x) . owx®
- _E'(?j T
.. The bending moment variation is cubic.
atx=0, M, =0
2

2
atx=L, M, = —Wfls' i.e. Maximum Bending moment (Mmax)z%at fixed end.

X
Y | wi/unit length
I
e
A , A X
= X —-—KE }\\
- L , =
e ' |
V. | .
| T :x
; Parabalic wl

5.F Diagram

M. _wxt
G~

Cubic

B.M Diagram

Alternative way: ( Integration method)

d(Vv
We know that (—X) =—load = —ﬂ.x
dx L

or d(VX):—%.x dx

Integrating both side

d(M")—V __Wx2
dx X 2L
2
or d(Mx)z-Vg—d
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Integrating both side we get (at x=0,M,=0)

My X wx?
jd(lle):— =2 dx
; 2L
3 3
or M= WX _ WX
2L 3 6L

(vi) A Cantilever beam carrying gradually varying load from zero at fixed end and

w/unit length at the free end

wiunit length

i

- L |

2
L and Reaction (RA)=W7L

Considering any cross-section XX which is at a distance of x from the fixed end.

W
At this point load (W, )= T.X

Considering equilibrium we get, M, =

Shear force (V, ) =R, —area of triangle ANM

X

wL 1 (w wL  wx®
= — | —X|Xx=+— -
2 2\L 2 2L

.. The shear force variation is parabolic.

atx=0,V, = +W7L i.e. Maximum shear force, V., = +W7L

atx=L,V, =0

wx? 2x

Bendi t (M )=R,.x- .
ending momen ( x) A oL 3 A

~wLowx® owl?

X
2 6L 3
.. The bending moment variation is cubic

2 2
at x=0, M, =—W3L i.e.Maximum B.M. (Mmax):—wila' .

atx=L, M =0

Page 135 of 429



Chapter-4

Bending Moment and Shear Force Diagram

wiunit length

B

P L |
Ve i |

X

2L

I
|
5.F Diagram |
I
|
|

(vii) A Cantilever beam carrying a moment M at free end

AT

L

Consider any cross-section XX which is at a distance of x from the free end.

Shear force: Vx = 0 at any point.

S K Mondal’s

Bending moment (Mx) = -M at any point, i.e. Bending moment is constant throughout the

length.
X
h i "
<f5— X —!*IK b :
-c—l L —'_--I
|
vt -
MXT 5.F Diagram
X

Mx;x;fﬁfﬁh‘f/ﬂ’
Apd i A S AS s SE

| B.M Diagram

(viii) A Simply supported beam with a concentrated load ‘P’ at its mid span.

P
|<—L ! 2—:-::— L2 — =
A
- T P
Considering equilibrium we get, R,= Ry = 5

Now consider any cross-section XX which is at a distance of x from left end A and section YY at

a distance from left end A, as shown in flgl&g%eb‘F%g\()%. 1429
Shear force: In the region 0 <x <L/2
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Vx=Ra=+P/2 (it is constant)

In the region L/2 <x <L
P
Vxi=Ra-P 25 -P=-P/2 (it is constant)
Bending moment: In the region 0 < x < L/2

M; = E .x  (its variation is linear)

atx=0, Mx=0 and atx=L/2Mx :T 1.e. maximum

_FE
T4

In the region L/2 <x <L

Maximum bending moment, M ma at x = [/2 (at mid-point)

My=—.x—-P(x-L/2)=—— — .x (its variation is linear)
2 2 2

atx=L/2,Mx=% and atx=L, Mx=0

hi i P \d
L [ 2
A _’l B X
s N
R}l RB
(—K—px
|
1 - . |
N ] - :
vt !
* |
+P/2 / |
Z »
-P/2
Mx“ S.F Diagram
PL
X
B.M Diagram

(ix) A Simply supported beam with a concentrated load ‘P’ is not at its mid span.

p
fe—— & St Ib'—!-l

3

=

C L ;

P P
Considering equilibrium we get, Ra= Tb and RB=—a

Now consider any cross-section XX which is at a distance x from left end A and another section

YY at a distance x from end A as showrPhadiguet dxslow.
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Shear force: In the range 0 <x<a

Pb

Vi=Ra= +T (it is constant)

In the range a<x <L

Pa
Vi=Ra-P=-—2
A L

(it 1s constant)
Bending moment: In the range 0 <x<a

M = +Ra.x = T X (it 1s variation is linear)

Pab
atx=0,Mx=0 and atx=a, Mx=——

In the range a<x <L

My =Ra.x - P(x- a) :?.X—P.X +Pa (Put b=L-a)

X
= ; _2
Pa (1 Pa(1 j)

Pab
at x=a, Mx= —— and at x=L, M:=0
Y, i pY
e—d e b —!-IH
A X
- = pa
=1 _Pb % Re R
A L % |
L ¥ .. |
F: L Y
V4 !
L
P
S.F Di L
M 4 .F Diagram
'_Pab
L»x
B.M Diagram

(i.e. maximum)

S K Mondal’s

(x) A Simply supported beam with two concentrated load ‘P’ from a distance ‘a’ both end.

The loading is shown below diagram
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Take a section at a distance x from the left support. This section is applicable for any value of x just

to the left of the applied force P. The shear, remains constant and is +P. The bending moment varies

linearly from the support, reaching a maximum of +Pa.

A section applicable anywhere between the two applied forces. Shear force is not necessary to
maintain equilibrium of a segment in this part of the beam. Only a constant bending moment of +Pa

must be resisted by the beam in this zone.

Such a state of bending or flexure is called pure bending.

Shear and bending-moment diagrams for this loading condition are shown below.

P

+P

S.F Diagram N

L

M 4

- X
B.M Diagram
(xi) A Simply supported beam with a uniformly distributed load (UDL) through out its
length
w/unitlength

L s

= L -

We will solve this problem by following two alternative ways.
(a) By Method of Section

wL
Considering equilibrium we get Ra = R = 7

Now Consider any cross-section XX which is at a distance x from left end A.
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Then the section view

Shear force: Vx = W7L — WX

(i.e. S.F. variation is linear)

wlL
at x=0, Vi=—
2
at X=L/2, Vx:O
at x= L, Vi = W_L
2
2
Bending moment: M, = W7L - W;(

(i.e. B.M. variation is parabolic)
at x= 0, M:=0
at x= L, Mx 0

Now we have to determine maximum bending

moment and its position.

. dM) o
For maximum B.M: =0 je. V, =0
ax
wL L
or —-wx=0 or x=—
2 2

Therefore, maximum bending moment, M max

(a) By Method of Integration

Shear force:

We know that, ————==-w

ax

or d(V,)=-wdx

wL
Integrating both side we get (at x =0, Vi =7)

Bending Moment and Shear Force Diagram

S K Mondal’s
X
|
A;J'MLLL'IH I;) M,
wiL |
3 X! Vx
‘lT.'
: wiunitlength
A B X
R‘fiﬁ o _ WL
et —x—al., B = ?
= L |
V.a
wl
_?%%
=X
()7 wlL
S.F Diagram o
mf L
2
]
wiF
3 ®
¥ > X
B.M Diagram
d(M,) v
dx X
2
wL
= at x =L/2
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or VX—W—L:—Wx
2

orV, :W—L—wx
2

Bending moment:

We know that, M =V,
dx

or d(M,)=V,dx = (W?L - wxj dx

Integrating both side we get (at x =0, Vx =0)
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Dot {
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Y, X lSDDDN
200N /m!
I

wn]
-4

v;\
2100 M 1300 N

1700 N 1700 N
5.F Diagram
’-U] A
Farapolic® 6800 Nm
B.M Diagram 2

(xii) A Simply supported beam with a gradually varying load (GVL) zero at one end and

w/unit length at other span.

w/unitlength

Al “B
o

T

= L =

1
Consider equilibrium of the beam ZEWL acting at a point C at a distance 2L/3 to the left end A.

D> M, =0 gives
rR.L-ML_p
2 3
wL
orR, =—
"6

Similarly Y'M, =0 gives R, = WTL

W
The free body diagram of section A - XX as shown below, Load at section XX, (wx) :fx
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W

W,=—X
X L
u
X
X X
R wl i

A7 g wx* v

2L )
. : : . w wx?
The resulted of that part of the distributed load which acts on this free body is = E(X)rx = oL

applied at a point Z, distance x/3 from XX section.

wx? wL  wx?

Shear force (Vx) = R, - U6 ol

Therefore the variation of shear force is parabolic

atx =0, VX=W—L
wL
atx=L, Vyi=-—
3

and Bending Moment (M,) = W?L.x W X W—L.x _ WX

The variation of BM is cubic
atx=0, Mc=0
at X = L, Mx = 0

d(M d(M
For maximum BM; ( X) =0 eV, =0 ( X) =V,
dx dx
wL wx? L
or —-——=0 or Xx=—
6 2L 3

ie. M —_ at x=
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X
v wl
R vl X X :EL Rel= 3
4 T J—
B L 2 .
wa_\
wil
L2 »X
L =1 W )
*_/ﬁ_* T3y WL _wx
M 5.F Diagram T
. | wl  wx®
Z M = ¥——
@ WL T T TRL
943 |
B.M Diagram "X

S K Mondal’s

(xiii) A Simply supported beam with a gradually varying load (GVL) zero at each end and

w/unit length at mid span.

= >
v
\l_
O
-

R, =

&
]
|

[ ]

Therefore R, =R; _wt

The free body diagram of section A —XX as shown below, load at section XX (wx) =

2
The resultant of that part of the distributed load which acts on this free body is = 1.X.2—W.X _ WX

applied at a point, distance x/3 from section XX.

Shear force (Vx): Page 145 of 429
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In the region 0 < x < L/2

wx?  wL  wx?

V.)=R, -— ="—_
(Vi) =Ra L 4 L

Therefore the variation of shear force is parabolic.

wi
4

at x = L/4, V=0
In the region of L/2 <x <L

atx=0, Vi =

The Diagram will be Mirror image of AC.

Bending moment (Mx):
In the region 0 < x < L/2

3
M _wb x—(l.x.—zrx).(xm):W—L- WX

x4 4 3L

The variation of BM is cubic
atx=0, Mx=0
at x = L/2, Mx =W—L2
12
In the region L/2 <x <L
BM diagram will be mirror image of AC.

For maximum bending moment

IM) 5 e v =0 {.-d('\"x):vx}
dx dx
2
weow L
2
2
andM__ _wt
12

I\/Imax :W—L2 >
12 °
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S K Mondal’s
W
Y
A B2 =X
i C o
wi L L R - wi
R, =— 2 % B =
A 4 b= E- - 4
V. A

=X
S.F Dlagraw WL,

2
® w"ﬂz

M

»X
B.M Diagram

(xiv) A Simply supported beam with a gradually varying load (GVL) zero at mid span and
w/unit length at each end.

v

P e

We now superimpose two beams as

(1) Simply supported beam with a UDL Y

through at its length
wiunit length
wL
(Vx)1 = 7— WX  EEEEEIEEEEEEEEREE EELE]
i X
M) - WL wx? A
(M), =—-x~
2 2

wi/unit length

And (2) a simply supported beam with a gradually varying load (GVL) zero at each end and w/unit
length at mind span.

In the range 0 <x < L/2

wL  wx?
Vi), =

4 L
wL wx?
M) == -
( X)2 4 X 3L

Now superimposing we get
Shear force (Vx):
In the region of 0< x < L/2
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v, = (), ~(V,), [W?ij(w_twj

4 L
=¥ (x-L2)
Therefore the variation of shear force is parabolic
wL
atx =0, Vi=+—
4

at x =L/2, V=0
In the region L/2 <x <L

The diagram will be mirror image of AC

Bending moment (Mx) = (Mx )1 - (Mx )2 =

B W_LX_WX2 ~ w_LX_wx3 _wx"’_wx2
|27 2 4" 3L) 3L 2

The variation of BM is cubic

atx =0, M =0
2

atx =L/2, M=
24

wiunit length

X

: wiunit Iength;

B.M. Diagram

(xv) A simply supported beam with a gradually varying load (GVL) wi/unit length at one

end and wz2/unit length at other end.
'\TJ

w./unit length

X

L e
=]
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At first we will treat this problem by considering a UDL of identifying (wi1)/unit length over the

whole length and a varying load of zero at one end to (wez- wi)/unit length at the other end. Then

superimpose the two loadings.

(W,-w, }/unit length

YYY Yy Y ¥ ¥ .lliﬁllll1"|rl"".”.t Iength

ois B

Consider a section XX at a distance x from left end A

(1) Simply supported beam with UDL (w1) over whole length

(VX)1 =W_1L_W1X
(M), = W21L .x—%w1x2

And (i1) simply supported beam with (GVL) zero at one end (wz- w1) at other end gives

(w, -w,) (W, -w,)x*

V) = _
( X)2 6 2L
L (w, —w,)x°
(M), =(w, —W1).€.x—26—L1
Now superimposing we get
2
Shear force(V,) = (V,), +(V, ), = W:;L N WéL —wx = (wy - w) 2

.. The SF variation is parabolic

=W—1L+W—2L=£(2W1 +W,)

atx = 0, V,
3 6 6

atx=L, V =- %(w1 +2W,)

+(M,), = Wik Wik —1w1x2 —[WZ_W1 j.xs

Bending moment (Mx) = (Mx )1

2 3 6 2
.. The BM variation is cubic.

atx=0, M, =0
atx =L, M, =0
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v
w./unit length

——
= - j

et TI]] Jrwysneionge

v 4 ¢w. /unit length
B

Yy ¥Y¥YyYyVvyY¥Y

A‘II' YYvyy

2W W }I—\( Parabolic

=X
S.F Dlagra\\@' L

—(W1+2WE}
M Cubic '

x

@

X
B.M Diagram

(xvi) A Simply supported beam carrying a continuously distributed load. The intensity of

. X
the load at any point is, w, = WSIn(Tj . Where ‘%’ is the distance from each end of

the beam.
W, =W Sin | E
¥ /
/(lvﬂ_l Y ¥y m
| X
B — S
/2 _./2

We will use Integration method as it is easier in this case.

d(Vy) d(M,)
We know that =load and —>=V
dx dx

Vv
Therefore M =—-w sin X
dx L
d(V,)=-w sin(ﬂij dx
Integrating both side we get

WCOS(”LXJ .
J‘d(VX)__WJ‘SIn( L jdx or Vi=t—7""+ A=+W—COS(”TXJ+A

[where, A = constant of Integration]
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Again we know that

d(M
_( ")=VX or d(M,)=V, dx= W—Lcos X4 Aldx
dx Vs L

Integrating both side we get

wL . [ 7Xx
oo L wlL? X
M =ﬁ—+Ax+B=—Zsin(ﬂTJ+Ax+B

X T T

L
[Where B = constant of Integration]
Now apply boundary conditions
At x=0, Mx=0 and at x=L, M:=0
This gives A=0and B=0

.. Shear force (VX)=W—Lcos(ﬂ—Xj and Vo WL atx =0
7 L 7
2
And M, ="t sin(ﬂ—xj
7 L
2
M, =t atx=L/2
T
W, =W sin [ 2
\f‘l |_¥ L -I
m Y Yy m
-~ L -
/"2 /2

e e

wlL  (ax)

V. = —cos ——
S A

L9

~_ 0 "
5.F Diagram i

B.M Diagram

(xvii) A Simply supported beam with a couple or moment at a distance ‘a’ from left end.

Considering equilibrium we get
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>'M, =0 gives

RgxL+M=0 or RB=—¥
and Y M, =0 gives

-R,xL+M=0 or R, =¥

Now consider any cross-section XX which is at a distance X’ from left end A and another section YY

at a distance X’ from left end A as shown in figure.

Y X
. Y
! M !
A b B
— ' ! =X
s—Xx—= Ay
_r'-'1 le——a — b RE,:-E
AT |
L L : H
K _—"
Y
In the region 0 <x<a
M
Shear force (Vx) = Ra = f
. M
Bending moment (Mx) = Ra.x = f X
In the region a<x <L
M
Shear force (Vx) = Ra = r
. M
Bending moment (Mx) = Ra.x—M = T x-M
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X Y,
A L ' B
T i1 I | x
X—x—= | i
R _M le——a d—h—;—) R:—-—
T | L
L
X -
Y
'
VK
1 h,:!_,L M/L - x
5.F Diagram
Mxn
M M

X
hﬂi.h\/
B.M Diagram

(xviii) A Simply supported beam with an eccentric load

=]
2|

A B
|

]
%;Lz_pk_]ﬂz.ﬁ

Actual lnaded beam

S K Mondal’s

When the beam is subjected to an eccentric load, the eccentric load is to be changed into a couple =

Force x (distance travel by force)
=P.a (inthiscase) and a force =P
Therefore equivalent load diagram will be

=
v |
A
r
T
[+1]
m

[ il ]

?7_ — ; a
L2 —wf—L
P Pa I _ﬁ‘

R,=—+ Rg=

FP.a
L

ra |

E quivalent lnaded beam

Considering equilibrium
DM, =0 gives
-P.L/2)+P.a+Rs xL=0
P P.a P P.a

orRe=——-—— and Ra+Rp=PgivesRa= —+—
2 L 2 L

Now consider any cross-section XX which is at a distance x’ from left end A and another section YY

at a distance ‘%’ from left end A as shown in figure.
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! X i Y,
A | M = P.Eh B
Ae—x— U i X
MY, GNP,
L -
X Y
In the region 0 <x <L/2
P P.a
Shear f ==+ —
ear force (Vy) > 1
Bending moment (Mx) = Ra. x = [; + %j . X
In the region L/2<x<L
P P P P
Shear force (Vi) =— +-2 P =. .42
2 L 2 L
Bending moment (Vx) = Ra.x—P.(x-L/2)-M
_PL_(P_Pa) pa
2 2 L
! x " Y.
A | = P.El| B
e—x—= UV i X
e | /2 — | f7 +—
L .
X .i"-
Vli
+P.a
2 L
P Pz X
M 4 S.F. Diagram 2t
PL _Pa
P
PL_Pa
=X
B.M Diagram

4.6 Bending Moment diagram of Statically Indeterminate beam

S K Mondal’s

Beams for which reaction forces and internal forces cannot be found out from static equilibrium
equations alone are called statically indeterminate beam. This type of beam requires deformation

equation in addition to static equilibrium equations to solve for unknown forces.

Statically determinate - Equilibrium conditions sufficient to compute reactions.

Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium equations

should be used to find out reactions.
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R

+

V BM

AN

M, %Wv) M,

BMp
M.\C e = ‘L —b—»
R, > x
+

‘ - BM. ﬂ

i
m!mg

#*  Unitlength
Ww.ﬂ{u:\r"-\ﬁ

FalLi2 =z

Bending Moment and Shear Force Diagram
Type of Loading & B.M Diagram

M (] M,
,{L—'x

Reaction

P
Ra=Rp= —
2

wL
Ra=Rp=—-
2

Pb*
L3

Pa
LS

R, =

(3a+b)

2
R, == (3b+a)
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2

wL
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4.7 Load and Bending Moment diagram from Shear Force diagram
OR
Load and Shear Force diagram from Bending Moment diagram

If S.F. Diagram for a beam is given, then
(1) If S.F. diagram consists of rectangle then the load will be point load
(1) If S.F diagram consists of inclined line then the load will be UDL on that portion
(1) If S.F diagram consists of parabolic curve then the load will be GVL
(iv) If S.F diagram consists of cubic curve then the load distribute is parabolic.
After finding load diagram we can draw B.M diagram easily.
If B.M Diagram for a beam is given, then
(1) If B.M diagram consists of inclined line then the load will be free point load
(i) If B.M diagram consists of parabolic curve then the load will be U.D.L.
(1) If B.M diagram consists of cubic curve then the load will be G.V.L.

(1v) If B.M diagram consists of fourth degree polynomial then the load distribution is
parabolic.

Let us take an example: Following is the S.F diagram of a beam is given. Find its loading

%EN
El EQL

e 3m ——>

Answer: From A-E inclined straight line so load will be UDL and in AB = 2 m length load = 6 kN if

diagram.

5m i

A B

(-)

UDL is w N/m then w.x =6 or wx2 =6 or w = 3 kN/m after that S.F is constant so no force is

there. At last a 6 kN for vertical force complete the diagram then the load diagram will be

3 kKN/m

2 m—r 3m—-T

As there 1s no support at left end it must be a cantilever beam.

——
|
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: 3 kN/m

e

k—2 m—- 3m

4.8 Point of Contraflexure

S K Mondal’s

In a beam if the bending moment changes sign at a point, the point itself having zero bending

moment, the beam changes curvature at this point of zero bending moment and this point is called

the point of contra flexure.

Consider a loaded beam as shown below along with the B.M diagrams and deflection diagram.

*)

B

Ceflectsd shape of

In this diagram we noticed that for the beam loaded as in this case, the bending moment diagram is

partly positive and partly negative. In the deflected shape of the beam just below the bending

moment diagram shows that left hand side of the beam is ‘sagging' while the right hand side of the

beam is ‘hogging’.

The point C on the beam where the curvature changes from sagging to hogging is a point of

contraflexure.

® There can be more than one point of contraflexure in a beam.

4.9 General expression

4
. mdfz—
dx
3
. E[%:Vx
X
2
. EIZXJZ}:MX
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d
g
dx

= slope

e y=0 = Deflection
e Flexural rigidity = EI
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Shear Force (S.F.) and Bending Moment (B M )

GATE-1. A concentrated force, F is applied >
(perpendicular to the plane of the figure) on
the tip of the bent bar shown in Figure. The
equivalent load at a section close to the fixed
end is:

(a) Force F

(b) Force F and bending moment FL

(¢) Force F and twisting moment FL

(d) Force F bending moment F L, and twisting F& X
moment FL :

AR

»

[GATE-1999]

A
—

GATE-1. Ans. (c)

GATE-2. The shear force in a beam subjected to pure positive bending is......

(positive/zero/negative) [GATE-1995]
GATE-2. Ans. Zero

Cantilever

GATE-3. Two identical cantilever beams are supported as shown, with their free ends in
contact through a rigid roller. After the load P is applied, the free ends will
have [GATE-2005]

k

AN

i
]

AN

(a) Equal deflections but not equal slopes

(b)  Equal slopes but not equal deflections

(¢) Equal slopes as well as equal deflections
(d) Neither equal slopes nor equal deflections

GATE-3. Ans. (a) As it is rigid roller, deflection must be same, because after deflection they also
will be in contact. But slope unequal.

GATE-4. A beam is made up of two p
identical bars AB and BC, by
hinging them together at B. The l
end A is built-in (cantilevered)
and the end C is simply- |
supported. With the load P acting L/2 | AN
/ :

i
as shown, the bending moment at -
Ais: L L

SRR
o

[GATE-2005]
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PL
(a) Zero (b) 7

GATE-4. Ans. (b)

Bending Moment and Shear Force Diagram

(0

S K Mondal’s
3PL

2

(d) Indeterminate

Cantilever with Uniformly Distributed Load

GATE-5.

(a) A straight line
GATE-5. Ans. (d)

The shapes of the bending moment diagram for a uniform cantilever beam
carrying a uniformly distributed load over its length is:
(b) A hyperbola

[GATE-2001]

(c) An ellipse (d) A parabola

x x
M, = -wi s - —w i
= =

Cantilever Carrying load Whose Intensity varies

GATE-6. A cantilever beam carries the anti-
symmetric load shown, where wo is
the peak intensity of the
distributed load. Qualitatively, the
correct bending moment diagram

for this beam is:

(a)

/
"

GATE-6. Ans. (d)

. :
| [GATE-2005]
(b)
(d)
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W
I N

L

L
B e _

m’mﬂ’mﬂﬂ“’

(EEEEEEEEEEEE

3

~wx? o wx

2 6L

Simply Supported Beam Carrying Concentrated Load

GATE-7. A concentrated load of P acts on a simply supported beam of span L at a

L
distance E from the left support. The bending moment at the point of

application of the load is given by [GATE-2003]
PL 2PL PL 2PL
a)— b)— c)— d)—
(a) 3 (b) 3 () 5 (d) 5
GATE-7. Ans. (d) P
P x E X %
v _Pab__"(3)\3) 2pL a3 — b —

© L 9 T‘ c ..T

- |-|

GATE-8. A simply supported beam carries a load 'P' L a
through a bracket, as shown in Figure. The
maximum bending moment in the beam is
(a) PI/2 (b) PI/2 + aP/2
() PI/2 + aP () PI/2 — aP f I
* 2L "

[GATE-2000]

-Px V) -Pa+R|=0

GATE-8. Ans. (c¢)
Taking moment about Ra /IX"E!

or R —b4+p2 R -P_p2 T“- &T
2 I 2 I
Maximum bending moment will be at centre ‘C’ ‘
Pl

=M, :Raxl+P><a+Rb><l orM, , =—+Pa
2 2 2

BMD

Simply Supported Beam Carrying a Uniformly
Distributed Load

Statement for Linked Answer and Questions Q9-Q10:
A mass less beam has a loading pattern asgheygnsin the figure. The beam is of rectangular
cross-section with a width of 30 mm and height of 100 mm. [GATE-2010]
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3000Nm™?
A By vy vvvyC
. 2000 \‘, 2000 |
-

GATE-9. The maximum bending moment occurs at
(a) Location B (b) 2675 mm to the right of A
(c) 2500 mm to the right of A (d) 3225 mm to the right of A
GATE-9. Ans. (C)
3000 N/m

y

!

R, R,
R,+R, = 3000x 2 = 6000N

R,x4-3000x2x1=0

R, = 1500,

S.F. eq". at any section x from end A.

R, -3000x(x-2)=0 {for  x>2m}
X=25m.

GATE-10. The maximum magnitude of bending stress (in MPa) is given by

(a) 60.0 (b) 67.5 (c) 200.0 (d) 225.0
GATE-10. Ans. (b)

Binding stress will be maximum at the outer surface

So taking 9 = 50 mm

3
and]=% & (7=deTSO
14,
2

m, :1.5x103[2000+x]—%

" Mgy =3.375x10° N —mm

3.375x10°x50x12
O =

30x100° =67.5 MPa

Data for Q11-Q12 are given below. Solve the problems and choose correct
answers

A steel beam of breadth 120 mm and - 120 KN/m

height 750 mm is loaded as shown in the

figure. Assume Esteei= 200 GPa.

15m

[GATE-2004]
GATE-11. The beam is subjected to a maximum bending moment of
(a) 3375 kNm (b) 4750 192%2162 ofazg (©) 6750 kNm (d) 8750 kNm
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2 2
GATE-11. Ans. (a) M, , = % - %kNm = 3375kNm
GATE-12. The value of maximum deflection of the beam is:
(a) 93.75 mm (b) 83.75 mm (c) 73.75 mm (d) 63.75 mm
3 0.12x(0.75)°
GATE-12. Ans. (a) Moment of inertia (I) = % = # =4.22x10"°m*
5 wl 5 120x10° x15*

m=93.75mm

mx =384 El 384 200x10° x4.22x10°

Statement for Linked Answer and Questions Q13-Q14:
A simply supported beam of span length 6m and 75mm diameter carries a uniformly
distributed load of 1.5 kN/m [GATE-2006]

GATE-13. What is the maximum value of bending moment?
(a) 9 kNm (b) 13.5 kNm (c) 81 kNm (d) 125 kNm

2 2
GATE-13. Ans. (a) M,,, =% _15x6

=6.75kNm But not in choice. Nearest choice (a)

GATE-14. What is the maximum value of bending stress?
(a) 162.98 MPa (b) 325.95 MPa (c) 625.95 Mpa (d) 651.90 Mpa

3
GATE-14. Ans. (a) o =221 _32x6.75x10" . 162 98MPa

zd® 7% (0.075)°

Simply Supported Beam Carrying a Load whose
Intensity varies Uniformly from Zero at each End to w
per Unit Run at the MiD Span

GATE-15. A simply supported beam is

subjected to a distributed W N/m
loading as shown in the
diagram given below:
What is the maximum shear
force in the beam? AN
(a) WL/3 (b) WL/2 ;ﬁ;
_
(c) WL/3 (d) WL/6 L ————y
[TES-2004]
GATE-15. Ans. (d) Total load =+ xLx W = V&
2 2
WL S —M_lx ﬂxx —M_sz
4 27| L 4 L
2
WL
WL/4 Smax atx-0 =4

GATE-16. A simply supported beam of length 'l' is subjected to a symmetrical uniformly
varying load with zero intensity at the ends and intensity w (load per unit
length) at the mid span. What is the maximum bending moment? [IAS-2004]

Page 163 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

3wl? wi? wi? Swi?
(a) 2 (b) E (d)

© — -
24 12
GATE-16. Ans. (b)

Previous 20-Years IES Questions

Shear Force (S.F.) and Bending Moment (B.M.)

IES-1. A lever is supported on two 2 kN
hinges at A and C. It carries a
force of 3 kN as shown in the
above figure. The bending

. I'm
moment at B will be
(a) 3 kN-m (b) 2 kN-m A l B c
(©) 1 kN-m (d) Zero . * —e
le—1 m—sfe—1 m —sfa—1 m —+|
[TES-1998]
IES-1. Ans. (a)
IES-2. A beam subjected to a load P is shown in ta— L/ 2—wtm— L 72—
the given figure. The bending moment at 4 A
the support AA of the beam will be 4 $
(a) PL (b) PL/2 , L/2
(c) 2PL (d) zero
2 4
[TES-1997]
PL . {A
IES-2. Ans. (b) Load P at end produces moment — in 3 A
P
anticlockwise direction. Load P at end T
produces moment of PL in clockwise Pl pL P
direction. Net moment at AA is PL/2. —V
2 PxL
p—
IES-3. The bending moment (M) is constant over a length segment (I) of a beam. The
shearing force will also be constant over this length and is given by [IES-1996]
(a) M1 (b) M/21 (c) M/41 (d) None of the above
IES-3. Ans. (d) Dimensional analysis gives choice (d)
IES-4. A rectangular section beam subjected to a bending moment M varying along its

length is required to develop same maximum bending stress at any cross-
section. If the depth of the section is constant, then its width will vary as

[TES-1995]
(a)M (b)) VM (c) M2 (d) /M
M bh?
IES-4. Ans. (a) T =const. and = Ty
IES-5. Consider the following statements: [TES-1995]

If at a section distant from one of the ends of the beam, M represents the
bending moment. V the shear force and w the intensity of loading, then
1.dM/dx =V 2.dV/idx =w
3. dw/dx =y (the deflection of the beam at the section)
Select the correct answer using the codes given below:
(a) 1and 3 (b) 1 and 2 (¢)2and 3 (d) 1,2 and 3
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Cantilever

IES-6. The given figure shows a beam BC simply supported at C and hinged at B (free
end) of a cantilever AB. The beam and the cantilever carry forces of

200 kg 100 kg
| 8 | c
1m+1m—+—~1m—-{-—-— i

100 kg and 200 kg respectively. The bending moment at B is: [TES-1995]
(a) Zero (b) 100 kg-m (c) 150 kg-m (d) 200 kg-m
IES-6. Ans. (a)

SOSRRN
7 =

IES-7. Match List-I with List-Il and select the correct answer using the codes given

below the lists: [IES-1993]
List-I List-I1

(Condition of beam) (Bending moment diagram)

A.  Subjected to bending moment at the 1. Triangle
end of a cantilever

B. Cantilever carrying uniformly distributed 2. Cubic parabola
load over the whole length

C. Cantilever carrying linearly varying load 3. Parabola

from zero at the fixed end to maximum at
the support

D. A beam having load at the centre and 4. Rectangle
supported at the ends
Codes: A B C D A B C D
(a) 4 1 2 3 (b) 4 3 2 1
() 3 4 2 1 (d) 3 4 1 2
IES-7. Ans. (b)
IES-8. If the shear force acting at every section of a beam is of the same magnitude
and of the same direction then it represents a [TES-1996]

(a) Simply supported beam with a concentrated load at the centre.
(b) Overhung beam having equal overhang at both supports and carrying equal
concentrated loads acting in the same direction at the free ends.
(¢) Cantilever subjected to concentrated load at the free end.
(d) Simply supported beam having concentrated loads of equal magnitude and in the
same direction acting at equal distances from the supports.
IES-8. Ans. (¢)

Cantilever with Uniformly Distributed Load

IES-9. A uniformly distributed load @ (in kN/m) is acting over the entire length of a 3
m long cantilever beam. If the shear force at the midpoint of cantilever is 6 kN,

what is the value of @ ? [TES-2009]
(a) 2 () 3 (c) 4 (d)5
IES-9. Ans. (c¢)
E b
e 3

Shear force at mid point of cantilever

2
= ®X3=6
2
= 0=2"2_4kN/m
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IES-10.
below the Lists:
List-I
{Cantilever
Loading)

Py Py

w

Code: A B C D
(a 1 5 2 4
¢ 1 3 4 5
IES-10. Ans. (b)
IES-11. The shearing force diagram for a
beam is shown in the above figure.
The bending moment diagram is
represented by which one of the
following?

(a)

(C)A

C

Bending Moment and Shear Force Diagram
Match List-I with List-II and select the correct answer using the code given

S K Mondal’s

[TES-2009]
List-JT
{Shear Force
Diagram)

A B
[TES-2008]

(b)A B

(\/

C

(d

IES-11. Ans. (b) Uniformly distributed load on cantilever beam.
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Iy
- X w / length

"y Ry

2
s

SN |

IES-12. A cantilever beam having 5 m length is so loaded that it develops a shearing
force of 20T and a bending moment of 20 T-m at a section 2m from the free end.
Maximum shearing force and maximum bending moment developed in the
beam under this load are respectively 50 T and 125 T-m. The load on the beam
is: [IES-1995]
(a) 25T concentrated load at free end
(b) 20T concentrated load at free end
(¢) 5T concentrated load at free end and 2 T/m load over entire length
(d) 10 T/m udl over entire length

IES-12. Ans. (d)

Cantilever Carrying Uniformly Distributed Load for a
Part of its Length

IES-13. A vertical hanging bar of length L. and weighing w N/ unit length carries a load
W at the bottom. The tensile force in the bar at a distance Y from the support
will be given by [TES-1992]

Q) Wrwl  (O)WewlZ—y) ()W +w)y/L (d)W+%(L—y)
IES-13. Ans. (b)

Cantilever Carrying load Whose Intensity varies

IES-14. A cantilever beam of 2m length supports a triangularly distributed load over
its entire length, the maximum of which is at the free end. The total load is 37.5
kN.What is the bending moment at the fixed end? [IES 2007]
(a) 50%x 106 N mm (b) 12.5x 106 N mm (c) 100 X108 N mm (d) 25% 108 N mm
IES-14. Ans. (a)
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e 2m »|

7
Z N
inm —

4
M=375x% E KNm = 50% 108 Nmm

Simply Supported Beam Carrying Concentrated Load

IES-15.

Assertion (A): If the bending moment along the length of a beam is constant,
then the beam cross section will not experience any shear stress. [TES-1998]
Reason (R): The shear force acting on the beam will be zero everywhere along
the length.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Aistrue but R is false

(d) Ais false but R is true

IES-15. Ans. (a)

IES-16.

Assertion (A): If the bending moment diagram is a rectangle, it indicates that
the beam is loaded by a uniformly distributed moment all along the length.
Reason (R): The BMD is a representation of internal forces in the beam and not
the moment applied on the beam. [TES-2002]
(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Aistrue but R is false

(d) Ais false but R is true

IES-16. Ans. (d)

IES-17.

The maximum bending moment in a simply supported beam of length L loaded

by a concentrated load W at the midpoint is given by [TES-1996]
(a) WL (b) WL (© WL (d) WL
a — c) — —

2 4 8

IES-17. Ans. (¢)

IES-18.

IES-18. An

IES-19.

IES-19. An

A simply supported beam is w 2w W

loaded as shown in the above

figure. The maximum shear force l l l

in the beam will be

(a) Zero b) W T —.I

(c) 2W (d) 4W re— ( —ota— C —sf+— C —s}+—C
[TES-1998]

s. (¢)

If a beam is subjected to a constant bending moment along its length, then the

shear force will [IES-1997]

(a) Also have a constant value everywhere along its length

(b) Be zero at all sections along the beam

(¢ Be maximum at the centre and zero at the ends (d) zero at the centre and
maximum at the ends

s. (b)
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IES-20. A loaded beam is shown in W W
the figure. The bending
moment diagram of the — L —
beam is best represented as:
Y ¥
'3 &
[‘- L i 2L o L ——
[TES-2000]

) AN PN N

IES-20. Ans. (a)
IES-21. A simply supported beam has equal over-hanging lengths and carries equal
concentrated loads P at ends. Bending moment over the length between the

supports [TES-2003]
(a) Is zero (b) Is a non-zero constant
(c) Varies uniformly from one support to the other (d) Is maximum at mid-span
IES-21. Ans. (b)
IP !P
R, R,
Y T
i
T i j
L0
s
IES-22. The bending moment diagram for the case shown below will be q as shown in
W W
A L . B
a a a

[TES-1992]
IES-22. Ans. (a)
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IES-23. Which one of the following w W
portions of the loaded beam
shown in the given figure is -— | —f——— 9] - { —=
subjected to pure bending? A . A . E
(a) AB (b)DE T B C D T
(c) AE (d) BD -—]—
[TES-1999]
IES-23. Ans. (d) Pure bending takes place in the section between two weights W
IES-24. Constant bending moment over span "I" will occur in [TES-1995]
| |
4 |
1 % f —1
@) (b
w w w
1 | | |
I b t Lo
{c} {d)
IES-24. Ans. (d)
IES-25. For the beam shown in the above p P
figure, the elastic curve between the
supports B and C will be:
(a) Circular (b) Parabolic
(c) Elliptic (d) A straight line ’4}(_ B % c
L a v 2h L a L~
| A A 4
[IES-1998]

IES-25. Ans. (b)

IES-26. A beam is simply supported at its ends and is loaded by a couple at its mid-span
as shown in figure A. Shear force diagram for the beam is given by the figure.

[TES-1994]
0 (k,{ ) (8)
(C) (D) (E)
(a) B ) C (0D (d) E

IES-26. Ans. (d)

IES-27. A beam AB is hinged-supported at its ends and is loaded by couple P.c. as
shown in the given figure. The magnitude or shearing force at a section x of the

beam is: [TES-1993]
F
|
yis c B
. i ! .
; |
| ; i
—_— plp |
e L > L -
(a)0 (b) P (c) PI2L (d) P.c./2L
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IES-27. Ans. (d) If F be the shearing force at section x (at point A), then taking moments about B, F
x 2L =Pc

or F= Pe Thus shearing force in zone x = Pe
2L 2L

Simply Supported Beam Carrying a Uniformly
Distributed Load

IES-28. A freely supported beam at its ends carries a central concentrated load, and maximum
bending moment is M. If the same load be uniformly distributed over the beam length,

then what is the maximum bending moment? [TES-2009]
M M
(a) M (b) > (c) EY (d) 2M
IES-28. Ans. (b)
W
W T
5 [l —pe—12 —~‘—.T g

BM,, =Vt _
4

Where the Load is U.D.L.
Maximum Bending Moment

()
g

8 2\ 4

Page 171 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

Simply Supported Beam Carrying a Load whose
Intensity varies Uniformly from Zero at each End to w
per Unit Run at the MiD Span

IES-29. A simply supported beam is
subjected to a distributed W N/m
loading as shown in the
diagram given below:
What is the maximum shear
force in the beam?

(a) WL/3 (b) WL/2 ,,{7%7_ ’%’

(©) WL/3 (d) WL/6
) L —
[TES-2004]
1ES-29. Ans. (d) Total load = - xLx W = VE
2 2
WL 1| w WL Wx?
/ S, =— ——X| —xX|=—2-
i «“T4 2L 4 L
2
WL
WL/4 Smax atx-0 =4

Simply Supported Beam carrying a Load whose
Intensity varies

IES-30. A beam having uniform cross-section carries a uniformly distributed load of
intensity q per unit length over its entire span, and its mid-span deflection is 6.

The value of mid-span deflection of the same beam when the same load is
distributed with intensity varying from 2q unit length at one end to zero at the
other end is: [IES-1995]
(a) 1/3 8 (b) 1/28 (c) 2/38 (d) &

IES-30. Ans. (d)

Simply Supported Beam with Equal Overhangs and
carrying a Uniformly Distributed Load

IES-31. A beam, built-in at both ends, carries a uniformly distributed load over its
entire span as shown in figure-I. Which one of the diagrams given below,
represents bending moment distribution along the length of the beam?

[TES-1996]
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o udl
ivmm*ﬁg Fig-l
7 g

-

(a)

IES-31. Ans. (d)

The Points of Contraflexure

IES-32. The point: of contraflexure is a point where: [TES-2005]
(a) Shear force changes sign (b) Bending moment changes sign
(c) Shear force is maximum (d) Bending moment is maximum

IES-32. Ans. (b)

IES-33. Match List I with List II and select the correct answer using the codes given

below the Lists: [TES-2000]

List-I List-I1

A. Bending moment is constant 1. Point of contraflexure

B. Bending moment is maximum or minimum 2. Shear force changes sign

C. Bending moment is zero 3. Slope of shear force diagram is
zero over the portion of the beam

D. Loading is constant 4. Shear force is zero over the

portion of the beam

Code: A B C D A B C D
(@ 4 1 2 3 (®) 3 2 1 4
() 4 ) 1 3 (d) 3 1 2 4

IES-33. Ans. (b)

Loading and B.M. diagram from S.F. Diagram

IES-34. The bending moment diagram shown in Fig. I correspond to the shear force
diagram in [TES-1999]

/N

\\/

Figure-1

(a) (b) (c) 7 (d) ‘ -

IES-34. Ans. (b) If shear force is zero, B.M. will also be zero. If shear force varies linearly with
length, B.M. diagram will be curved line.

IES-35. Bending moment distribution in a built be am is shown in the given
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C .

TN :

]

The shear force distribution in the beam is represented by [TES-2001]

(a)

(k)

E Al E

2 J\. c

IES-35. Ans. (a)

IES-36.

The given figure shows the
shear force diagram for the
beam ABCD.

Bending moment in the portion
BC of the beam

(a) Is a non-zero constant
(c) Varies linearly from B to C

IES-36. Ans. (a)

IES-37.

Figure shown above represents the
BM diagram for a simply supported

beam. The beam is subjecte

which one of the following?

(a) A concentrated load at its
length

(b) A uniformly distributed load over

': A1 E

its length ' A )

(¢) A couple at its mid-length ' LE&‘J} .
(d) Couple at 1/4 of the span from each : ! i
end K /2 ——> 12 >

IES-37. Ans. (¢)

IES-38.

If the bending moment diagram

() a E
\\lf \\/

C

[TES-1996]
(b) Is zero
(d) Varies parabolically from B to C

1

M

;D'}LW”WJWJT?P B
-

d to

+
WALLLLLLLA L.

mid- A

!

[TES-2006]

for

a simply supported beam is of the

form given below.

Then the load acting on the be
is:

(a) A concentrated force at C

(b) A uniformly distributed load over

the whole length of the beam

. —

(¢) Equal and opposite moments B.M. Diagram

applied at A and B
(d) A moment applied at C

[TES-1994]

IES-38. Ans. (d) A vertical line in centre of B.M. diagram is possible when a moment is applied

IES-39.

there.

The figure given below shows a bending moment diagram for the beam CABD:
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ik o P ALY TS L A r A ///./1:
c A B )
Load diagram for the above beam will be: [TES-1993]

(a) l ]|

F—
| P ——

L
E D
(d) ) } !
C f A T B D
IES-39. Ans. (a) Load diagram at (a) is correct because B.M. diagram between A and B is parabola
which is possible with uniformly distributed load in this region.

IES-40. The shear force diagram shown in the following figure is that of a [TES-1994]
(a) Freely supported beam with symmetrical point load about mid-span.
(b) Freely supported beam with symmetrical uniformly distributed load about mid-
span
(¢) Simply supported beam with positive and negative point loads symmetrical about
the mid-span
(d) Simply supported beam with symmetrical varying load about mid-span

—H —~

220 :

-—!;zm__..[ 7
0 Pt —o

IES-40. Ans. (b) The shear force diagram is possible on simply supported beam with symmetrical
varying load about mid span.

Previous 20-Years IAS Questions

Shear Force (S.F.) and Bending Moment (B.M.)

IAS-1. Assertion (A): A beam subjected only to end moments will be free from shearing
force. [TAS-2004]
Reason (R): The bending momept yarjabion along the beam length is zero.
(a) Both A and R are individually true and R is the correct explanation of A
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(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IAS-1. Ans. (a)

IAS-2. Assertion (A): The change in bending moment between two cross-sections of a
beam is equal to the area of the shearing force diagram between the two
sections. [TAS-1998]

Reason (R): The change in the shearing force between two cross-sections of
beam due to distributed loading is equal to the area of the load intensity
diagram between the two sections.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

IAS-2. Ans. (b)

TAS-3. The ratio of the area under the bending moment diagram to the flexural
rigidity between any two points along a beam gives the change in [TAS-1998]
(a) Deflection (b) Slope (c) Shear force (d) Bending moment

IAS-3. Ans. (b)

Cantilever

TAS-4. A beam AB of length 2 L having a P
concentrated load P at its mid-span
is hinge supported at its two ends A A B

and B on two identical cantilevers as q
shown in the given figure. The *

correct value of bending moment at L L L L

A is
(a) Zero (b) PLI2
(c) PL (d) 2 PL [TAS-1995]

IAS-4. Ans. (a) Because of hinge support between beam AB and cantilevers, the bending moment
can't be transmitted to cantilever. Thus bending moment at points A and B is zero.

IAS-5. A load perpendicular to the plane of the handle is applied at the free end as
shown in the given figure. The values of Shear Forces (S.F.), Bending Moment
(B.M.) and torque at the fixed end of the handle have been determined
respectively as 400 N, 340 Nm and 100 by a student. Among these values, those
of [TAS-1999]
(a) S.F., B.M. and torque are correct
(b) S.F.and B.M. are correct 400 N
(c) B.M. and torque are correct Q\/
(d) S.F.and torque are correct 02 i

IAS-5. Ans. (d)
SF =400N and BM =400 x (0.4 + 0.2) =240Nm

Torque =400x0.25 =100Nm

Cantilever with Uniformly Distributed Load

IAS-6. If the SF diagram for a beam is a triangle with length of the beam as its base,
the beam is: [IAS-2007]
(a) A cantilever with a concentrated load at its free end
(b) A cantilever with udl over its whole span
(¢)  Simply supported with a concepfyated dpashat its mid-point
(d) Simply supported with a udl over its whole span



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
IAS-6. Ans. (b)

A
arad's

30—
207------- L
101 |
i | I
0 4 8 12 s)
IAS-7. A cantilever carrying a uniformly distributed load is shown in Fig. I.
Select the correct R.M. diagram of the cantilever. [TAS-1999]
T T Ty T T ey oy Ty
ﬁ Figure - 1
/ X
(a)
///(C}/ (d)
2
IAS-7. Ans. (c¢) M, =-wx x X o WX
2 2 )
) s

7 VLR o Y e s R e

I
IAS-8. A structural member ABCD is loaded j A B
as shown in the given figure. The ¥
shearing force at any section on the ;] a
length BC of the member is: D ¥ c
(a) Zero b)) P Kk
(c) Pa/k (d) Pk/a ‘
P
[TAS-1996]
TIAS-8. Ans. (a)
Cantilever Carrying load Whose Intensity varies
IAS-9. The beam is loaded as shown in Fig. I. Select the correct B.M. diagram
[TAS-1999]
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Mﬁ
A 1B 3C
+ +

®) T~z

(d) \/

IAS-9. Ans. (d)

Simply Supported Beam Carrying Concentrated Load

IAS-10.

Assertion (A): In a simply supported beam carrying a concentrated load at mid-
span, both the shear force and bending moment diagrams are triangular in
nature without any change in sign. [TAS-1999]
Reason (R): When the shear force at any section of a beam is either zero or
changes sign, the bending moment at that section is maximum.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Aistrue but R is false

(d) Ais false but R is true

IAS-10. Ans. (d) A is false.

TAS-11.

T:J: = 3T

3FD

(+) ?N

BMD

For the shear force to be uniform throughout the span of a simply supported

beam, it should carry which one of the following loadings? [IAS-2007]

(a) A concentrated load at mid-span

(b) Udl over the entire span

(¢) A couple anywhere within its span

(d) Two concentrated loads equal in magnitude and placed at equal distance from each
support
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IAS-11. Ans. (d)

Bending Moment and Shear Force Diagram

It is a case of pure bending.
—»i 2
|

S K Mondal’s

J

-
-

+Pa

IAS-12. Which one of the following figures represents the correct shear force diagram
[TAS-1998; IAS-1995]

for the loaded beam shown in the given figure I?

W

o
4
1—L—+7 31_4)‘1—]'_,—!-

IAS-12. Ans. (a)

W

A Bl

D

E Y

3

@]

i i —
O N— -
) e T .
7 ]

Simply Supported Beam Carrying a Uniformly
Distributed Load

IAS-13. For a simply supported beam of length fI' subjected to downward load of
uniform intensity w, match List-I with List-II and select the correct answer
using the codes given below the Lists:
List-1

A.

B.

C.

D.

Slope of shear force diagram
Maximum shear force

Maximum deflection

Magnitude of maximum bending moment

Codes: A B C D

@ 1 2 3 1 (b)
(c) 3 2 1 Page 179 of @

Do W B>

List-IT
5w
384FE 1

2. w
w
8
wI

4, —
2
B
1
4

=N A

U w

[TIAS-1997]
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IAS-13. Ans. (d)

Simply Supported Beam Carrying a Load whose
Intensity varies Uniformly from Zero at each End to w
per Unit Run at the MiD Span

IAS-14. A simply supported beam of length 'l' is subjected to a symmetrical uniformly
varying load with zero intensity at the ends and intensity w (load per unit

length) at the mid span. What is the maximum bending moment? [TAS-2004]
@ 3wl? ) wi? © wi? @ Swil?
a c

8 12 24 12

IAS-14. Ans. (b)

Simply Supported Beam carrying a Load whose
Intensity varies

IAS-15. A simply supported beam of span 1 is subjected to a uniformly varying load
having zero intensity at the left support and w N/m at the right support. The
reaction at the right support is: [TAS-2003]

wl wl wl wl
hids b) —— idd d) ==
(a) ) (b) 5 ©) 2 (d) 3
IAS-15. Ans. (d)

Simply Supported Beam with Equal Overhangs and
carrying a Uniformly Distributed Load

IAS-16. Consider the following statements for a simply supported beam subjected to a

couple at its mid-span: [TAS-2004]
1. Bending moment is zero at the ends and maximum at the centre

2. Bending moment is constant over the entire length of the beam

3. Shear force is constant over the entire length of the beam

4. Shear force is zero over the entire length of the beam

Which of the statements given above are correct?

(a) 1,3 and 4 (b) 2, 3 and 4 (c)1land3 (d) 2 and 4

IAS-16. Ans. (c¢)
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10 N 10 Nm X
.‘_

N Txd
1<:ﬂ x 10N
m |

+ 10N
SFD
[
BMD
TAS-17. Match List-I (Beams) with List-II (Shear force diagrams) and select the correct
answer using the codes given below the Lists: [IAS-2001]
List I List IT

Q R 3 T

(4]

Q¢

A

— i

-
lm_._p-’
| o]

el

=

=]

(5]

H

-
B\SIID Q R 3

|
O
el
-
|
el
=
L)
-

=

" —
£

=] h-\-_...-?d
(]

= g
= b
)

)

(£

=

o
o
=

- [
Codes: A B C D A B C D
(a) 4 2 5 3 () 1 4 5 3
© 1 4 3 5 @ 4 2 3 5

IAS-17. Ans. (d)

The Points of Contraflexure

IAS-18. A point, along the length of a beam subjected to loads, where bending moment
changes its sign, is known as the point of [TAS-1996]
(a) Inflexion (b) Maximum stress (c) Zero shear force (d) Contra flexure
IAS-18. Ans. (d)

IAS-19. Assertion (A): In a loaded beam, if the shear force diagram is a straight line
parallel to the beam axis, then the bending moment is a straight line inclined
to the beam axis. [TAS 1994]
Reason (R): When shear force at any section of a beam is zero or changes sign,
the bending moment at that section is maximum.
(a) Both A and R are individua ng]%e] a (%QRR is the correct explanation of A
(b) Both A and R are individually true Put R is NOT the correct explanation of A
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(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-19. Ans. (b)

Loading and B.M. diagram from S.F. Diagram

IAS-20. The shear force diagram of a 14 KN

loaded beam is shown in the
following figure: 2 kN
The maximum Bending Moment of -
the beam is: «—Im——»e—Im—>»
(a) 16 kN-m () 11 kN-m A C B
(c) 28 kN-m (d) 8 kN-m 13 m
-19 kN
[TAS-1997]
IAS-20. Ans. (a)
IAS-21. The bending moment for a loaded beam is shown below: [IAS-2003]

<7

The loading on the beam is represented by which one of the followings
diagrams?

(a) )
. I !

i

(c) (d)

IAS-21. Ans. (d)
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IAS-22. Which one of the given bending moment diagrams correctly represents that of

the loaded beam shown in figure? [TAS-1997]
P
Al B
L2 >l L2—»
@ ®) © &L
IAS-22. Ans. (c) Bending moment does not depends on moment of inertia.

IAS-23. The shear force diagram is shown
+ | above for a loaded beam. The
+ _i corresponding bending moment

— diagram is represented by

[IAS-2003]

NV v

o~

IAS-23. Ans. (a)

IAS-24. The bending moment diagram for a simply supported beam is a rectangle over
a larger portion of the span except near the supports. What type of load does
the beam carry? [TAS-2007]

(a) A uniformly distributed symmetrical load over a larger portion of the span except
near the supports

(b) A concentrated load at mid-span

(¢) Two i1dentical concentrated loads equidistant from the supports and close to mid-

point of the beam
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(d) Two identical concentrated loads equidistant from the mid-span and close to
supports

IAS-24. Ans. (d)
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Previous Conventional Questions with Answers

Conventional Question IES-2005

Question: A simply supported beam of length 10 m carries a uniformly varying load
whose intensity varies from a maximum value of 5 kN/m at both ends to zero
at the centre of the beam. It is desired to replace the beam with another
simply supported beam which will be subjected to the same maximum
'bending moment’ and ‘shear force' as in the case of the previous one.
Determine the length and rate of loading for the second beam if it is
subjected to a uniformly distributed load over its whole length. Draw the
variation of 'SF' and 'BM’' in both the cases.

Answer:

X
5KN/m : 5KN/m

Ra

Total load on beam =5><% =25kN

R, =R, =2?5: 12.5kN

Take a section X-X from B at a distance x.

For 0 < x <5m we get rate of loading

w = a+ bx [as lineary varying]

at x=0, w=5kN /m

and atx=5,w=0

These two bounday condition givesa=5and b = -1
Sw=5—x

We know that shear force(V), 2—\/ =—w
X

2
orV=f—wd =—f(5—x)dx:—5x+)(?+c1
at x=0,F=125kN (R;)soc,=12.5
2

- V=-5x+ X?+12.5

It is clear that maximum S.F = 12.5 kN
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For a beam @ =V
dx

or M:deX—f(—5X+X—2+12 5)dx='5_X2+X_3+12 ox+C.
’ 2 ' 2 6 ' 2
atx=0,M=0givesC,=0
M=125x-25x>+x°/6

for Maximum bending moment at (jj—M =0
X

X2
or—5x+?+12.5 =0
or, x> —10x+25=0
or,x =5 means at centre.
So, M, = 12.5%x2.5-2.5%x5%+5%/6=20.83 KkNm

X

WK Nm
A:[ ) T
R, L R

Now we consider a simply supported beam carrying uniform distributed load
over whole length (w KN/m).

Here R, =R, :%

S.F.at section X-X
wre
V, =+———wx
X 2 C{}
V. o =12.5kN

B.M at section X-X

We — Wx?
M, =+——Xx—
X 2 2
2 2
dx 2 212 8

Solving(i) & (ii) we get L=6.666m and w=3.75kN/m

Page 186 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s
X

/3.75kN/m

S5KN/m 5KN/m

B avay
-1Z3AN/m )'( 12.5KN/m
=l 9m > < 6.666m >
A

R 125N 125N

£20.83KNm

\Cubic parabola BMD 20.83kNm

Conventional Question IES-1996

Question: A Uniform beam of length L is carrying a uniformly distributed load w per
unit length and is simply supported at its ends. What would be the maximum
bending moment and where does it occur?

Answer: By symmetry each support

we

reaction is equal i.e. Ra=Rp= 7

B.M at the section x-x is

we o wx?
My=—+—x—
2 .
For the B.M to be maximum we Parabolic
curve

wi2/ g

have to = £ =( that gives.
X oklokh L }/ P A A )
W . .
> Cwx=0 Bending Moment Diagram
+

or X= % 1.e. at mid point.

wl w [e] we?
And M= —x 4 —Zx|=| =+
! 2 ! 2 u 8

Conventional Question AMIE-1996
Question: Calculate the reactions at A and D for the beam shown in figure. Draw the
bending moment and shear force diagrams showing all important values.
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4 kN 0.5m

1 kN/m

A B {lc D F,ﬁ’“"
" 30°
AN
|_ 2m + 2m + 2m+1m_|

Answer: Equivalent figure below shows an overhanging beam ABCDF supported by a roller
support at A and a hinged support at D. In the figure, a load of 4 kN is applied through
a bracket 0.5 m away from the point C. Now apply equal and opposite load of 4 kN at
C. This will be equivalent to a anticlockwise couple of the value of (4 x 0.5) = 2 kNm
acting at C together with a vertical downward load of 4 kN at C. Show U.D.L. (1 kN/m)
over the port AB, a point load of 2 kN vertically downward at F, and a horizontal load

of 2\/§ kN as shown.
1 kN/m

2{3 kN

\m-d Roy=2BkN PRy = SKN

2m——|o-—2m—+—2rn—|u|-1mv1
3 kN J kN
7777
,
o+ A
_’,’ A
/JJ'IZIIIIf
A i ;f//
f -
1 kN V.20
2kN 2 kN
J kN .
S. F. diagram
4 kNm Lt
2-:5kNm 4 kNm

2 kNm

B.M. diagram

For reaction and A and D.
Let ue assume Ra= reaction at roller A.
Rpv vertically component of the reaction at the hinged support D, and
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Obviously Rou=2+/3 kN (—)

In order to determine Ra, takings moments about D, we get
RAx6+2x1=1x2x(%+2+2j+2+4x2

or R, =3kN
Also R, +Ry, =(1x2)+4+2=8

or R,y = 95kN vetrically upward

~.Reaction at D, R, =\/(R2DV)+(RDH ) =52 +(2ﬁ)2 =6.08kN

Inclination with horizontal= @ =tan™ o 55.3°

23

S.F.Calculation:

B.M.Calculation:

M, =-2x1=-2kNm
Mg =[-2(1+2)+5x2]+2=6kNm

The bending moment increases from 4kNm in (i, e,—2(1+2)+ 5><2)
to 6kNm as shown

Mg =—2(1+2+2)+5(+2)-4x2+2=4kNm

M, :—2(1+2+2+§)+5(2+2+1)—4(2+1)+2—1><1><%
=2.5kNm

M, =0

Conventional Question GATE-1997

Question: Construct the bending moment and shearing force diagrams for the beam
shown in the figure.
20 kN/m 50 kN 40kN
. 100 kNm
As
- 1 m—pe 0.5 M 0.5 m!<—
I
Ra Re ' .
1 ] 1 I
, | X Beam | s i |
Answer:
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10 kN 15kN 151N

TIIPITITTFTTFIFT. 7

-
+ 2

i o IJJ_{JJ/

b
\.
"y
y

LLLLLLLR,

N A

L

B
o
x
=

I
1
I
I
J
I
1
1
|
1
I
I
I
I
I

- e e E E om e = omm omm o= w

- o e mm omm

F'67.5 kNm
' B.M Dlagram

Calculation: First find out reaction at B and E.
Taking moments, about B, we get

RE><4.5+20><0.5><O?5+100:50><3+40><5

I
I
I
I
1
L
I
I
I
I
[}

or R, =55kN

Also, Rg +Re =20x0.5+50+40
or Ry =45kN [ Re =55kN]
S.F. Calculation: Ve =-40kN

Ve =-40+55=15kN
V, =15-50 =-35kN
V, =-35+45=10kN
B.M.Calculation: M; =0
M: =0
M =-40x0.5=-20kNm
Mp =—-40x2+55x1.5=2.5kNm
M. =-40x4+55%x3.5-50x2=-67.5kNm
The bending moment increases from —62.5kNm to 100.

M, =—-20x0.5 xO_;’ = —2.5kNm

Conventional Question GATE-1996
Question: Two bars AB and BC are connected by a frictionless hinge at B. The assembly
is supported and loaded as shown in figure below. Draw the shear force and

bending moment diagrams for the combined beam AC. clearly labelling the
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important values. Also indicate your sign convention.

100 kN 100 kN

gA B l 1 C
]
- O)
P~
—
e
-
— 1.5m 2m im m
—
-
1
a—
—
Answer: There shall be a vertical reaction at hinge B and we can split the problem in two parts.
Then the FBD of each part is shown below
" 100 kN 100 kN
2 m—+—1 rn-+—1 m-»
o
A B BG c
1.5m T I I
F_‘:-. A,
R,
125 kN
b, -
25 kN E + -
s -
b e
P Bt Fol

::::::;\ Frrrrrrrr
L -
- - —

-

75 kN 75 kN
S. F. Diagram

A B

E—

112.5 kNm
.

Calculation: Referring the FBD, we get,
Fy =0, and R,+R,=200kN
From ZMB=O,1OO><2+100><3—RZ><4=O

500

or R, =125kN

- R, =200 125 = 75kN
Again, R, =R, =75kN
and M=75x1.5=112.5kNm.
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Question: A tube 40 mm outside diameter; 5 mm thick and 1.5 m long simply supported
at 125 mm from each end carries a concentrated load of 1 kN at each extreme
end.

(i) Neglecting the weight of the tube, sketch the shearing force and bending
moment diagrams;
(ii) Calculate the radius of curvature and deflection at mid-span. Take the
modulus of elasticity of the material as 208 GN/m?2
Answer: (i) Given, d) =40mm=0.04m; d, =d, -2t=40-2x5=30mm =0.03m;
W =1kN; E =208GN/m? =208 x10°N/m? 1=1.5;a=125mm=0.125m
w w

LT =

HE = w
* / >
Beam
w
LY
LY
—_—
N
S.F. diagram w
Wa . Wa
B.M. diagram
Calculation:
(ii) Radius of coordinate R
As per bending equation:
M_o_E
Il 'y R
El
or R=— ———(i
y ()
Here,M=W xa=1x10° x0.125 = 125Nm
T
|= a(dg ~df)
_ T 4 4 _ -8 4
- [(0.04)" ~(0.03)" | -8.59x10°m
Substituting the values in equation(i),we get
8 -8
R - 208 x10° x8.59x10 _142.9m
125
Deflection at mid — span:
2
Eld—y =M, =-Wx+ W (X RjsreM¥xzeWx - Wa =-Wa

dx?
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Integrating, we get

EI% =-Wax +C,

X
When, le,d_yzo
2 dx
O=—Wa%+C1 or C, =?
Elﬂz—Wax+M
dx 2

Integrating again, we get

2
Ely—-waX Ve, ¢,
2 2
When x=a,y=0
3 2
0:_Wa +WaI+C2
2 2
3 2
or szWa _Wal
2 2
Wax?> Walx | Wa® wa?l
Ely =- + + -
2 2 2 2
Wal| x* Ix a* al
El 2 2 2 2

At mid —span,i,e.,, x=1/2

Wa{_(l/z)2 Ix(1/2) & a|]

y= 2 2 2 2

_wal P a al

CElI| 8 2 2

_ 1x1000x0.125 1.52+0.1252_0.125><1.5
© 208x10°x8.59x10°| 8 2 2

=0.001366m =1.366mm

It will be in upward direction

El 2 2

Conventional Question IES-2001

Question: What is meant by point of contraflexure or point of inflexion in a beam? Show
the same for the beam given below:

17.5KN/m lZOkN
A
S~ ~C B D
] 4M | 4M L 2n_)
Answer: In a beam if the bending moment changes sign at a point, thé point itself having zero

bending moment, the beam changes curvature at this point of zero bending moment
and this point is called the point of contra flexure.

Page 193 of 429



Chapter-4 Bending Moment and Shear Force Diagram S K Mondal’s

17.5kN/m 20kN
A/—\\//-V\/'\/‘\ c B D
] 4M ! 4M < 2M—>§

BMD

From the bending moment diagram we have seen that it is between A & C.
[If marks are more we should calculate exact point.]
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Theory at a Glance (for IES, GATE, PSU)

5.1 Introduction

® We know that the axis of a beam deflects from its initial position under action of applied
forces.

® In this chapter we will learn how to determine the elastic deflections of a beam.
Selection of co-ordinate axes

We will not introduce any other co-ordinate system.

We use general co-ordinate axis as shown in the Y

figure. This system will be followed in deflection of

beam and in shear force and bending moment

diagram. Here downward direction will be negative

i.e. negative Y-axis. Therefore downward deflection of > X

the beam will be treated as negative. We use above Co-ordinate system

To determine the value of deflection of beam

subjected to a given loading where we will use the

2
formula, El d—g =M,.
dx

Some books fix a co-ordinate axis as shown in the

following figure. Here downward direction will be = X
positive 1.e. positive Y-axis. Therefore downward
deflection of the beam will be treated as positive. As

beam is generally deflected in downward directions

and this co-ordinate system treats downward w‘.lr

deflection is positive deflection. Some books use above co-ordinate system

To determine the value of deflection of beam

subjected to a given loading where we will use the

d 2
formula, El d_)zl =-M,.
X
Why to calculate the deflections?
® To prevent cracking of attached brittle materials

® To make sure the structure not deflect severely and to “appear” safe for its occupants

® To help analyzing statically indeterminate structures
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® Information on deformation characteristics of members is essential in the study of vibrations
of machines

Several methods to compute deflections in beam

e Double integration method (without the use of singularity functions)
e Macaulay’s Method (with the use of singularity functions)

e Moment area method

e Method of superposition

e Conjugate beam method

e Castigliano’s theorem

e  Work/Energy methods

Each of these methods has particular advantages or disadvantages.

Methods to find

deflection

Y v v
< Double integration > ( Geometrical > (Energy Method>
Moment area Conjugate
method beam method

Castlglian’s
theorem

Assumptions in Simple Bending Theory
e Beams are initially straight
e The material is homogenous and isotropic i.e. it has a uniform composition and its
mechanical properties are the same in all directions
e The stress-strain relationship is linear and elastic
¢  Young’s Modulus is the same in tension as in compression
e Sections are symmetrical about the plane of bending

e Sections which are plane before bending remain plane after bending

Non-Uniform Bending
e In the case of non-uniform bending of a beam, where bending moment varies from section to
section, there will be shear force at each cross section which will induce shearing stresses
e Also these shearing stresses cause warping (or out-of plane distortion) of the cross section so

that plane cross sections do not remain plane even after bending
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5.2 Elastic line or Elastic curve

We have to remember that the differential equation of the elastic line is

dx? >

Proof: Consider the following simply supported beam with UDL over its length.
Y

Elastic line

Elastic line

From elementary calculus we know that curvature of a line (at point Q in figure)
d’y

%: A where R =radius of curvature

(@)

For small deflection, % ~0
X
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Bending stress of the beam (at point Q)
—(M,).
o M)y
* El
From strain relation we get

L and ¢, = O«
R E

y

1 M

R El
2
Therefore d—Z =—x
dx El

2

or El Y _m
dx

X

5.3 General expression

2
From the equation E/ d f
X
d'y
o FEI s =—w Shear force density (Load)
X
3
. E[d—); =V_ Shear force
dx
2
o FI d i} =M _ Bending moment
dx
dy
e —=0=slope
dx P

e y= 0 = Deflection, Displacement
e Flexural rigidity = E/

= M _ we may easily find out the following relations.

S K Mondal’s

5.4 Double integration method (without the use of singularity functions)

o Vi= I—wdx
o M= JVXdX

a'zy

=

o [

M‘C
dx ’

1
o 0O=Slope =7 Idex

0 = Deflection = .[ Odx

4-step procedure to solve deflection of beam problems by double integration method

Page 198 of 429



Chapter-5 Deflection of Beam S K Mondal’s
Step 1: Write down boundary conditions (Slope boundary conditions and displacement boundary

conditions), analyze the problem to be solved

d2
Step 2: Write governing equations for, EI = J M

2 X
X

Step 3: Solve governing equations by integration, results in expression with unknown integration
constants

Step 4: Apply boundary conditions (determine integration constants)

Following table gives boundary conditions for different types of support.

Types of support and Boundary Conditions Figure

Clamped or Built in support or Fixed end :
( Point A)

Deflection, ( y) =0

Slope,(@) =0

Moment,(M)#0 ie.Afinite value

Free end: (Point B)

Deflection, ( y) #0 ie.Afinitevalue
Slope,(0)#0 i.e.Afinite value
Moment,(M) =0

Roller (Point B) or Pinned Support (Point A) or
Hinged or Simply supported.

Deflection, ( y) =0
Slope,(0)#0 i.e.Afinite value
Moment,(M) =0

End restrained against rotation but free to y
deflection

Deflection,(y)#0 i.e.Afinite value

Slope, (9) =0

Shear force,(V) =0

Flexible support
Deflection,(y)#0 i.e.Afinite value

Slope,(8) =0 i.e.Afinite value
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Moment,(M )=k, ? K, «—— Rotational spring
g d
Shearforce,(V) =k.y | } ) E M =K, i

f,,,.-—' V =Ky

Linear =pring

Using double integration method we will find the
deflection and slope of the following loaded
beams one by one.

(1) A Cantilever beam with point load at the free end.

(i1) A Cantilever beam with UDL (uniformly distributed load)

(ii1)) A Cantilever beam with an applied moment at free end.

(iv) A simply supported beam with a point load at its midpoint.

(v) A simply supported beam with a point load NOT at its midpoint.

(vi) A simply supported beam with UDL (Uniformly distributed load)

(vil) A simply supported beam with triangular distributed load (GVL) gradually varied load.
(viii) A simply supported beam with a moment at mid span.

(ix) A simply supported beam with a continuously distributed load the intensity of which at

. [ TX
any point ‘x’ along the beam is W, = W SIN (Tj

(i) A Cantilever beam with point load at the free end.
We will solve this problem by double integration method. For that at first we have to calculate (Mx).

Consider any section XX at a distance X’ from free end which is left end as shown in figure.

i

- - I. -
* Mx=-Px
We know that differential equation of elastic line
2
Bl 9Y _m, =P
X

Integrating both side we get Page 200 of 429
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Chapter-5
d’y
J'EI = ij dx
2
or Bl Yo p XA Q)
dx 2

Again integrating both side we get
X2
Elldy= ||P—+A | dx
fov= [[P5a)

3
PXC L AX4B o (ii)
6

or Ely=-

Where A and B is integration constants.
Now apply boundary condition at fixed end which is at a distance x = L. from free end and we also

know that at fixed end
at x=L, y=0
d
Y _p

at x=1,
dx

3
from equation (i) EIL = - %+ AL+B ... (iii)
2
from equation (i) EI.(0) = - 7 +A

2 3

Solving (iii) & (iv) we get A = TL and B=- P:|3_
3 2 3
Therefore, y=- Px + PLx - PL
6ElI 2ElI 3EI

The slope as well as the deflection would be maximum at free end hence putting x = 0 we get

PL® e .
Ymax = ﬁ (Negative sign indicates the deflection is downward)

PL?
Sl max = 9 max = —
(Slope) E|

Remember for a cantilever beam with a point load at free end.
Downward deflection at free end, 5

PL°
And slope at free end, ((9 ) = E
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(ii) A Cantilever beam with UDL (uniformly distributed load)

We will now solve this problem by double integration method, for that at first we have to calculate
(My).
Consider any section XX at a distance X’ from free end which is left end as shown in figure.

X wx?
M, = —(W.X).E =

We know that differential equation of elastic line

2 2
E| d_)z/ _ WX
dx 2
Integrating both sides we get
2 2
J'E|d_¥ - J' _WX ix
dx 2
dy  wx’

or El—=
dx 6

Again integrating both side we get

El [dy = I(_WTX: Aj dx

4

or Ely= -V;);

+Ax +B....... (i)
[where A and B are integration constants]

Now apply boundary condition at fixed end which is at a distance x = L from free end and we also
know that at fixed end.
at x=L, y=0

at x=1, ﬂ= 0
dx
w13 +wl 3
from equation (1) we get EIx(0) = wl +AorA= wl
L wL*
from equation (i1) we get Ely=- 4 +AL+B
4
or B=- wl
8

The slope as well as the deflection would be maximum at the free end hence putting x = 0, we get
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4
Yiax = —\g—llgl [Negative sign indicates the deflection is downward]
wL®
slope) =0 .=
( P )max max 6EI

Remember: For a cantilever beam with UDL over its whole length,

- wlL?
SEl

Maximum deflection at free end 5

~wl’

Maximum slope, (9) — ﬁ

(iii) A Cantilever beam of length ‘L’ with an applied moment ‘M’ at free end.

¥i

Consider a section XX at a distance ‘X’ from free end, the bending moment at section XX is
My =-M
We know that differential equation of elastic line
d2
or EISY =M
dx

Integrating both side we get
d’y
or Ele?jM dx

or Elﬂ =-Mx+ A ...(I)
dx
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Again integrating both side we get

Elfdy = [(Mx+A)dx

2

or Ely= —M;‘ +AX+B ..(ii)
Where A and B are integration constants.
applying boundary conditions in equation (i) &(ii)

at x=1, d—y=0 gives A=ML
dx

2 2

at x=L,y=0 gives B= ML iz =—M2L
2 2
Therefore deflection equationis y = - Mx + Mix _ ML
2El  El 2EI

Which is the equation of elastic curve.

ML
2E|

M
El

Let us take a funny example: A cantilever beam AB of length ‘I’ and uniform flexural rigidity EI

.. Maximum deflection at free end 5

(It is downward)

~.Maximum slope at free end (9)

has a bracket BA (attached to its free end. A vertical downward force P is applied to free end C of the
bracket. Find the ratio a/L required in order that the deflection of point A is zero.
[ISRO - 2008]

| L B
AR
L
C
g
I a
Vp
We may consider this force ‘P’ and a moment (P.a) act on free end A of the cantilever beam.
A
Ve
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3
Due to point load ‘P’ at free end ‘A’ downward deflection (5 ) = %
ML?  (P.a)l?

Due to moment M = P.a at free end ‘A’ upward deflection (5 ) = ol = ( 2aE)I
For zero deflection of free end A

P_L3 _ (P.a)L?

3El 2El

a 2

or —=—
L 3

(iv) A simply supported beam with a point load P at its midpoint.

A simply supported beam AB carries a concentrated load P at its midpoint as shown in the figure.

.
» I -
=}

We want to locate the point of maximum deflection on the elastic curve and find its value.
In the region 0 < x < L/2

Bending moment at any point x (According to the shown co-ordinate system)

-2

and In the region L/2 <x <L

Mk = E(X -L/ 2)
2
We know that differential equation of elastic line
2
d—}zl P (In the region 0 < x < L/2)
dx* 2

Integrating both side we get
d’y (P
or El J.Fz IEX dx
2
Y_PX A
dx 2 2

Again integrating both side we get

or El
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El [dy = j(;x%Ajdx
3

Px o
orEly= E+AX+ B (ii)
[Where A and B are integrating constants]
Now applying boundary conditions to equation (i) and (ii) we get
at x=0, y=0
at x=1L/2, ay_ 0

dx
2
A=- PL andB=0
16
3 12
.. Equation of elastic line, y = Px” PL X
12 16

_ PL’
48El

Maximum deflection at mid span (x = L/2) 5

Pl
16El

and maximum slope at each end (8)

(v) A simply supported beam with a point load ‘P’ NOT at its midpoint.

A simply supported beam AB carries a concentrated load P as shown in the figure.

y

- L .

We have to locate the point of maximum deflection on the elastic curve and find the value of this

deflection.

Taking co-ordinate axes x and y as shown below
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Elastic line

S K Mondal’s

[ 1

L2

L2 ;l:.

For the bending moment we have

In the region 0<x < a, M, = [%) X
. P.a
And, In theregion a<x < L, M, = _T(L - X)

So we obtain two differential equation for the elastic curve.
2
Ef1¥:gfx
dx L
P.a

d’y
and E|d7 = —T(L - X)

IN

for 0<x a

for a<x <L

Successive integration of these equations gives

dy _P.a x®
dx L 2

El for o<x<a

fora<x<L

for 0<x<a

x> P.a x®

Ely=Pa—— "—+A Xx+B, ... iv fora<x<L
y > L6 2 2 (iv)

Where Ai, A2, B1, B2 are constants of Integration.

Now we have to use Boundary conditions for finding constants:

BCS (a) at x=0,y=0

(b)atx=L,y=0

dy . .
(c)atx=a, d_ = Same for equation (i) & (ii)
X
(d) at x = a, y = same from equation (ii1) & (iv)
_ Pb 2 21\. _ Pa 2 2

Weget A, —E(L -b%); A, _E(ZL +a’)

and B, =0; B, = Pa® / 6El
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E|y=_%(f—b2—x2) ..... (v) for 0<x<a
Ely= %K%)(x-af#(ﬁ—bz)x-xs} . ...(vi) for a<x<L

For a > b, the maximum deflection will occur in the left portion of the span, to which equation (v)

applies. Setting the derivative of this expression equal to zero gives

\/a(a+2b) ~ \/(L-b)(L+b) 2 -p?
3 - 3

V3
at that point a horizontal tangent and hence the point of maximum deflection substituting this value

2 1.213/2
of x into equation (v), we find, y__ = P.bl ~b7)™"
94/3. EIL

Case -I: ifa=b =1L1/2 then

12 -(Li2)" Lo

Maximum deflection will be at x =

i.e. at mid point
2 3/2
P.(LR)x (=2} pp
9V3EIL ~ 48El

and Y . = (5) =

(vi) A simply supported beam with UDL (Uniformly distributed load)
A simply supported beam AB carries a uniformly distributed load (UDL) of intensity w/unit length

over its whole span L as shown in figure. We want to develop the equation of the elastic curve and

find the maximum deflection 0 at the middle of the span.

Taking co-ordinate axes x and y as shown, we have for the bending moment at any point x

2
M, = W—L.x “w.X
2 2
Then the differential equation of deflection becomes
2 2
Bl 9Y o = w X
dx 2 2
Integrating both sides we get
2 3
g dy_wk x® wx' Pag§)208 of 429
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Again Integrating both side we get
3 4
Ely-WE X WX ax+B (ii)
2 6 212

Where A and B are integration constants. To evaluate these constants we have to use boundary

conditions.
at x=0,y=0 gives B=0
3
at x=L/2, ﬂ:O gives A=—ﬂ
ax 24

Therefore the equation of the elastic curve

wk . ow o, owl® wx

= X = X' = X =
12El 24E| 12El 24E|

The maximum deflection at the mid-span, we have to put x = L/2 in the equation and obtain

~ 5wlL*
384E]

And Maximum slope 6, = 6, at the left end A and at the right end b is same putting x =0 or x = LL
3
wL

y [E’ —2L.x* + x3]

Maximum deflection at mid-span, (It 1s downward)

Therefore we get Maximum slope (H )

(vii) A simply supported beam with triangular distributed load (GVL)
gradually varied load.

A simply supported beam carries a triangular distributed load (GVL) as shown in figure below. We

have to find equation of elastic curve and find maximum deﬂection(5 ) .

- 1.2 ;i:. L2 4’|

In this (GVL) condition, we get Page 209 of 429



Chapter-5 Deflection of Beam S K Mondal’s

4
B 9Y Cppad=-¥x L ()
dx L
Separating variables and integrating we get
d’y wx? y
El —=(V,)=- +A ii
dx® (V) 2L (i)

Again integrating thrice we get

2 3
Bl 9Y om = W ax+B (i)
dx 6L
4 2
dy  wx A Bx+C (iv)
dx 24l
5 3 2
Ely=- wx”_ | AX +BX +Cx+D ... (v)

+
120L 6 2
Where A, B, C and D are integration constant.

Boundary conditions atx =0, M: =0, y=0
atx =1, M:=0,y=0 gives
wlL 7wL?

D=0

A=2-, B=0, C= ,
6 360

Therefore y = - WX {7L4 —10L°x* + 3X4} (negative sign indicates downward deflection)
360EIL
, . . dy
To find maximum deflection & , we have d_ =0
X

wL*
And it gives x = 0.519 L and maximum deflection (5) =0.00652 E

(viii) A simply supported beam with a moment at mid-span

A simply supported beam AB is acted upon by a couple M applied at an intermediate point distance

‘a’ from the equation of elastic curve and deflection at point where the moment acted.

¥ A
o
A L ;
¥ .
R _ML i b—=
AL

M

M
Considering equilibrium we get R, = T and Ry = T

Taking co-ordinate axes x and y as shown, we have for bending moment

M

In the region 0<x<a, M, = f.X
. M
In the region a<x<L, szfx-l\/l

. . . Page 210 of 429
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2
Eld—gzM.x for0<x<a
dx® L
2
andEId—zzM.x—M fora<x<L
dx® L
Successive integration of these equation gives
2
%:%.%+A1 ..y for0<x<a
X
2
%:%:X—-MHAQ ..... (ii) fora<x<L
X
3
andEly=M X Ax+B, .. (i) for0<x<a
L o
3 2
EIy=¥X;—MX +AX+B, ...(iv) foras<x<L

Where A1, Az, B1 and Bz are integration constants.
To finding these constants boundary conditions
(a) at x=0, y=0
(b) at x=L, y=0

d
(c) at x=a, (d—yj = same form equation (i) & (i1)
X
(d) at x=a, y = same form equation (ii1) & (iv)

2 2
A =-Ma+ M, M, ML Ma
3 2 3 2

Ma?

B, =0, B, =
1 2 2
With this value we get the equation of elastic curve
y=-w{6aL-3a2—x2—2L2} for0<x<a
6L

.. deflection of x = a,

Ma

= —!3alL-2a* -?
y 3EIL { }

(ix) A simply supported beam with a continuously distributed load the

intensity of which at any point ‘x’ along the beam is w, = wsin(%xJ

P
W, =W Sin | ZX|
Y L
/m—l L m
. X
- T
.2 e 2

At first we have to find out the bending moment at any point <’ according to the shown co-ordinate

system.
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M =-W sin(”TX)

dx

Integrating both sides we get
fd(v,)=-[w sin(%xjdx +A

orV, = +W—L.cos(ﬁ—xj+ A
/4 L

and we also know that

M= V, =W—Lcos[”—X)+A
dx V4 L

Again integrating both sides we get

fam)= {%cos(%}+A}dx

2
or M, = wi sin(ﬂTXj+Ax+B

2
Vi

Where A and B are integration constants, to find out the values of A and B. We have to use boundary

conditions
at x=0, M:=0
and atx =1, M:=0

2

2
From these we get A =B = 0. Therefore M = wl Sin(ﬁ—xj
T

So the differential equation of elastic curve

2 2
B 9oy W sin(”TX)

dx? 7

Successive integration gives

3
Eld—yz—wt COS(”—XJ-FC ....... ()
dx V4 L
4
Ely =—W'; sin(ﬂ—xj+Cx+D ..... (ii)
T L

Where C and D are integration constants, to find out C and D we have to use boundary conditions
at x=0, y=0
at x=L, y=0

and that give C=D =0

d wL® X
Therefore slope equation EI—y =——5-C0s 2
dx T L
wl' . (7x
and Equation of elastic curve y =—-——sin =
7 El L

(-ive sign indicates deflection is downward)

Deflection will be maximum if Sin (—j 1s maximum
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Sin(ﬂTX) =1 or x=L/2

4

and Maximum downward deflection (5 ) = (downward).

7*El

5.5 Macaulay's Method (Use of singularity function)

® When the beam is subjected to point loads (but several loads) this is very convenient method

for determining the deflection of the beam.

® In this method we will write single moment equation in such a way that it becomes

continuous for entire length of the beam in spite of the discontinuity of loading.

® After integrating this equation we will find the integration constants which are valid for

entire length of the beam. This method is known as method of singularity constant.

Procedure to solve the problem by Macaulay’s method

Step — I: Calculate all reactions and moments

Step — II: Write down the moment equation which is valid for all values of x. This must contain

brackets.

Step - III: Integrate the moment equation by a typical manner. Integration of (x-a) will be

(xa)’
2

x? . . . (X'a)s
not ? —ax | and integration of (x-a)? will be 3 SO on.

Step — IV: After first integration write the first integration constant (A) after first terms and after
second time integration write the second integration constant (B) after A.x . Constant A and B are
valid for all values of x.

Step — V: Using Boundary condition find A and B at a point x = p if any term in Macaulay’s method,

(x-a) 1s negative (-ive) the term will be neglected.

(i) Let us take an example: A simply supported beam AB length 6m with a point load of 30 kN is
applied at a distance 4m from left end A. Determine the equations of the elastic curve between each
change of load point and the maximum deflection of the beam.

Yl

S30kN
A 4m Ql 2m g
K- _ 1 v - A X
10kN 20kN

Answer: We solve this problem using Macaulay’s method, for that first writes the general

momentum equation for the last portion of beam BC of the loaded beam.

el &Y _m, —10x -30(x-4)| Nm ()
dx* ¥

o . . . Page 213 0f 429 = | .
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e.g .[(x—a)dx =M)

2
We get
El %:5% +A 1504 NmT (il
X
and Ely= §x3+Ax+B -5 (x-47 INm® (iii)

Where A and B are two integration constants. To evaluate its value we have to use following
boundary conditions.
atx=0, y=0
and atx=6m, y=0

Note: When we put x = 0, x - 4 is negativre (-ive) and this term will not be considered for x = 0, so
. . S 3 .

our equation will be EI y = gx +AX+B, andatx=0,y=0givesB=0

But when we put x = 6, x-4 is positive (+ive) and this term will be considered for x = 6, y = 0 so our

5
equation will be EI y = 5x3 +Ax+0-5(x—4)3

This gives
EI .(0) = 2.63 +A6+0-56-4)
or A=-53

So our slope and deflection equation will be

1 &Y _5x 53 - 15(x - 4)
dx

and ElI y=§x3- 53x +0 ‘- 5(x -4)3

Now we have two equations for entire section of the beam and we have to understand how we use
these equations. Here if x < 4 then x — 4 is negative so this term will be deleted. That so why in the
region 0<X<4m we will neglect (x — 4) term and our slope and deflection equation will be

dy
dx

El =5x*-53

5
and Ely =§x3- 53x
But in the region4m < x < 6m, (x — 4) is positive so we include this term and our slope and

deflection equation will be

el & _5x- 53 - 15(x - 4)’
dx

5
Bly =2 x'- 53x- 5(x-4)
Now we have to find out maximum deflection, but we don’t know at what value of ‘X’ it will be

maximum. For this assuming the value of ‘<’ will be in the region0 < x < 4m.
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Deflection (y) will be maximum for that j—y =0 or 5x*-53 =0 or x = 3.25 m as our calculated x is
X

in the region 0 < X < 4m; at x = 3.25 m deflection will be maximum

5
or EI ymax = 3 x 3.25% — 53 x3.25
115 . .. .
or VYmax = - E (-ive sign indicates downward deflection)

But if you have any doubt that Maximum deflection may be in the range of 4 < Xx<6m, use Ely =

5x2 — 53x — 5 (x — 4)3 and find out x. The value of x will be absurd that indicates the maximum

deflection will not occur in the region4 < Xx<6m .

d
Deflection (y) will be maximum for that d_y =0
X
or  5x2-53-15(x-4)"=0
or 10x2-120x + 293 =0
or x=3.41 mor 86 m

Both the value fall outside the region 4 <X <6m and in this region 4 <X < 6m and in this region

maximum deflection will not occur.

(ii) Now take an example where Point load, UDL and Moment applied simultaneously in
a beam:
Let us consider a simply supported beam AB (see Figure) of length 3m is subjected to a point load 10
kN, UDL = 5 kN/m and a bending moment M = 25 kNm. Find the deflection of the beam at point D if
flexural rigidity (EI) = 50 KNmz2.
10kN
M=25 kNm W= 9 KN/m

A - B

c l\D F 1
+«——1m |b|4| 1m r-:q im_—»
R=-0.83 kN RB= 15.83 KN

Answer: Considering equilibrium
DM, =0 gives
-10x1-25- (5><1)><(1+1+1/2)+RB x3=0
or R; =15.83kN
R, + Ry =10+5x1 gives R, =-0.83kN
We solve this problem using Macaulay’s method, for that first writing the general momentum
equation for the last portion of beam, DB of the loaded beam.

5(x-2)2
215 of 429
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By successive integration of this equation (using Macaulay’s integration rule

.[(x a)dx (X_a)z)
e.g = 2
We get
El ji 2B A s (x-1] +25(x—2)|—%(x—2)3
_ 083 ; D4 25 B S L o\
and Ely 5~ +Ax+B‘3(x 1) 2( 2) 24(x 2)

Where A and B are integration constant we have to use following boundary conditions to find out A
& B.
atx=0, y=0
atx=3m, y=0
Therefore B =0
0.83

and 0 =- 3% +Ax3+0 -2x2° +12.5x12\—ix14
3 24

or A=1.93

Ely =-0.138x" +1.93x |1.67(x~1)"| +12.5(x-2)" |-021(x~2)’

Deflextion atpoint D at x = 2m
Ely, =-0.138x2%°+1.93x2-1.67x1 =-8.85
8.85 8.85
El  50x10°
=0.177mm(downward).

or yp=— m (—ive sign indicates deflection downward)

(iii) A simply supported beam with a couple M at a distance ‘a’ from left end

If a couple acts we have to take the distance in l y
the bracket and this should be raised to the M R T
I 1 |
. . 5
power zero. i.e. M(x — a)?. Power is zero because - S o

A L

R =2
(x — a)° =1 and unit of M(x — a)° = M but we fL

introduced the distance which is needed for

Macaulay’s method.

2
El 9Y _m=R,xM(xa)’
dx?

Successive integration gives

g I _MX A M(xa)
dx L 2
2
Ely:Mx3+Ax+B-M
6L 2

Where A and B are integration constants, we have to use boundary conditions to find out A & B.
at x=0,y=0 gives B=0
2
M (L-a) ML
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¥4
et
A r .
d —alll-q—b_”é'\"
MA, L -

8. Moment area method

e This method is used generally to obtain displacement and rotation at a single point on a
beam.
¢ The moment area method is convenient in case of beams acted upon with point loads in

which case bending moment area consist of triangle and rectangles.

B.M.diag ek
]

e Angle between the tangents drawn at 2 points A&B on the elastic line, 0 »5
1 . .
0ap- =7 x Area of the bending moment diagram between A&B

Agyr
El

i.e. slope @, =
e Deflection of B related to 'A’

M
yBa=Moment of ﬁ diagram between B&A taking about B (or w.r.t. B)

i.e. deflection y,, =M
EI
Important Note
If A, = Area of shear force (SF) diagram
A, = Area of bending moment (BM) diagram,
A x4,

Then, Change of slope over any portion of the loaded beam =

EI
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Some typical bending moment diagram and their area (A) and distance of

C.G from one edge (X) is shown in the following table. [Note the distance

will be different from other end]

Shape BM Diagram Area Distance from C.G
1. Rectangle — h
X=—=
— 2 —= — b
A=Dbh X=_
| 2
. h
C.G l
= b a
2. Triangle —bi3—+ - b
X=—
3
3. Parabola — b
X=—
4
4. Parabola
5.Cubic Parabola
6.y =kxn
7. Sine curve

Determination of Maximum slope and deflection
by Moment Area- Method

(i) A Cantilever beam with a point load at free end
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Area of BM (Bending moment diagram)

2
(A)=txLxpL="E
2 2

Therefore
2
Maximum slope(6) = A_PL (at free end) M
El 2El »X
. . AX 5
Maximum deflection (5)=—
El B.M Diagram
PL? 2
FRRCIE
= = (at free end)
El 3El
(ii) A cantilever beam with a point load not at free end
2
Area of BM diagram (A) = 1>< axPa= Pa Y P
2 a
Therefore X
2
Maximum Slope(e) = A = Pa ( at free end) L
El  2El M4 -7, =&
AX "T““'.L‘E'_'* -
Maximum deflection (&) =5 EN— : »X
2 \% -F'E
Pa a i
— x(L-j ) B.M Diagram
2 3) Pa a
= = |L-—1 (at free end)
El 2El 3
(iii) A cantilever beam with UDL over its whole length
2 3 X x 1
Area of BM diagram(A) = 1 x L x wl = wi Y, wiunit length
3 2 6 |
Therefore “ e
3
Maximum slope(8) = A _wl (at free end)
El 6El
, . AX
Maximum deflection (5)=— > X
El [
Wil
wL® o §L GieM |
6 4 wlL? B.M Diagram i
= = (at free end)
El 8EI

(iv) A simply supported beam with point load at mid-spam
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Area of shaded BM diagram Y * p
2 A )
(A):lxkxizi -~ /21— -
2 2 4 16 A = N X
Therefore [ R
A P2 it i
Maximum slope(e) =—=———(at each ends) . [
El 16El
AX |
Maximum deflection (&) =5 |
[F’LZ y LJ _PL
1 3 1 4
= 6 3 = PL (at mid point) - 3 X
El 48El B.M Diagram
(v) A simply supported beam with UDL over its whole length
Area of BM diagram (shaded) Y .
2 (L wk2) wLl® wiunitlength
A = — — —_— =
() 3{2}([ 8 ] 24 A S
Therefore ; Rf:: E R wl
PR T B~ o
Maximum slope () = A_wL (at each ends) * 2
El 24El B 1 ,
Maximum deflection (&) _Ax MXL—_E L
El X—E.E—'J-
wL3 5 L T F Parabolic
X| — X — 3
24 (8 2] 5 wl . . wih
— = (at mid point) L
El 384 El 8
¥ »X
B.M Diagram

9. Method of superposition
Assumptions:

e Structure should be linear

e Slope of elastic line should be very small.

e The deflection of the beam should be small such that the effect due to the shaft or rotation of

the line of action of the load is neglected.

Principle of Superposition:
+ Deformations of beams subjected to combinations of loadings may be obtained as the linear
combination of the deformations from the individual loadings

*  Procedure is facilitated by tables of solutions for common types of loadings and supports.

Example:

@ G * * * L I | + For the beam and loading shown, determine
A LB B the slope and deflection at point B.
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Superpose the deformations due to Loading I and Loading II as shown.

Loading 1 Loading 11
w A w
cfyiviey.  EEEREEEEXEEE
A B — B
L 4-‘ ‘ w
L2 L | L : e— L2 —te— L/2
! e
Y | Y| B__1(6y),
’ " 1.”!:;‘;{
: = L+ i
A tys (ysh A *
. S —_—
B i " HR — llqh- ]!
Loading 1 Loadmg]
A w
KRR ! 11=L3 11'L4
- (68); T (v8); ="SEl
——
.’f|
3 . Loading IT
I
i?—zzw\:\ '-,u“\f @), - wid o). = wrt
p gk "~ 45Er €T 128Er
Hling I Tn beam segment CB, the bending moment is
A C B zero and the elastic curve is a straight line.
1 w 3
L
e ro— uz——‘ (GB)H = (96)11 M
iy Bl — T (B 48ET
| ; \ﬁﬁj'ms-‘n (vz) wL m'_ ( l 7wr?t
A ¢ x YB) = 28Er TasEr\ 2 ) 384EI
Yol
Loading 1 Loading I1
1w A 1w A
MR REIT A XRRRRERTIIN
A =mp = B =+ i
1 - EERRENP
—L2 —»L—;e J Li L——— —L2——L2
1 !ﬁ ] Hﬁf" g
[ — Ymin
]_-\‘:‘:‘\b !r.-s_ '.fh.
B4 ~L(Bg);
Combine the two solutions,
3 3 3
wi wl TwL
8 =(6g); + (8 )y =———~+ =
=8+ sy =~ * Zemr B 4sEI
vg=(vg); +(vg) __1114 . 7wt N _4111.14
JB VBT VBI T TSR T 384ET "B " 384Er

10. Conjugate beam method

In the conjugate beam method, the length of the conjugate beam is the same as the length of the
actual beam, the loading diagram (showing the loads acting) on the conjugate beam is simply the
bending-moment diagram of the actual beam divided by the flexural rigidity EI of the actual beam,

and the corresponding support condition for the conjugate beam is given by the rules as shown

below.

Corresponding support condition for the conjugate beam
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Existing support condition Corresponding suppott condition
of the actual beam for the conjugate beam

Rule 1 Fixed end Free end

Rule 2 Free end Fixed end

Rule 3 Simple support at the end Simple support at the end

Rule 4 Simple support not at the end Unsupported hinge

Rule 5 Unsupported hinge Simple support

Conjugates of Common Types of Real Beams

Conjugate beams for statically determinate Conjugate beams for Statically
real beams indeterminate real beams
Real Beam Canjugare Beam Real Beam Conjugatc Beam
S pe = 3N iy =+ I——L _—
ek
i
L |
[

(b}

() JF A s < T+ - - el ™

d —_—
’ e o A = =

By the conjugate beam method, the slope and deflection of the actual beam can be found by

using the following two rules:

The slope of the actual beam at any cross section is equal to the shearing force at the
corresponding cross section of the conjugate beam.
The deflection of the actual beam at any point is equal to the bending moment of the

conjugate beam at the corresponding point.

Procedure for Analysis

Construct the M / EI diagram for the given (real) beam subjected to the specified (real)
loading. If a combination of loading exists, you may use M-diagram by parts

Determine the conjugate beam corresponding to the given real beam

Apply the M / EI diagram as the load on the conjugate beam as per sign convention
Calculate the reactions at the supports of the conjugate beam by applying equations of
equilibrium and conditions

Determine the shears in the conjugate beam at locations where slopes is desired in the
real beam, Vconj = Oreal

Determine the bending moments in the conjugate beam at locations where deflections is

. . Page 222 of 429
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The method of double integration, method of superposition, moment-area theorems, and
Castigliano’s theorem are all well established methods for finding deflections of beams, but they
require that the boundary conditions of the beams be known or specified. If not, all of them
become helpless. However, the conjugate beam method is able to proceed and yield a solution for the
possible deflections of the beam based on the support conditions, rather than the boundary

conditions, of the beams.

(i) A Cantilever beam with a point load ‘P’ at its free end.

For Real Beam: At a section a distance )X’ from free end
consider the forces to the left. Taking moments about the
section gives (obviously to the left of the section) Mx =-P.x
(negative signh means that the moment on the left hand side

of the portion is in the anticlockwise direction and is

therefore taken as negative according to the sign convention)

so that the maximum bending moment occurs at the fixed

end i.e. Mmax =- PL (at x =L)

B.M Diagram

wiunit length

i

-~
-E—L—'.h—l

2 wL

and Reaction (R, )= -

Considering equilibrium we get, M, =

Considering any cross-section XX which is at a distance of x from the fixed end.
. . w
At this point load (W, )= T.X

Shear force (V,) = R, —area of triangle ANM
wlL 1(w ] _owL o owx?
=—- — | —X|X=+— -
2 2L 2 2L
.. The shear force variation is parabolic.

atx=0,V, = +W7L i.e. Maximum shear force, V__, =+W7L
atx=L,V, =0
wx® 2x
Bendi t(M,) = Ry x- —.— -
ending momen ( x) A oL 3 A
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~wLowx® wl?

27 6L 3
.. The bending moment variation is cubic

wlL? wlL?

at x=0, M, =-==i.e.Maximum B.M. (Mya ) =—

atx=L, M =0
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Beam Deflection

GATE-1. A lean elastic beam of given flexural
Undeflected F

rigidity, EI, is loaded by a single force F bosition

as shown in figure. How many boundary

conditions are necessary to determine
the deflected centre line of the beam?
(a) 5 (b) 4

(c) 3 (d) 2 :E';'#

[GATE-1999]

—

2
GATE-1. Ans. (d) Elj—g =M. Since it is second order differential equation so we need two boundary
X

conditions to solve it.

Double Integration Method

GATE-2. A simply supported beam carrying a concentrated load W at mid-span deflects
by 6: under the load. If the same beam carries the load W such that it is
distributed uniformly over entire length and undergoes a deflection &2 at the
mid span. The ratio 6:: 62 is: [IES-1995; GATE-1994]

(a) 2: 1 o V2:1 ©1:1 @) 1: 2
W
b |

we _5( | j _ 5WP

48E] 27 "384El  384El

GATE-2. Ans. (d) o, = Therefore 61: 62 =5: 8

GATE-3. A simply supported laterally loaded beam was found to deflect more than a
specified value. [GATE-2003]
Which of the following measures will reduce the deflection?
(a) Increase the area moment of inertia
(b) Increase the span of the beam
(¢)  Select a different material having lesser modulus of elasticity
(d) Magnitude of the load to be increased
Wi
48EI

To reduce, 6, increase the area moment of Inertia.

GATE-3. Ans. (a) Maximum deflection (6) =
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Previous 20-Years IES Questions

Double Integration Method

IES-1. Consider the following statements: [TES-2003]
In a cantilever subjected to a concentrated load at the free end
1. The bending stress is maximum at the free end
2. The maximum shear stress is constant along the length of the beam
3. The slope of the elastic curve is zero at the fixed end
Which of these statements are correct?

(a) 1,2 and 3 (b) 2 and 3 (c)1and3 (d) 1 and 2

IES-1. Ans. (b)

IES-2. A cantilever of length L, moment of inertia I. Young's modulus E carries a
concentrated load W at the middle of its length. The slope of cantilever at the
free end is: [TES-2001]

2 2 2 2
@) WL ®) WL © wL @ WL
2FEI 4FE] 8E] 16E]
L 2
W [2] Wi
IES-2. Ans. (¢) 6 = =
2EI 8EI
IES-3. The two cantilevers A P

and B shown in the
figure have the same
uniform cross-section
and the same material.
Free end deflection of

lF
—f i L—-|

\\f\\\
|
i
4
N

cantilever 'A' is 6. [TES-2000]
The value of mid- span deflection of the cantilever ‘B’ is:
1 2
(a) 50 ()6 (s ()26
3 2 3
IES-3. Ans. (¢) 0 = WL + WL L= SWL
3El 2E| 6El
_ﬂ 2Lx? _X_3 _5WL3_5
I “El "2 6 sy BEl
IES-4. A cantilever beam of rectangular cross-section is subjected to a load W at its

free end. If the depth of the beam is doubled and the load is halved, the
deflection of the free end as compared to original deflection will be: [IES-1999]
(a) Half (b) One-eighth (c) One-sixteenth (d) Double

Wi WwPx12 _4Awr

IES-4. Ans. (c) Deflectionin cantilever = = = 3
3EI 3Eah Eah

Aawr 1 4wt
2Ea(2h) 16 Eal’

If h is doubled, and W is halved, New deflection =

IES-5. A simply supported beam of constant flexural rigidity and length 2L carries a
concentrated load 'P' at its mid-span and the deflection under the load iso . If a
cantilever beam of the same flexural rigidity and length 'L' is subjected to load
'P' at its free end, then the deflection at the free end will be: [IES-1998]

(3)55 (b) & Page 2261226 (d)4s
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IES-5. Ans. (c) ¢ forsimply supported beam=

IES-6.

Deflection of Beam S K Mondal’s
w(2L) W
48EI  6EI

3
and deflection for Cantilever = WL =20

Two identical cantilevers are ’ P
loaded as shown in the
respective figures. If slope at ﬁ"—*—_L_"_"'-j g"—-‘['
the free end of the cantilever in 7 M PL/2 7
figure E is 0, the slope at free 7 -
and of the cantilever in figure Figure E Figure F
F will be:
[TES-1997]
1 1 2
a)—6 b) — O c) —6 d) 6
( )3 (b) > (c) 3 (d)

ML (PL/2)L PpL’

IES-6. Ans. (d) When a B. M is applied at the free end of cantilever, 8 = =

IES-7.

IES-8.

EI EI 2EI
PI?
2EI

When a cantilever is subjected to a single concentrated load at free end, then 6 =

A cantilever beam carries a load W uniformly distributed over its entire length.
If the same load is placed at the free end of the same cantilever, then the ratio
of maximum deflection in the first case to that in the second case will be:

[TES-1996]
(a) 3/8 (b) 8/3 (c) 5/8 (d) 8/5
3 3
IES-7. Ans. (a) ﬂ—ﬂ :é
8EI 3EI 8
The given figure shows a
cantilever of span 'L' subjected to
a concentrated load 'P' and a E
moment 'M' at the free end.
Deflection at the free end is E
given by
[TES-1996]
P ML ML P ML PL ML PL
(a) + (b) — (c) + (d) +
2EI 3EI 2EI 3EI 3EI 2EI 2FEI 48EI

IES-8. Ans. (b)

IES-9.

IES-9. Ans

IES-10.

For a cantilever beam of length 'L', flexural rigidity EI and loaded at its free
end by a concentrated load W, match List I with List IT and select the correct

answer. [TES-1996]
List I List II
A. Maximum bending moment 1. WI
B. Strain energy 2. WI2/2EI
C. Maximum slope 3. WI3/3EI
D. Maximum deflection 4. W2%/6El
Codes: A B C D A B C D
(a 1 4 3 2 (b) 1 4 2 3
© 4 2 1 3 (@) 4 3 1 2

. (b)

Maximum deflection of a cathiltzs2 EIi 4é)geam of length ‘I’ carrying uniformly
distributed load w per unit leng'(ﬁl will be: [IES-2008]
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(a) wl¥/ (EI) (b) w 14/ (4 EI)

Deflection of Beam
(c) w 14/ (8 EI)

S K Mondal’s
(d) w 14/ (384 EI)

[Where E = modulus of elasticity of beam material and I = moment of inertia of beam

cross-section]
IES-10. Ans. (¢)

IES-11.

A cantilever beam of length ‘I’ is subjected to a concentrated load P at a

distance of 1/3 from the free end. What is the deflection of the free end of the

beam? (EI is the flexural rigidity)

Area _
= X

[TES-2004]

14PP 15PF°

(d)

81EI 81EI
Moment Area method gives us

HE)EH

2PP 3PP
(a) (b)
81E7 81E7
IES-11. Ans. (d)
P I
< 213 —54 |.r3—-u;A
- Oa
- 13—y
2PI13 : : :
A _ 5>-<_I i —

I
B.M Diagram

IES-12. A 2 m long beam BC carries a single
concentrated load at its mid-span
and is simply supported at its ends
by two cantilevers AB =1 m long and
CD =2 m long as shown in the figure.
The shear force at end A of the
cantilever AB will be
(a) Zero

(c) 50 kg

(b) 40 kg
(d) 60 kg

2
Alternatively Y, = W_a{ I a} =

- El
PP 2 7 14PF

= X—X— = ——
EIl 9 9 81El

W@ f1-209)

El |2 6 El |2 6
WP 4 (9-2)
= X — X
El 9 18
_14wpP
81 El
100 kgf
D
A B C

pimee—2m —b—2m —

[TES-1997]

IES-12. Ans. (c¢) Reaction force on B and C is same 100/2 = 50 kg. And we know that shear force is
same throughout its length and equal to load at free end.
IES-13. Assertion (A): In a simply supported beam subjected to a concentrated load P at

mid-span, the elastic curve slope becomes zero under the load.

[IES-2003]

Reason (R): The deflection of the beam is maximum at mid-span.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Aistrue but R is false
(d) Aisfalse but R is true
IES-13. Ans. (a)

IES-14.

At a certain section at a distance 'x' from one of the supports of a simply

supported beam, the intensity of loading, bending moment and shear force arc
Wi, Mx and Vi respectively. If the intensity of loading is varying continuously

along the length of the beam, then the invalid relation is:

(o), = L

M
Sl =—=
(a)SlopeQ, ;

X

IES-14. Ans. (a)

(e, -

[TES-2000]
2
M
T (o=
dx dx
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IES-15. The bending moment equation, as a function of distance x measured from the
left end, for a simply supported beam of span L. m carrying a uniformly
distributed load of intensity w N/m will be given by [TES-1999]

L L
(a)M="(Lx)-—(Lx)'Nm  (b)M="2=(x)-—(x)’ Nm
2 2 2 2

L L L
(C)M=WT(L-X)2 -%(L-xf Nm  (d)M= W2 (x)’- WZX Nm

IES-15. Ans. (b)

IES-16. A simply supported beam with width 'b' and depth ’d’ carries a central load W
and undergoes deflection 6 at the centre. If the width and depth are
interchanged, the deflection at the centre of the beam would attain the value

[IES-1997]
d d 2 d 3 d 3/2
a)—o b)|—| o c)|—| o d)|—| o
@50 Y] ©g) @)
3 3
IES-16. Ans. (b) Deflection at center o = il = wi
48E| bd?
48E| 2L
12
3 3 3 2 2
Insecond case, deflection = 8" = 4212], = Wla’b3 = Wlbd3 Z_zz Z_Zg
48F| — 48E| —
12 12

IES-17. A simply supported beam of rectangular section 4 cm by 6 ecm carries a mid-
span concentrated load such that the 6 cm side lies parallel to line of action of
loading; deflection under the load is 6. If the beam is now supported with the 4
cm side parallel to line of action of loading, the deflection under the load will
be: [TES-1993]
(a) 0.44 6 (b) 0.67 & ()1.58 (d) 2.258
IES-17. Ans. (d) Use above explanation

IES-18. A simply supported beam carrying a concentrated load W at mid-span deflects
by 61 under the load. If the same beam carries the load W such that it is
distributed uniformly over entire length and undergoes a deflection 62 at the

mid span. The ratio 6:: 62 is: [IES-1995; GATE-1994]
(@) 2:1 ) ~2:1 ©1:1 @ 1: 2
W 5(VIV)I4 5WP
IES-18. Ans. (d) 6, =———= and 0, = = Therefore 61: 62 = 5: 8
48El| 384El 384El

Moment Area Method

IES-19. Match List-I with List-II and select the correct answer using the codes given

below the Lists: [IES-1997]
List-1 List-I1

A. Toughness 1. Moment area method

B. Endurance strength 2. Hardness

C. Resistance to abrasion 3. Energy absorbed before fracture in

a tension test

D. Deflection in a beam 4. Fatigue loading

Code: A B C D A B C D
(a 4 3 1 2 (b) 4 3 2 1
) 3 4 2 1 (d) 3 4 1 2

IES-19. Ans. (c
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Previous 20-Years IAS Questions

Slope and Deflection at a Section
IAS-1. Which one of the following is represented by the area of the S.F diagram from

one end upto a given location on the beam? [TAS-2004]
(a) B.M. at the location (b) Load at the location
(c) Slope at the location (d) Deflection at the location

IAS-1. Ans. (a)

Double Integration Method

IAS-2. Which one of the following is the correct statement? [TAS-2007]
d
If for a beam d_ =0 for its whole length, the beam is a cantilever:
x
(a) Free from any load (b) Subjected to a concentrated load at its free end

(c) Subjected to an end moment  (d) Subjected to a udl over its whole span
IAS-2. Ans. (c¢) udl or point load both vary with x. But
if we apply Bending Moment (M) = const.

aMm Y W
and——=0 W ! M
dx 1
y —x—
¥
IAS-3. In a cantilever beam, if the length is doubled while keeping the cross-section
and the concentrated load acting at the free end the same, the deflection at the
free end will increase by [TAS-1996]
(a) 2.66 times (b) 3 times (c) 6 times (d) 8 times
IAS-3. Ans. (d)

/ P
g L

3 3
P LI S 0
3El 5,

Conjugate Beam Method

IAS-4. By conjugate beam method, the slope at any section of an actual beam is equal
to: [IAS-2002]
(a) EI times the S.F. of the conjugate beam (b) EI times the B.M. of the conjugate beam
(c) S.F. of conjugate beam (d) B.M. of the conjugate beam

IAS-4. Ans. (c¢)

IAS-5. I=375%x106m%1=0.5m f— 1 =I= I >
E =200 GPa
Determine the stiffness of the |
beam shown in the above figure 21
(a) 12 x 1010 N/m 1
(b) 10 x 1010 N/m
(c) 4 X 101° N/m
(d) 8 x 1019 N/m

[TES-2002]

IAS-5. Ans. (c) Stiffness means required load for unit deformation. BMD of the given beam
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| WL
2WL I

Loading diagram of conjugate beam

WL WL
El El

m ~
N

The deflection at the free end of the actual beam = BM of the at fixed point of conjugate

beam
—[1XLX%]X&+[%XL]X[L+£]+[1XLX%]X[L+£]_3WL3
=132 ElI| 3 |2El 2] (2 2EI 3) 2El
2x(200x10°)%x(375%x10°®
OrstiffneSSZE:ZE!: ( ) (3 ):4><101°N/m
3L 3x(0.5)
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Previous Conventional Questions with Answers

Conventional Question GATE-1999

Question: Consider the signboard mounting shown in figure below. The wind load
acting perpendicular to the plane of the figure is F = 100 N. We wish to limit
the deflection, due to bending, at point A of the hollow cylindrical pole of
outer diameter 150 mm to 5 mm. Find the wall thickness for the pole. [Assume
E =2.0X 10! N/m2]

k4
PLAPrrSr

Answer: Given: F =100 N; do =150 mm, 0.15 my = 5 mm; E = 2.0 X 101! N/m?
Thickness of pole, t
The system of signboard mounting can be considered as a cantilever loaded at A i.e. W
= 100 N and also having anticlockwise moment of M = 100 x 1 = 100 Nm at the free
end. Deflection of cantilever having concentrated load at the free end,

_we
3ElI ~ 2El
3 3
5107 1oox511 . 1oox511
3x2.0x10"xlI 2x2.0x10"" x|
3 3
or =1 | 100x5”  100xS" 15 447,10 m!
5x10°[3x2.0x10™  2x2.0x10
_ (44 8
But I_6—4(d0 —~d)
5.417x10° = (0.5 - d/)
64
or d =0.141m or 141 mm
(_do-d 150141,
2 2

Conventional Question IES-2003

Question: Find the slope and deflection at the free end of a cantilever beam of length
6m as loaded shown in figure below, using method of superposition. Evaluate
their numerical value using E = 200 GPa, I = 1x10-4m* and W =1 kN.
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Answer: We have to wuse superposition

theory. 3W

1st consider : _ A
PL? _(3W)><23 _aw 2m e
3EI 3E]I El

o _PL_@w)2" 6w ‘ 6m
° 2Bl  2EI  El
8W BW 32w

Deflection at A due to this load(s,) =& 0..(6—-—2)=—+ —x4=——
(1) c+ c( ) EI EI X El

S, =

JRSUNSNNN

(2w)x4® 128w
®  3EI  3El
(2W)x4? 16w
2EI  El
Deflection at A due to this load(s, ) 6m

224\WN
=% 0 6—4)=—"—
g 1 05 X ( ) 3E]

2" consider: l
B

2m C

NSOONNNN N\

Oy =

3™ consider: W
Wx6® 72w

8 pr— 8 pr— pr—

(83) =9, 3El El

0 _ Wxe* 18w
AT 2B El

& £
~ UTTT

B A

Apply superpositioning formula

_ 6W 16W 18W  40W 40x(10°)
=6, +06,+6, = + + - - - -
El "~ EI El El (200x10°)x10
32W | 224W  72W _ 40W _563xW
El 3EI EI  EI 3E|
563x%(10°%)

= =8.93mm
3x(200x10%)x (10°*)

§=8+8,+8, =

Conventional Question IES-2002
Question: If two cantilever beams of identical dimensions but made of mild steel and

grey cast iron are subjected to same point load at the free end, within elastic
limit, which one will deflect more and why?

Answer: Grey cost iron will deflect more.

P .}

We know that a cantilever beam of length 'L' end load 'P' will deflect at free end

PL’
3El

)
o

(6)=
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1

oo —
E

E

Castlron

~125GPa and E;;, ., =200 GPa

Conventional Question IES-1997

Question: A uniform cantilever beam (EI = constant) of length L is carrying a
concentrated load P at its free end. What would be its slope at the (i) Free end
and (ii) Built in end

P12 P
Answer: (i) Free end, 0=
2F]
(ii) Built-in end, 6 =0 a

NN\ NN
w
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6.|| Bending Stress in Beam

Theory at a Glance (for IES, GATE, PSU)

6.1 Euler Bernoulli’'s Equation or (Bending stress formula) or Bending

Equation

o_M _E

y I R

Where o = Bending Stress
M = Bending Moment
I =Moment of Inertia
E = Modulus of elasticity
R =Radius of curvature

y = Distance of the fibre from NA (Neutral axis)

6.2 Assumptions in Simple Bending Theory

All of the foregoing theory has been developed for the case of pure bending i.e. constant B.M along

the length of the beam. In such case

6.3

The shear force at each c/s is zero.

Normal stress due to bending is only produced.

Beams are initially straight

The material is homogenous and isotropic i.e. it has a uniform composition and its
mechanical properties are the same in all directions

The stress-strain relationship is linear and elastic

Young’s Modulus is the same in tension as in compression

Sections are symmetrical about the plane of bending

Sections which are plane before bending remain plane after bending
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- Y
o X
GumpreLsiue
CINLN
G,
y NA
¢ ’fL v SNA
Z
c, ﬁ A
P T
Tensile
M,
Gmax = O-t =
1
M, - . .
Opin =0, = T (Minimum in sense of sign)

6.4 Section Modulus (2)

Z:l

y

e Z1is a function of beam c/s only
e Zis other name of the strength of the beam
e The strength of the beam sections depends mainly on the section modulus

e The flexural formula may be written as, O —

bh®
e Rectangular c/s of width is "b" & depth "h" with sides horizontal, Z = T

3
a
e Square beam with sides horizontal, Z = —

3

a
632

e Square c/s with diagonal horizontal, Z =

zd’
32

e Circular c/s of diameter "d", Z =
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A log diameter "d" is available. It is proposed to cut out a strongest beam e
from it. Then
b(d* - b’ a
L b =) N
6 !
bd"® d
Therefore, Zmax= —— for b= —
9 NG —

6.5 Flexural Rigidity (EI)

Reflects both
e Stiffness of the material (measured by E)

e Proportions of the ¢/s area (measured by I)
6.6 Axial Rigidity = EA

6.7 Beam of uniform strength
It is one is which the maximum bending stress is same in every section along the longitudinal axis.
For it M o bh®

Where b = Width of beam
h = Height of beam

To make Beam of uniform strength the section of the beam may be varied by
e Keeping the width constant throughout the length and varying the depth, (Most widely used)
e Keeping the depth constant throughout the length and varying the width
e By varying both width and depth suitably.

6.8 Bending stress due to additional Axial thrust (P).

A shaft may be subjected to a combined bending and axial thrust. This type of situation arises in

various machine elements.

If P = Axial thrust

Then direct stress (o,) = P/ A (stress due to axial thrust)

This direct stress (o, ) may be tensile or compressive depending upon the load P is tensile or
compressive.
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M
And the bending stress (0,) = Ty 1s varying linearly from zero at centre and extremum (minimum

or maximum) at top and bottom fibres.

If P is compressive then

, My .
o Attop fibre o=—+— (compressive)
A 1
e At midfibre o= Z (compressive)
. P My .
e At bottom fibre o :Z - T (compressive)

6.9 Load acting eccentrically to one axis

P (Pxe)y . . R

* 0. = Z + f where ‘e’ 1s the eccentricity at which ‘P’ is act.
P (Pxe)y

° O-min =
A 1

Condition for No tension in any section
2
e For no tension in any section, the eccentricity must not exceed R

[Where d = depth of the section; k = radius of gyration of ¢/s]

h h
e For rectangular section (b xh), e < E i.e load will be 2e = §0f the middle section.

. . . . d
e For circular section of diameter ‘d’, € < g i.e. diameter of the kernel, 2e = Z

. . . D*+d* . D? + d?
For hollow circular section of diameter ‘d’, € < ——— i.e. diameter of the kernel, 26 < ————.

8D
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Bending equation

GATE-1. A cantilever beam has the l]ﬂi\’-
square cross section 10mm X §

7
10 mm. It carries a transverse J ///l:lﬂmm
load of 10 N. Considering only ~ 1m 1m i %

10mm

the bottom fibres of the beam,
the correct representation of
the longitudinal variation of
ATE-2
the bending stress is: G 005]

(a) T (b) -
60 MPa 60 MPa V| ’
(c) ' (d) 1 '
400 MPa 100 MPa l/‘ |

My 10><(X)><0.005
I (0.01)°
12

GATE-1. Ans. (a) M, =P.x

¥ = 60.(x) MPa

o
=— oro
y

Atx=0; o0=0
Atx=1m; o =60MPa
And it is linear as ¢ © X

GATE-2. Two beams, one having square cross section and another circular cross-section,
are subjected to the same amount of bending moment. If the cross sectional
area as well as the material of both the beams are the same then [GATE-2003]
(a) Maximum bending stress developed in both the beams is the same
(b)  The circular beam experiences more bending stress than the square one
(c) The square beam experiences more bending stress than the circular one
(d)  As the material is same both the beams will experience same deformation

GATE-2. Ans. (b)) M2E_2. oM.
I p y I
M| 2 m[ @ ,
2) oM, 2) 32M _4zaM_2227M [ ad®
T 4 78
—aa’
12 64
. O-sq < O-cir
Section Modulus
GATE-3. Match the items in Columns I and II. [GATE-2006]
Column-I Column-II
P. Addendum 1. Cam

Q. Instantaneous centre of velocft§ge 2390f429 2 Beam
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R. Section modulus 3. Linkage
S. Prime circle 4. Gear
(aP-4,Q-2,R-3,S-1 b)P-4,Q-3,R-2,S-1
e©P-3,Q-2,R-1,S-4 dDP-3,Q—-4,R-1,5-2

GATE-3. Ans. (b)

Combined direct and bending stress

GATE-4.

For the component loaded with a force F as shown in the figure, the axial

stress at the corner point P is: [GATE-2008]
—:r\l%
! P F
|
L |
1 L-b
|
> i L
L .
2b
2b
FGBL-b) FQ@BL+D) F(BL—-4b) F(3L-2b)
ST TS © 4 @4

GATE-4. Ans. (d) Total Stress = Direct stress + Stress due to Moment

_P My _F  F(L-b)xb
A | 4b>  2bx(b)
12

Previous 20-Years IES Questions

Bending equation

IES-1.

Beam A is simply supported at its ends and carries udl of intensity w over its
entire length. It is made of steel having Young's modulus E. Beam B is
cantilever and carries a udl of intensity w/4 over its entire length. It is made of
brass having Young's modulus E/2. The two beams are of same length and have
same cross-sectional area. If oa and o denote the maximum bending stresses
developed in beams A and B, respectively, then which one of the following is

correct? [IES-2005]
(a) oalos (b) oA/loB< 1.0
(c) oa/o> 1.0 (d) oa/oB depends on the shape of cross-section

IES-1. Ans. (d) Bending stress (o) = w y and | both depends on the

IES-2.

Shape of cross —section so Ia depends on the shape of cross —section
Op

If the area of cross-section of a circular section beam is made four times,
keeping the loads, length, support conditions and material of the beam
unchanged, then the qualities (List-I) will change through different factors
(List-IT). Match the List-I with the List-Il and select the correct answer using
the code given below the Lists: [TES-2005]
List-I Page 240 of adst-11

A. Maximum BM 1. 8
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B. Deflection 2. 1
C. Bending Stress 3. 1/8
D. Section Modulus 4. 1/16
Codes: A B C D A
(@ 3 1 2 4 (b) 2
0 3 4 2 1 (d) 2

IES-2. Ans. (b)

Diameter will be double, D = 2d.
A. Maximum BM will be unaffected

4
B. deflection ratio E = [E) = i
El, 4 16

B
4
1

ww A

S K Mondal’s

=

M(d/2 °
C. Bending stress o= w = ( 7 ) or Bending stress ratio = %2 _ j
7
64
3
D. Selection Modulus ratio= é = Ii SRARS (Bj =8
Z1 y‘l I1 d
IES-3. Consider the following statements in case of beams: [TES-2002]
1. Rate of change of shear force is equal to the rate of loading at a particular
section
2. Rate of change of bending moment is equal to the shear force at a
particular suction.
3. Maximum shear force in a beam occurs at a point where bending moment

is either zero or bending moment changes sign
Which of the above statements are correct?

(a) 1 alone (b) 2 alone (¢c) 1 and 2 (d)1,2and 3
IES-3. Ans. (c¢)
IES-4. Match List-I with List-II and select the correct answer using the code given
below the Lists: [TES-2006]

List-I (State of Stress)
—

Al

T

p
B. < "?‘
[ E—
—
c <
_>

D <7

,é_.._—
Codes: A B
(a 2 1

¢ 2 4

IES-4. Ans. (c¢)

List-IT (Kind of Loading)

1.
2.
3.
4,

D

4

1

Combined bending and torsion of circular
shaft
Torsion of circular shaft
Thin cylinder subjected to internal
pressure
Tie bar subjected to tensile force
A B C D
(b) 3 4 2 1
(d) 3 1 2 4
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Section Modulus

IES-5. Two beams of equal cross-sectional area are subjected to equal bending
moment. If one beam has square cross-section and the other has circular
section, then [IES-1999]

(a) Both beams will be equally strong

(b) Circular section beam will be stronger

(¢) Square section beam will be stronger

(d) The strength of the beam will depend on the nature of loading

.. . . . T 2 4
IES-5. Ans. (b) If D is diameter of circle and 'a' the side of square section, Zd =a ord=,—a
T

3 3

xd* a . a
= and Z for square section :Z

N

IES-6. A beam cross-section is used in e b/2-"
two different orientations as
shown in the given figure:
Bending moments applied to the
beam in both cases are same. The ""‘ b ..‘
maximum bending stresses b
induced in cases (A) and (B) are
related as:

(a) o, =40, (b) o, =20, _-l_ ‘

7Z for circular section =

o
T
bo

©o, =2  @o,=2t
9T 177 [TES-1997]

bY b
bd’ b (2) b b
IES-6. Ans. (b) Z for rectangular sectionis —, Z, = =—, Z, 2 =—
6 6 24 6 12

b3 b3
M=ZA.GA=ZB.O'B OFZUAzaaB’ orgA=2o-B

IES-7. A horizontal beam with square cross-section is simply supported with sides of
the square horizontal and vertical and carries a distributed loading that
produces maximum bending stress a in the beam. When the beam is placed
with one of the diagonals horizontal the maximum bending stress will be:

[TES-1993]
1
(a) 30' (b) o (©) NoYS (d) 20
. M
IES-7. Ans. (¢) Bending stress = 7
&
For rectangular beam with sides horizontal and vertical, Z = Z
a4
For same section with diagonal horizontal, Z :T
.. Ratio of two stresses = \/5
IES-8. Which one of the following combinations of angles will carry the maximum
load as a column? [TES-1994]
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(a) ) |
(c) [ ]
: (d)

IES-8. Ans. (a)

IES-9. Assertion (A): For structures steel I-beams preferred to other shapes. [IES-1992]
Reason (R): In I-beams a large portion of their cross-section is located far from
the neutral axis.

(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R 1s NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IES-9. Ans. (a)

Combined direct and bending stress

IES-10. Assertion (A): A column subjected to eccentric load will have its stress at
centroid independent of the eccentricity. [TES-1994]
Reason (R): Eccentric loads in columns produce torsion.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-10. Ans. (c) A is true and R is false.

IES-11. For the configuration of loading shown in the given figure, the stress in fibre
AB is given by: [TES-1995]
. P Pe5 )
(a) P/A (tensile) (b) Z - 7 (Compressive)
P Pe5 ) .
(c) Z + 7 (Compressive) (d) P/A (Compressive)

- 5~
P — ~—y— P T

e=1
X . - - . t X e g 10
ﬂ 1
A B
IES-11. Ans. (b) 0, = g(compressive), o, = ? = P[_ky (tensile)
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IES-12. A column of square section 40 mm x 40 4.| P
e #‘7

mm, fixed to the ground carries an

eccentric load P of 1600 N as shown in "
the figure. :
If the stress developed along the edge :
CD is -1.2 N/mm?, the stress along the :
edge AB will be: :

[

I

(a) —1.2 N/mm?2
(b) +1 N/mm?
(¢) +0.8 N/mm?

(d) —0.8 N/mm2 A ' D
A
/-
-- - |40 mm
B : C
: 40 mm I
[TES-1999]
P 6 1600 6
IES-12. Ans. (d) Compressive stress at CD = 1.2 N/mm?2 = — 1+_e =— 1+—e
A b 1600 20
6e 1600
or — =0.2. Sostressat AB =———(1-0.2) =—0.8 N/mm"*(com)
20 1600
IES-13. A short column of symmetric cross- P
section made of a brittle material is "€
subjected to an eccentric vertical load P I
at an eccentricity e. To avoid tensile !
stress in the short column, the
eccentricity e should be less than or equal
to: I
(a) h/12 (b) h/6 ,L
(¢) h/3 (d) h/2
3

ALYl
_-Je}._

p4—1+—t
.
le— h —=

[TES-2001]
IES-13. Ans. (b)

IES-14. A short column of external diameter D and internal diameter d carries an
eccentric load W. Toe greatest eccentricity which the load can have without

producing tension on the cross-section of the column would be: [TES-1999]
D+d D’ +d’ D’ +d* D’ +d’
(a) (b) ——— (€) ——— d) \——
8 8d 8D 8

IES-14. Ans. (¢)
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Previous 20-Years IAS Questions

Bending equation

IAS-1. Consider the cantilever loaded as shown below: [TAS-2004]
~—— W kN/m

R 2 2 2

]
2
7
’

—_ _h2  p—

Cross-section of

the cantilever
What is the ratio of the maximum compressive to the maximum tensile stress?
(a) 1.0 (b) 2.0 (c) 2.5 (d) 3.0

M M (2
IAS-1. Ans. (b) o:Ty O compressive, Max = v X (?hj atlower end of A.

e

M (h
O tensile, max = 7 X (gj at upper endof B

IAS-2. A 0.2 mm thick tape goes over a frictionless pulley of 25 mm diameter. If E of
the material is 100 GPa, then the maximum stress induced in the tape is:

[TAS 1994]
(a) 100 MPa (b) 200 MPa (c) 400 MPa (d) 800 MPa
I
e

|
0.2 25
Herey = 720.1 mm =0.1x103m,R = ?mmz 12.5x 103 m

> |

TAS-2. Ans. (d) 2 =
y

10010’ x0.1x107°

5 107 MPa=800MPa
DX

oro

Section Modulus

IAS-3. A pipe of external diameter 3 cm and internal diameter 2 cm and of length 4 m
is supported at its ends. It carries a point load of 65 N at its centre. The
sectional modulus of the pipe F¥R%e°f 429 [IAS-2002]
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657 657 657 657
(a) cm (b) ——cm (@) cm (d) ——cm
64 32 96 128
7T (A4 4
. I 5(3‘2) . 657,
IAS-3. Ans. (¢) Section modulus(z) =— = Ty em = Ecm
2
IAS-4. A Cantilever beam of rectangular cross-section is 1m deep and 0.6 m thick. If

the beam were to be 0.6 m deep and 1m thick, then the beam would. [IAS-1999]

(a) Be weakened 0.5 times

(b) Be weakened 0.6 times

(c) Be strengthened 0.6 times

(d) Have the same strength as the original beam because the cross-sectional area
remains the same

3
IAS-4. Ans. (b) 2, == 20T 4o
y 0.5
3
and z, = = 1X0056 ~0.72m’ LLL ,;]TEm
y : L '
.-.Z—2=E=0.6times }_
z, 1.2 N le—1m —>]
0.6m
IAS-5. A T-beam shown in the given figure is Ae— 100—>g,
subjected to a bending moment such that | | 20
plastic hinge forms. The distance of the c
neutral axis from D is (all dimensions are
in mm) ) a T
(a) Zero 150
(b) 109 mm
(¢) 125 mm
(d) 170 mm
DL
—'*tld*
[TAS-2001]
IAS-5. Ans. (b)
Ae— 100—ig}
| | 20
[ C
61
—_— e — — + - —
G
150
109 l
I oL
—ppok
IAS-6. Assertion (A): I, T and channel sections are preferred for beams. [IAS-2000]

Reason(R): A beam cross-section should be such that the greatest possible
amount of area is as far away from the neutral axis as possible.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IAS-6. Ans. (a) Because it will increase area moTAeH245ff@Ptia, i.e. strength of the beam.
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IAS-7. If the T-beam cross-section |+ 120mm | i
shown in the given figure has vy 0
bending stress of 30 MPa in the _T_| | i
top fiber, then the stress in the 30mm _f
bottom fiber would be (G is | _
centroid) G
(a) Zero
(b) 30 MPa 110mm
(c) —80 MPa
(d) 50 Mpa
& PR | B
s 1mm
[TAS-2000]
IAST. Ans. @ 2=T=2 416 =y x T =(110-30)x 22 =80 MPa
Iy » Y, 30
As top fibre in tension so bottom fibre will be in compression.
IAS-8. Assertion (A): A square section is more economical in bending than the circular
section of same area of cross-section. [TAS-1999]

Reason (R): The modulus of the square section is less than of circular section of
same area of cross-section.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R 1s NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true
IAS-8. ans. (c¢)

Bimetallic Strip

IAS-9. A straight bimetallic strip of copper and steel is heated. It is free at ends. The

strip, will: [IAS-2002]
(a) Expand and remain straight (b) Will not expand but will bend
(c) Will expand and bend also (d) Twist only

IAS-9. Ans. (c) As expansion of copper will be more than steel.

Combined direct and bending stress

IAS-10. A short vertical column having a
square cross-section is subjected to
an axial compressive force, centre
of pressure of which passes
through point R as shown in the P Q
above figure. Maximum —— -+-
compressive stress occurs at point
(a) S
b Q
(¢ R
(d P

[TAS-2002]
IAS-10. Ans. (a) As direct and bending both the stress is compressive here.

IAS-11. A strut's cross-sectional area A is subjected to load P a point S (h, k) as shown
in the given figure. The stress at the point Q (x, y) is: [IAS-2000]
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P Phy Pkx
(@ —+——+—
A I I
P Phx P
b) ————— ky
A I, I
P Phy Phkx . ?
() —+——+—
A I I
P Phx P
(d) —+——-— ky
A4 1 1

IAS-11. Ans. (b) All stress are compressive, direct stress,

P ) My P .
o, =— (compressive), o, = 2 Py (compressive)
A 1, I
Mx  Phx .
and o, = e = - (compressive)
y y
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Previous Conventional Questions with Answers

Conventional Question IES-2008

Question: A Simply supported beam AB of span length 4 m supports a uniformly
distributed load of intensity q = 4 kN/m spread over the entire span and a
concentrated load P = 2 kN placed at a distance of 1.5 m from left end A. The
beam is constructed of a rectangular cross-section with width b = 10 ecm and
depth d = 20 cm. Determine the maximum tensile and compressive stresses
developed in the beam to bending.

Answer:
X,
2KN % 4KN/M
A 5 ﬂ
VN NN NN\
€—15—>|
€& am > 1 1 h=20cm
A : R; ‘
X

R+ Ry=2 +4x4........(J)
‘R, x4 + 2%(4-1.5) + (4x4)x2=0...... (ii)
or R,=9.25 kN, R,=18-R, = 8.75 kN

if0<x<25m
M, =RgxX - 4x.(%/ }-2(x-2.5)

=8.75x - 2x* - 2x +5=6.75x - 2x* +5 .. (i)

From (i) & (ii) we find out that bending movment at x = 2.1875 m in(i)
gives maximum bending movement

[Just find Z—M for both the casses]
X

M__ =8.25x2.1875—2x1875% = 9.57K7kNm

bh® 0.1x0.2°
12 12
Maximum distance from NAisy =10 cm =0.1m

) 10°)x0.1
O max _ My _O57x10 )Xf? y , =14.355MPa
1 6.6667 %10 m

Therefore maximum tensile stress in the lowest point in the beam is 14.355 MPa and
maximum compressive stress in the topmost fiber of the beam is -14.355 MPa.

=6.6667x10"°m*

Area movement of Inertia (I) =

Conventional Question IES-2007

Question: A simply supported beam made of rolled steel joist (I-section: 450mm X
200mm) has a span of 5 m and it carriers a central concentrated load W. The
flanges are strengthened by two 300mm X 20mm plates, one riveted to each
flange over the entire length of the flanges. The second moment of area of the
joist about the principal bern@bag442i43% 35060 cm4. Calculate
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(i) The greatest central load the beam will carry if the bending stress in the
300mm/20mm plates is not to exceed 125 MPa.
(ii) The minimum length of the 300 mm plates required to restrict the
maximum bending stress is the flanges of the joist to 125 MPa.

Answer:
Y

i 30 cm *-I
: Plate {

]
I ! 2cm

I——200m | =—.1l

/— 1-section

o 245 cM it 24 50T )
>

% . . . _ _Neutral axis E
- 0
. A -
i . ]
:I 2¢cm
Plate |

i Y
p—— . 30 cm —-—1
Moment of Inertia of the total section about X-X

(I) = moment of inertia of I —section + moment of inertia of the plates about X-X axis.

45 2]2

30x2°
0x2x|—+=
+30x x[2+2

= 35060+ 2 =101370 cm*

(i) Greatest central point load(W):
For a simply supported beam a concentrated load at centre.

M=%: WS _ 425w
ol (125x10°)x(101370x10°°)

M=="= —517194Nm
y 0.245

oo 1.28W =517194 or W = 413.76 kN

(i1) Suppose the cover plates are absent for a distance of x-meters from each support.
Then at these points the bending moment must not exceed moment of resistance of

‘T section alone 1.e

=178878Nm

ol _ (125><106)>< (35060><10*8)
y 0.245

.".Bending moment at x metres from each support
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=% x X — 178878

41760

or, x X =178878

or x=0.86464m

Hence leaving 0.86464 m from each support, for the
middle 5 - 2x0.86464 = 3.27 m the cover plate should be
provided.

Conventional Question IES-2002

Question: A beam of rectangular cross-section 50 mm wide and 100 mm deep is simply
supported over a span of 1500 mm. It carries a concentrated load of 50 kN, 500
mm from the left support.

Calculate: (i) The maximum tensile stress in the beam and indicate where it occurs:
(ii) The vertical deflection of the beam at a point 500 mm from the right

support. E for the material of the beam = 2 x 105 MPa.
Answer: Taking moment about L ¥

Rg x 1500 = 50 x 500 UL
or,R, =16.667 kN |
or,R, + R, =50 [—am—s |, R

~.R, =50—16.667=33.333 kN Rl 3

. —3
: : 1
Take a section from right R, — Hhm—

x-xat a distance x. L ¥ Ry
Bending moment (M, ) = +Rx.x :

|16.667 kNm

I

|
+— 500 —»4—— 1000 ———»

Therefore maximum bending moment will occur at 'c' Mmax=16.667x1 KNm

(1) Moment of Inertia of beam cross-section

3 3
(1) = bh _ 0.050x(0.100) = 4166710 m*
12 12
Applying bending equation
" . Iy (16.67><103)><[Ogm]
—=2-2 oo, ="2= —= N /m* =200MPa
I y »p 1 4.1667 <10

It will occure where M is maximum at point 'C'

(i1) Macaulay's method for determing the deflection
of the beam will be convenient as there is point load.
d’y

2
X

M, = EI

=33.333xx—50x(x—0.5)
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Integrate both side we get
2 2
Bl 9Y 2333336 -0 (052 foxte,

dx 2 2
at x=0, y=0 gives ¢, =0
at x=1.5, y=0 gives
0=5.556x(1.5)’ —8.333x I’ +¢, x1.5
or,c, =—6.945

< Ely =5.556x x°|~8.333(x — 0.5)’| - 6.945x 1= —2.43

—2.43
(2x10° x10°) x (4.1667x10~°)

or,y = m =-2.9167mm[downward so -ive]

Conventional Question AMIE-1997

Question:

Answer:

If the beam cross-section is rectangular having a width of 75 mm, determine
the required depth such that maximum bending stress induced in the beam
does not exceed 40 MN/m?

Given: b =75 mm =0-075 m, o,,,, =40 MN/m?

Depth of the beam, d: Figure below shows a rectangular section of width b = 0075 m
and depth d metres. The bending is considered to take place about the horizontal
neutral axis N.A. shown in the figure. The maximum bending stress occurs at the outer

. . . d .
fibres of the rectangular section at a distance E above or below the neutral axis. Any

. . : . . M
fibre at a distance y from N.A. is subjected to a bending stress, o =—y, where 1

I
bd®

denotes the second moment of area of the rectangular section about the N.A. i.e. E TR
. d . .
At the outer fibres, y = E , the maximum bending stress there becomes
i >
r
#
4
4
N —} 44— ._.,_74--_.&
s
I, D

(3] L

o = 7 =
mex bd® bd?

12 6

bd? .
or M=o,.,.— ————(ii)

6

For the condition of maximum strength i.e. maximum moment M, the product bd2 must
be a maximum, since o, is constant for a given material. To maximize the quantity
bd2 we realise that it must be expressed in terms of one independent variable, say, b,
and we may do this from the right angle triangle relationship.
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b* + d* =D?
or &> =D* -b?
Multiplying both sides by b, we get bd? =bD? —b?

To maximize bd? we take the first derivative of expression with respect to b and set it
equal to zero, as follows:

i(bd2)=i(bD2 —b3) =D?-3p% =b?+d*-3b%> =d? - 202 =0
db db
Solving, we have, depth d\/E b ...(111)

This is the desired radio in order that the beam will carry a maximum moment M.

It is to be noted that the expression appearing in the denominator of the right side of
2

eqn. (1) 1. e. ?is the section modulus (Z) of a rectangular bar. Thus, it follows; the

section modulus is actually the quantity to be maximized for greatest strength of the
beam.

Using the relation (ii1), we have

d=+/2x0075=00106 m

bt

Now, M= o, XZ= 0, X

Substituting the values, we get
0.075x(0.106)°
X

6

S 0.005618 _AOMN
Z (0.075x(0.106)2/6)

Hence, the required depth d = 0106 m = 106 mm

M =40 =0.005618 MNm
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Theory at a Glance (for IES, GATE, PSU)

1. Shear stress in bending (7 )

vQ
T = —
b
am
Where, V = Shear force = ——
dx

Q = Statical moment = '[ydA
N
I = Moment of inertia

b = Width of beam c/s.

2. Statical Moment (Q)

Q= I ydA = Shaded Area x distance of the centroid of the shaded area from the neutral axis of

N

the c¢/s.

3. Variation of shear stress

Section Diagram Position of T
Tmax
Rectangular N.A 3V
Tnax = a
T =157,
=T
Circular N.A
4
Trnax = gT mean
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Triangular TT—T— U
| v . 2h W2
= }:‘ 7
[ ] » o
4
1l r LT
i WL,
| ]
(a) Beam cross-seclion (b} Shear stress distribution
Trapezoidal
Section Diagram
Uni form I S—
. 1 i
I-Section i '.
\
Iy . -.__y‘_ T
[/_.wan L}
o w N— __i._.-—----—ﬁ ——‘-—:—-— e
1 :
| Flange ,’

Shear Stress in Beam

S K Mondal’s

h . =1.57
g from N.A max mean

z-NA = 133 Tmean
h
— from N.A
6
Tmax
In Flange,

4 2-h1?
(rmax )(7,,. ). h :—[h }
( )yl=z‘ 81

=0

( Tmax )Y1 :%
In Web

(Tmax )}’1 =0

v

= b +ih |

_vb

PRI

4. Variation of shear stress for some more section [Asked in different examinations]

Non uniform I-Section

L

Flange l

|
. _.r__

fa—

v

Flange
|

|
Beam cross-section

Web

Shear stress distribution

L-section

T-section Cross
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5. Rectangular section

Shear Stress in Beam

’

7
T
4

¢

A,

3V

e Maximum shear stress for rectangular beam: 7 =

Y

For this, A is the area of the entire cross section

e Maximum shear occurs at the neutral axis

e Shear is zero at the top and bottom of beam

6. Shear stress in beams of thin walled profile section.

e Shear stress at any point in the wall distance "s" from the free edge

Shearing occurs here

where V_= Shear force

y

7 = Thickness of the section

I = Moment of inrertia about NA

o Shear Flow (q)

e Shear Force (F)
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- && C - >Z

F= J. qds

o Shear Centre (e)

Point of application of shear stress resultant

Page 257 of 429



Chapter-7 Shear Stress in Beam S K Mondal’s

OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Shear Stress Variation

GATE-1. The transverse shear stress acting
in a beam of rectangular cross-
section, subjected to a transverse
shear load, is:

(a) Variable with maximum at the
bottom of the beam

(b) Variable with maximum at the
top of the beam

(¢)  Uniform

(d) Variable with maximum on the
neutral axis

B

[TES-1995, GATE-2008]

mean

3
GATE-1. Ans (@) 7y, =7

GATE-2. The ratio of average shear stress to the maximum shear stress in a beam with a

square cross-section is: [GATE-1994, 1998]
2 3
(@ 1 (b) 3 () > d 2
GATE-2. Ans. (b)
3
T =—=T

max 2 mean

Previous 20-Years IES Questions

Shear Stress Variation

IES-1. At a section of a beam, shear force is F with zero BM. The cross-section is
square with side a. Point A lies on neutral axis and point B is mid way between
neutral axis and top edge, i.e. at distance a/4 above the neutral axis. If 7 a and
7T B denote shear stresses at points A and B, then what is the value of 7 a/7 B?

[TES-2005]
(@0 (b) % (c) 4/3 (d) None of above
a(a’
s va(3 ey 3V
2\ 4 :
IES-1. Ans. (c) 7 = VAY _ = %ls(a2 - 4y?) orfA = 28’ = %

Ib ixa a TB § l [a2_4(aj2j
12 Page 258 of 429 2@’ 4
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IES-2. A wooden beam of rectangular cross-section 10 cm deep by 5 cm wide carries
maximum shear force of 2000 kg. Shear stress at neutral axis of the beam
section is: [IES-1997]
(a) Zero (b) 40 kgf/cm? (c) 60 kgf/cm? (d) 80 kgf/cm?

. 3 F 3 2000 )

IES-2. Ans. (c) Shear stress at neutral axis = —X— =—X =60kg/cm

2 bd 2 10x5

IES-3. In case of a beam of circular cross-section subjected to transverse loading, the
maximum shear stress developed in the beam is greater than the average shear
stress by: [TES-2006; 2008]
(a) 50% (b) 33% (c) 25% (d) 10%

IES-3. Ans. (b) In the case of beams with circular cross-section, the ratio of the maximum shear
stress to average shear stress 4:3

Shear Stress Distribution

IES-4. What is the nature of distribution of shear stress in a rectangular beam?
[TES-1993, 2004; 2008]
(a) Linear (b) Parabolic (c) Hyperbolic (d) Elliptic
IES-4. Ans. (b)

Shear
stress
distribution

4| 4

section.

V(h e e
2'——[——y12 indicating a parabolic distribution of shear stress across the cross-

IES-5. Which one of the following statements is correct? [IES 2007]
When a rectangular section beam is loaded transversely along the length, shear
stress develops on
(a) Top fibre of rectangular beam (b) Middle fibre of rectangular beam
(c) Bottom fibre of rectangular beam (d) Every horizontal plane

IES-5. Ans. (b)
i

|
—
—h.\_.-

-

/—,J""

IES-6. A beam having rectangular cross-section is subjected to an external loading.
The average shear stress devERIpée 8#é%to the external loading at a particular
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cross-section is t, . What is the maximum shear stress developed at the same

cross-section due to the same loading? [TES-2009]
1 3
(a) Etavg (b) Lo (c) Etavg (d) 21,

IES-6. Ans. (c¢)

< b1
Shear stress in a rectangular Shear stress in a circular beam, the
beam, maximum shear stress, maximum shear stress,

3F F 4
Tnax = m =15 T(average) Tmax = —TE = g T(average)
. 3 Ngad d2
4
IES-7. The transverse shear stress = b ——i

acting in a beam of rectangular ———
cross-section, subjected to a y /

transverse shear load, is:

|
(a) Variable with maximum at the ,!, y
bottom of the beam J_J
(b) Variable with maximum at the d N4—= -7
top of the beam
(¢) Uniform
(d) Variable with maximum on the

neutral axis

[TES-1995, GATE-2008

3
IES-7. Ans (@) 7 =27

mean

IES-8. P
I T
S

A cantilever is loaded by a concentrated load P at the free end as shown. The

shear stress in the element LMNOPQRS is under consideration. Which of the

following figures represents the shear stress directions in the cantilever?
[TES-2002]
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Shear Stress in Beam S K Mondal’s
(@) S R ) S R
] {-—-— []
L |
] - Q l P ' Q l
K o LI . S N ! O N
- - ‘ - ’ - S N
L M L = M
g R . S R
11 l.l
N N
L M M

IES-8. Ans. (d)

IES-9.

In I-Section of a beam subjected to transverse shear force, the maximum shear
stress is developed. [IES- 2008]
(a) At the centre of the web (b) At the top edge of the top flange

(c) At the bottom edge of the top flange (d) None of the above

IES-9. Ans. (a)

IES-10.

The given figure (all Irﬂ , 100 :-_1

dimensions are in mm) shows , -

an I-Section of the beam. The p 2*[}

shear stress at point P (very -

close to the bottom of the Q 1

flange) is 12 MPa. The stress at i 40

point Q in the web (very close N B i 20 _ ggl

to the flange) is:

(a) Indeterminable due to

incomplete data

(b) 60MPa

(C) 18 MPa 0

(d) 12 MPa X
| 100 |

=
[TES-2001]

IES-10. Ans. (b)

IES-11.

Assertion (A): In an I-Section beam subjected to concentrated loads, the
shearing force at any section of the beam is resisted mainly by the web portion.
Reason (R): Average value of the shearing stress in the web is equal to the
value of shearing stress in the flange. [TES-1995]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false

(d) Ais false but R is true

IES-11. Ans. (¢)

Shear

IES-12.

stress distribution for different section

The shear stress distribution over a beam cross-
section is shown in the figure above. The beam is of
(a) Equal flange I-Section

(b) Unequal flange I-Section

(c) Circular cross-section

(d) T-section
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Previous 20-Years IAS Questions

Shear Stress Variation

IAS-1. Consider the following statements: [IAS-2007]
Two beams of identical cross-section but of different materials carry same
bending moment at a particular section, then

1. The maximum bending stress at that section in the two beams will be
same.

2. The maximum shearing stress at that section in the two beams will be
same.

3. Maximum bending stress at that section will depend upon the elastic
modulus of the beam material.

4. Curvature of the beam having greater value of E will be larger.

Which of the statements given above are correct?

(a) 1 and 2 only (b) 1,3 and 4 (¢)1,2and 3 (d) 2,3 and 4

M VA
IAS-1. Ans. (a) Bending stress O :Ty and shear stress (7) = J both of them does not depends

on material of beam.

IAS-2. In a loaded beam under bending [IAS-2003]
(a) Both the maximum normal and the maximum shear stresses occur at the skin
fibres

(b) Both the maximum normal and the maximum shear stresses occur the neutral axis

(¢) The maximum normal stress occurs at the skin fibres while the maximum shear
stress occurs at the neutral axis

(d) The maximum normal stress occurs at the neutral axis while the maximum shear
stress occurs at the skin fibres

IAS-2. Ans. (c¢)

Shear Stress Distribution

T

section.

V(h 4 e
T= —[— - y12 indicating a parabolic distribution of shear stress across the cross-

Shear stress distribution for different section

IAS-3. Select the correct shear stress diagaribaudfiena diagram for a square beam with a
diagonal in a vertical position: [IAS-2002]
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(a) {b)

{c) ()

!

IAS-3. Ans. (d)

IAS-4. The distribution of shear stress of a beam is shown in the given figure. The
cross-section of the beam is: [TAS-2000]

(@) 1
(b) T

()

G) A

IAS-4. Ans. (b)
IAS-5. A channel-section of the beam shown in the given figure carries a uniformly
distributed load. [IAS-2000]

l‘fc MNi'm

w

bbbl
i T

Assertion (A): The line of action of the load passes through the centroid of the
cross-section. The beam twists besides bending.

Reason (R): Twisting occurs since the line of action of the load does not pass
through the web of the beam.

() Both A and R are individuaHygémes smddR is the correct explanation of A

(b) Both A and R are individually true but R 1s NOT the correct explanation of A
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(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-5. Ans. (¢) Twisting occurs since the line of action of the load does not pass through the shear.
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Previous Conventional Questions with Answers

Conventional Question IES-2009

Q. (i)A cantilever of circular solid cross-section is fixed at one end and carries a
concentrated load P at the free end. The diameter at the free end is 200 mm
and increases uniformly to 400 mm at the fixed end over a length of 2 m. At
what distance from the free end will the bending stresses in the cantilever be
maximum? Also calculate the value of the maximum bending stress if the

concentrated load P = 30 kN [15-Marks]
M
Ans. We have 2 = — weee (1)
y 1

Taking distance x from the free end we have

M = 30x kN.m = 30x x 103> N.m

y =100 + % (200 -100)

=100+ 50x mm
4
and I= "9
64

Let d be the diameter at x from free end.

4
n[200+(4°°—2°")x

64

_ m(200+100x)" -
64

From equation (i), we have
(o)

(100 +50x)x107°
30x x10°

634(200 +100x)* x10712

960x

T

= 250X 500 + 100x) x 1012

U

(200 +100x) ° x10'2  ...... (ii)

. 0=

c
For maxoc, —=0
dx

10'%2 x 960
TC

| x(-3)(100)(200+ 100x) ™ +1.(200+ 100x)* | = 0
= -300x + 200 + 100x = 0

= [x=1m|
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NSOI{N
400 @

&
~

l
v

2000mm

(2m)
Hence maximum bending stress occurs at the midway and from equation (i), maximum
bending stress

o =280 (1)(200+100)* x 1012
T
12
_960x10% o e
nx(300)

Conventional Question IES-2006

Question: A timber beam 15 cm wide and 20 cm deep carries uniformly distributed load
over a span of 4 m and is simply supported.
If the permissible stresses are 30 N/mm?2 longitudinally and 3 N/mm?
transverse shear, calculate the maximum load which can be carried by the

timber beam.
/ "%
N

N/A 2(0cm

A

4m

T

5cm

bh*  (0.15)x(0.20)
12 12 a

Answer: Moment of inertia (I) = 10" m*

Distance of neutral axis from the top surface y = % =10cm = 0.1 m

We know that %:g or o = &
I vy I

Where maximum bending moment due to uniformly
. o U 4°
distributed load in simply supported beam (M) = % = w><8 =2w

Considering longitudinal stress
(Za)) x0.1

0—4

30x10° =

or, o =15 kN/m
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Now consideng Shear
Maximum shear force = a)_L = %4 =2w

2
Therefore average shear stress (r, @

) =—— - 66.6Tw
0.15x0.2

For rectangular cross-section

Maximum shear stress(z

max )

_3 . -3,66.670=100w
27773

Now 3 x10° =100w; o =30 kN/m
So maximum load carring capacity of the beam = 15 kN/m (without fail).
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Theory at a Glance (for IES, GATE, PSU)
What is a beam?

A (usually) horizontal structural member that is subjected to a load that tends to bend it.

Types of Beams

Simply supported beam

Simply Supported Beams Cantilever Beam

Single Overhang Beam
Continuous Beam

Single Overhang Beam with internal hinge

Cantilever beam

Double Overhang Beam

| | TTRNIn

Fixed Beam Continuous beam

Continuous beams

Beams placed on more than 2 supports are called continuous beams. Continuous beams are used

when the span of the beam is very large, deflection under each rigid support will be equal zero.

Analysis of Continuous Beams
(Using 3-moment equation)

Stability of structure

If the equilibrium and geometry of structure is maintained under the action of forces than the

. . Page 268 of 429
structure is said to be stable.
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External stability of the structure is provided by the reaction at the supports. Internal stability is

provided by proper design and geometry of the member of the structure.

Statically determinate and indeterminate structures
Beams for which reaction forces and internal forces can be found out from static equilibrium

equations alone are called statically determinate beam.

Example:

R,
> X, =0,>"Y,=0and Y M =0 is sufficient to calculate R, & R

Beams for which reaction forces and internal forces cannot be found out from static equilibrium
equations alone are called statically indeterminate beam. This type of beam requires deformation

equation in addition to static equilibrium equations to solve for unknown forces.

Example:

I

]

A B

A—>

A—>
WAL
I
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Ex:

Af] J w R No. of unknowns = 6
; ﬁ _ B
No. of eq . Condition = 3
FIXED BEAM

End moments Therefore statically indeterminate
Ha > 7\ Hs

\.l: My M.,F/ Degree of indeterminacy =6-3 = 3
n 1 Vg 5
: : No. of unknowns = 3
w w No. of equilibrium Conditions = 2
N acd
T /J\H } © | Therefore Statically indeterminate
Fq'.,al B RE‘

Degree of indeterminacy = 1

Advantages of fixed ends or fixed supports

e Slope at the ends is zero.
¢ Fixed beams are stiffer, stronger and more stable than SSB.
e In case of fixed beams, fixed end moments will reduce the BM in each section.

e The maximum deflection i1s reduced.

Bending moment diagram for fixed beam

Example:

&
e |
R

=
b |

--'-r---'-
b
!

M M

A3~

[P

— [}
1
1
1

BMD for Continuous beams

BMD for continuous beams can be obtained by superimposing the fixed end moments diagram over

the free bending moment diagram.
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N

AV Vv vy v v vy B

N

L:

|

FREE B.M.

Three - moment Equation for continuous beams OR

Clapeyron’s Three Moment Equation

M, L +2M, L L +M_ L,
\E 1 EI ELI EI

171 171

_—6alx_]_ 6a.x, 6 5, -6, +5C—83
EIL, EILL, L L

1 2

The above equation is called generalized 3-

moments Equation.

Ma, Mg and M¢ are support moments E, E2 —
Young’s modulus

of Elasticity of 2 spans.

I, I, — MOT of 2 spans,
aj, a — Areas of free BM.D.
X, andx, —  Distance of free B.M.D. from the
end supports, or outer supports.
(A and C)
A, Op and 6¢c — are sinking or settlements of

support from their initial position.
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years IES Questions

Overhanging Beam

IES-1. An overhanging beam ABC is supported at points A and B, as shown in the
above figure. Find the maximum bending moment and the point where it

occurs. [TES-2009]
(a) 6 kN-m at the right support lz kN 6 k“l
(b) 6 kN-m at the left support A c
(¢) 4.5 kN-m at the right support E JL & N
(d 45 kN-m at the midpoint lm ,|¢ 1m
between the supports
2m lm
-
IES-1. Ans. (a) Taking moment about A 1' lf M a | & i
Vpx2=(2x1)+(6x3) = | T ,-
P I :
= 2V, =2+18 A ! !
= V, =10 kN :' : : ;
V,+V; =2+6 =8kN ' - '
V, =8-10 = —2 kN \/
.. Maximum Bending Moment = & k; T
6 kN-m at the right support '
IES-2. A beam of length 4 L is simply supported on two supports with equal overhangs

of LL on either sides and carries three equal loads, one each at free ends and the
third at the mid-span. Which one of the following diagrams represents correct
distribution of shearing force on the beam? [IES-2004]

{a) ) I

,___._,.-F"'

() '__]

LT/

IES-2. Ans. (d)
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| Ta P2

P2

P2

They use opposite sign conversions but for correct sign remember S.F & B.M of cantilever
is (-) ive.

B e Sy (U YTy Oy B0 0800 baaauuY)
uniformly distributed load is
supported with equal |"-:EI 'l' * b =T“3'-l

overhangs as shown in the

given figure
The resultant bending moment at the mid-span shall be zero if a/b is: [IES-2001]
(a) 3/4 (b) 2/3 (c) 172 (d) 1/3

IES-3. Ans. (c¢)

Previous 20-Years IAS Questions

Overhanging Beam

- Tx} m’\ﬁjﬁ Pf}
A Ch DT B
—=x 1 | ! i
If the beam shown in the given figure is to have zero bending moment at its
middle point, the overhang x should be: [IAS-2000]
(a) wl* /4P () wl* /6P () wl* /8P @ wi*/12P
wi

IAS-1. Ans. (¢) R. =R, = P_|_7

Bendi t at mid point (M) Wl><1+R xl P x+l 0 gives x wl”
enamgeg moment at mi o1n = ——X— _—— — | = e J—
¢ P 2 4 Py )78 8P

IAS-2. A beam carrying a uniformly distributed load rests on two supports 'b' apart
with equal overhangs 'a' at each end. The ratio b/a for zero bending moment at
mid-span is: [TAS-1997]

1 3
— b) 1 — d) 2
(@) 2 Pa(ge) 273 of 429 © 2 @
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TAS-2. Ans. (d)
N

(1) By similarity in the B.M diagram a must be b/2

.. o|b® . _
(i) By formula M= ST a“ |=0gives a =b/2

IAS-3. A beam carries a uniformly distributed load and is supported with two equal
overhangs as shown in figure 'A'. Which one of the following correctly shows
the bending moment diagram of the beam? [TIAS 1994]

Fig A
\//\\/ A
() /‘\ () A
7N 7N

TIAS-3. Ans. (a)
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Previous Conventional Questions with Answers

Conventional Question IES-2006
Question: What are statically determinate and in determinate beams? Illustrate each

case through examples.
Answer: Beams for which reaction forces and internal forces can be found out from static

equilibrium equations alone are called statically determinate beam.

Example:
P
Rs
Ra
> X;=0,>"Y,=0and > M =0 is sufficient
to calculate R, & R,
Beams for which reaction forces and internal forces cannot be found out from static
equilibrium equations alone are called statically indeterminate beam. This type of
beam requires deformation equation in addition to static equilibrium equations to solve
for unknown forces.
Example:

Ly
]

D

-

]

A B c
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Theory at a Glance (for IES, GATE, PSU)

e In machinery, the general term “shaft” refers to a member, usually of circular cross-
section, which supports gears, sprockets, wheels, rotors, etc., and which is subjected to
torsion and to transverse or axial loads acting singly or in combination.

e An “axle” is a rotating/mon-rotating member that supports wheels, pulleys,... and

carries no torque.

e A “spindle”is a short shaft. Terms such as lineshaft, headshaft, stub shaft, transmission

shaft, countershaft, and flexible shaft are names associated with special usage.

Torsion of circular shafts

1. Equation for shafts subjected to torsion "T"
—_—=— =— Torsion Equation

Where J = Polar moment of inertia
7 = Shear stress induced due to torsion T.
G = Modulus of rigidity
6 = Angular deflection of shaft

R, L = Shaft radius & length respectively
Assumptions

e The bar is acted upon by a pure torque.

e The section under consideration is remote from the point of application of the load and from
a change in diameter.

e Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.

e The material obeys Hooke’s law

e Cross-sections rotate as if rigid, i.e. every diameter rotates through the same angle
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External Torque T Diagram |

2. Polar moment of inertia

As stated above, the polar second moment of area, J is defined as

— R 3
] = JO 2z’ dr
rt § 2zR* xD*
For a solid shaft J=2n—| = = (6)
4 4 32
For a hollow shaft of internal radius r:
R ol 7
I = 2zr*dr = 27z|—| ==(R* =r*)=—(D*-d* 7
J; 27 ”[4} > =5, ) ™
r ﬂf
d., 1

Where D is the external and d is the internal diameter.

ad*
32

e Solid shaft “J” =

e Hollow shaft, "J” = ——(d,* —d.*)
32

3. The polar section modulus

Zp=dJ / c, wherec=r=D/2
e For a solid circular cross-section, Z, =m D3/ 16
e For a hollow circular cross-section, Zp =1 (Dot - Dit) / (16Do)

e Then, 7., =T/Z
e If design shears stress, 7, is known, required polar section modulus can be calculated from:

Zo=T1/ 1,

4. Power Transmission (P)
27NT Page 277 of 429

e P (inWatt) =
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. 27NT
e P (@inhp) =

4500 (1 hp = 75 Kgm/sec).

[Where N = rpm; T = Torque in N-m.]
5. Safe diameter of Shaft (d)

e Stiffness consideration

T G&o
R

e Shear Stress consideration
T 7
J°R

We take higher value of diameter of both cases above for overall safety if other parameters are given

6. In twisting

16T
e Solid shaft, 7, = 3
zd
16Td
e Hollow shaft, 7, = 4—04
”(do _di )
' . ‘ TL
e Diameter of a shaft to have a maximum deflection "o " d=49x 33—
a

[Where T in N-mm, L in mm, G in N/mm?2]

7. Comparison of solid and hollow shaft

e A Hollow shaft will transmit a greater torque than a solid shaft of the same weight & same

material because the average shear stress in the hollow shaft is smaller than the average
shear stress in the solid shaft
If solid shaft dia=D
(7o JOllOOW shaft 16
(7,4 )S0lId shaft 15

Hollow shaft,d, =D, d, = %

e Strength comparison (same weight, material, length and 7, )
T n+1
LL=——— Where

T, nvn?-1

Weight comparison (same Torque, material, length and 7z, )

_ Externaldllameter of hollow shaft [ONGC-2005]
Internaldiameter of hollow shaft

n2 —1\n?° .
W, _ ( ) " Where, n= External d.|ameter of hollow shaft [WBPSC-2003]
W, (n“ _ 1) Internaldiameter of hollow shaft

e Strain energy comparison (same weight, material, length and 7 _, )

2
U,_n :1 :1+i2
U, n n
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8. Shaft in series A B c .
0=0,+0, D d |(’
Torque (T) is same in all section g

Electrical analogy gives torque(T) = Current (I)

9. Shaft in parallel — 1 — e, —
6,=0, and T =T, +T, 11( II{J ‘

L e T A o SR T Sl TR T
Electrical analogy gives torque(T) = Current (I) | i T ) -

I Iy

10. Combined Bending and Torsion

In most practical transmission situations shafts which carry torque are also subjected to
bending, if only by virtue of the self-weight of the gears they carry. Many other practical
applications occur where bending and torsion arise simultaneously so that this type of

loading represents one of the major sources of complex stress situations.

In the case of shafts, bending gives rise to tensile stress on one surface and compressive

stress on the opposite surface while torsion gives rise to pure shear throughout the shaft.
For shafts subjected to the simultaneous application of a bending moment M and torque T
the principal stresses set up in the shaft can be shown to be equal to those produced by an

equivalent bending moment, of a certain value Me acting alone.

Figure

T
M
FA
Maximum direct stress (0, ) & Shear stress ((Txy) in element A
32M P
Oy =—F+—
d A
_ 16T
T
Principal normal stresses (0, , ) & Maxpayanysbesgng stress (7, )
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2
O O
R C R

2
0,-0, Oy 2
T = ==,/ —| +(z
max 2 (2j (Xy)

e Maximum Principal Stress (o, ,, ) & Maximum shear stress (7

maX)
Orox = 133 |:M +\IM2+T2i|

T

T = 163 VM2 +T?

zd

e Location of Principal plane (8)

1 T
0 =—tan"' | —
2 M
e Equivalent bending moment (M.) & Equivalent torsion (Te).

v ={MNM%TZ}

2

T.=vM 14T
e Important Note

0 Uses of the formulas are limited to cases in which both M & T are known. Under any

other condition Mohr’s circle is used.

e Safe diameter of shaft (d) on the basis of an allowable working stress.

o 32M,
0 o0, intension,d= 3
o,

16T

e

0o 7, inshear,d= 3

w

T,

w

11. Shaft subjected to twisting moment only

e Figure

-
= ¥ gty ©
Shoer s
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Normal force (F,) & Tangential for (F,) on inclined plane AB

F, =—7x[BC sin 8 + AC cosd]
F, = t%[BC cosé - AC sinf]

t

Torsion

S K Mondal’s

Normal stress (0,) & Tangential stress (shear stress) (0, ) on inclined plane AB.

o, = —rsin26

n

7C0S26

Oy

Maximum normal & shear stress on AB

0 (0, )max T max
0 0 +7
45° -7 0
90 0 -7
135 +7 0

e Important Note

12. Torsional Stresses in Non-Circular Cross-section Members

e Principal stresses at a point on the surface of the shaft=+7,-7,0

ie 0, =1 7sin26

® Principal strains

T T
€= E(1+u); €,= _E(l +u); €=0

e Volumetric strain,

€,=€, t¢€,+e&,=0

e No change in volume for a shaft subjected to pure torque.

There are some applications in machinery for non-circular cross-section members and shafts

where a regular polygonal cross-section is useful in transmitting torque to a gear or pulley

that can have an axial change in position. Because no key or keyway is needed, the

possibility of a lost key is avoided.

Saint Venant (1855) showed that 7,

of the longest side b and is of magnitude formula

T
2 =b02(3

T

max

in a rectangular b X ¢ section bar occurs in the middle

Where b is the longer side and « factor that is function of the ratio b/c.

The angle of twist is given by
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p- T
pbc’G

Where [ is a function of the ratio b/c

Shear stress distribution in different cross-section

rmnﬁ l'm |.—

;);' L 11~

oy

74
&
&
¥,
[/

[

Rectangular c/s Elliptical c/s Triangular c/s

13. Torsion of thin walled tube

e For a thin walled tube

Shear stress, 7 = ——

2At
7sL

2AG

[Where S = length of mean centre line, A,= Area enclosed by mean centre line]

Angle of twist, ¢ =

e Special Cases

o For circular c/s

J=2zxr't; A =nr?; S=2nr
[r = radius of mean Centre line and t = wall thickness]
T Tr T

Tt 1 2At
TL 7L TL
"GJ AJG 221G
0 For square c/s of length of each side ‘b’ and thickness ‘t’
A =b’
S =4b
o0 For elliptical ¢/s ‘a’ and ‘b’ are the half axis lengths.
A, =rab

an(a+b)—@}

4
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Torsion Equation
GATE-1. A solid circular shaft of 60 mm diameter transmits a torque of 1600 N.m. The

value of maximum shear stress developed is: [GATE-2004]
(a) 37.72 MPa (b) 47.72 MPa (c) 57.72 MPa (d) 67.72 MPa
16T

GATE-1. Ans. (a) 7 = —;
zd

GATE-2. Maximum shear stress developed on the surface of a solid circular shaft under
pure torsion is 240 MPa. If the shaft diameter is doubled then the maximum
shear stress developed corresponding to the same torque will be: [GATE-2003]

(a) 120 MPa (b) 60 MPa (c) 30 MPa (d) 15 MPa
GATE-2. Ans. (¢) 7= g 240 = g if diameterdoubled d' = 2d, then ¢’ = LK = @ =30MPa
zd 7d 7;(2d) 8

GATE-3. A steel shaft'A' of diameter 'd' and length 'l' is subjected to a torque ‘T’ Another
shaft 'B' made of aluminium of the same diameter 'd' and length 0.5/ is also
subjected to the same torque '"T". The shear modulus of steel is 2.5 times the
shear modulus of aluminium. The shear stress in the steel shaft is 100 MPa. The

shear stress in the aluminium shaft, in MPa, is: [GATE-2000]
(a) 40 (b) 50 (c) 100 (d) 250
GATE-3. Ans. (c) 7 = 131- as T & d both are same T is same

GATE-4. For a circular shaft of diameter d subjected to torque T, the maximum value of

the shear stress is: [GATE-2006]
64T 32T 16T 8T

a b c d

()7z'd3 ()7z'd3 ()ﬂ'd3 ()”d3

GATE-4. Ans. (¢)

Power Transmitted by Shaft

GATE-5. The diameter of shaft A is twice the diameter or shaft B and both are made of
the same material. Assuming both the shafts to rotate at the same speed, the

maximum power transmitted by B is: [IES-2001; GATE-1994]

(a) The same as that of A (b) Half of A (c) 1/8th of A (d) 1/4th of A
3

GATE-5. Ans. (c) Power, P=Tx 27N and 7 = 161 orT= ord
60 zd 16
3
or p =7 (27N orP a &
16 60

Combined Bending and Torsion

GATE-6. A solid shaft can resist a bending moment of 3.0 kNm and a twisting moment of
4.0 kNm together, then the maximum torque that can be applied is: [GATE-1996]
(a) 7.0 kNm (b) 3.5 ke 283 0of 429  (c)4.5 kNm (d) 5.0 kNm

GATE-6. Ans. (d) Equivalent torque (T,)=vM? + T2 = /32 + 42 = 5kNm
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Comparison of Solid and Hollow Shafts

GATE-7. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of
its torque carrying capacity to that of a solid shaft of the same material and the

same outside diameter is: [GATE-1993; TES-2001]
15 3 1 1
(a) — (b) — (c) — (d) —
16 4 2 16
GATE-7. Ans. (@) ~=C% -7 or 7= it risconst. T«
J L R R

2]

“h L - Cd
T J e 16

i
[
w

Shafts in Series

GATE-8. A torque of 10 Nm is transmitted through a stepped shaft as shown in figure.
The torsional stiffness of individual sections of lengths MN, NO and OP are 20
Nm/rad, 30 Nm/rad and 60 Nm/rad respectively. The angular deflection between
the ends M and P of the shaft is: [GATE-2004]

s} |5

N
(¥1 T

T=10N mM O

(a) 0.5 rad (b) 1.0 rad (c) 5.0 rad (d) 10.0 rad

GATE-8. Ans. (b) We know that 9 = % or T =k.0 [let k = tortional stiffness]

T, T T, 10 10 10
"'6:9“””+9N°+9°P:kﬂ+kﬂ+kﬂzﬁ+%+%:
MN NO OoP

Shafts in Parallel

GATE-9. The two shafts AB and BC, of equal coupling
length and diameters d and 2d, are 2d
made of the same material. They are \;,\\ ¥ p i N
joined at B through a shaft coupling, & : " h\
while the ends A and C are built-in . fLo© )
(cantilevered). A twisting moment T is E i 4

1.0rad

applied to the coupling. If Ta and Tc B C
represent the twisting moments at the
ends A and C, respectively, then [GATE-2005]
(a) Tc="Ta (b) Tc =8 Ta (c) Tc =16 Ta (d) TA=16 Tc
GATE-9. Ans. (c) 0,5 =G, Or Tabs _ Tele or TA4 __Te - orT, I
Gpda  Ggde =d" (2d) 16
32 32

Previous 20-Years IES Questions

Torsion Equation

IES-1. Consider the following statements: [TES- 2008]
Maximum shear stress induced in B RO LY yzansmitting shaft is:
1. Directly proportional to torque being transmitted.
2. Inversely proportional to the cube of its diameter.
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3. Directly proportional to its polar moment of inertia.
Which of the statements given above are correct?
(a)1,2and 3 (b) 1 and 3 only (c) 2 and 3 only (d) 1 and 2 only
IES-1. Ans. (@) 7= =167
J zd
IES-2. A solid shaft transmits a torque T. The allowable shearing stress is 7. What is
the diameter of the shaft? [TES-2008]
(a)3 16T (b3 32T (c)3 16T (d)s T
T z T T
IES-2. Ans. (a)
IES-3. Maximum shear stress developed on the surface of a solid circular shaft under

pure torsion is 240 MPa. If the shaft diameter is doubled, then what is the
maximum shear stress developed corresponding to the same torque? [IES-2009]
(a) 120 MPa (b) 60 MPa (c) 30 MPa (d) 15 MPa

T=240MPa=t

IES-3. Ans. (¢) Maximum shear stress = 7

Maximum shear stress developed when diameter is doubled

16 1(16T 240
= 13:—( 3JZEZ_Z3OMP3
n(2d) 8\ nd 8 8
IES-4. The diameter of a shaft is increased from 30 mm to 60 mm, all other conditions
remaining unchanged. How many times is its torque carrying capacity
increased? [TES-1995; 2004]
(a) 2 times (b) 4 times (c) 8 times (d) 16 times
3
IES-4. Ans. (¢) 7 = 161- or T= ord for same material r = const.
zd 16
3 3
~Ta d or T_[4 :(@J =8
T, d, 30
IES-5. A circular shaft subjected to twisting moment results in maximum shear stress
of 60 MPa. Then the maximum compressive stress in the material is: [ITES-2003]
(a) 30 MPa (b) 60 MPa (c) 90 MPa (d) 120 MPa

IES-5. Ans. (b)

IES-6. Angle of twist of a shaft of diameter ‘d’ is inversely proportional to [IES-2000]
(ad (b) d2 (c) d? (d) d*
IES-6. Ans. (d)

IES-7. A solid circular shaft is subjected to pure torsion. The ratio of maximum shear
to maximum normal stress at any point would be: [TES-1999]
(a)1:1 (b) 1: 2 (©2:1 (d) 2: 3
16T 32T
IES-7. Ans. (a) Shear stress = - and normal stress = 3
d zd
.. Ratio of shear stress and normal stress = 1: 2
IES-8. Assertion (A): In a composite shaft having two concentric shafts of different
materials, the torque shared by each shaft is directly proportional to its polar
moment of inertia. [TES-1999]

Reason (R): In a composite shaft having concentric shafts of different
materials, the angle of twist for each shaft depends upon its polar moment of
inertia.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Adistrue but Ris false Page 285 of 429

(d) Aisfalse but R is true
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IES-8. Ans. (c¢)

IES-9.

A shaft is subjected to torsion as shown. [IES-2002]

Which of the following figures represents the shear stress on the element
LMNOPQRS ?

' . T it 0
e ¥ I D /]h "I‘. """"" N

‘. - P
- ' F y T
. : ‘l, (d) Yo .

et . K DR N G

IES-9. Ans. (d)

IES-10.

IES-10. Ans. (¢) %= —

A round shaft of diameter 'd' and i
length 'l' fixed at both ends 'A' and i
'B' is subjected to a twisting moment A
'T” at 'C', at a distance of 1/4 from A a
(see figure). The torsional stresses in

the parts AC and CB will be: I._I / 4...[
AN

(a) Equal

(b) In the ratio 1:3
(¢) Intheratio 3:1
(d) Indeterminate [TES-1997]

r Go GRO 1
=— =— .. 7T0—

orr .
R L L L

Hollow Circular Shafts

IES-11.

One-half length of 50 mm diameter steel rod is solid while the remaining half is
hollow having a bore of 25 mm. The rod is subjected to equal and opposite
torque at its ends. If the maximum shear stress in solid portion is Tt or, the

maximum shear stress in the hollow portion is: [TES-2003]
15 4 16
@ 167 ) 7 © =7 @ 7
16 3 15
IES-11. Ans. (d) 1 G orT = ﬂ
J r r
tJ,  rJ, D
or——= s =h== Page 286 of 429
Is Iy 2
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32 1 1

Ol’rhzrxi:rx =7X RIS , :T(Ej
J, E(D4_d4) 1_(dj 1_(25) 15
32 D 50

Power Transmitted by Shaft

IES-12. In power transmission shafts, if the polar moment of inertia of a shaft is
doubled, then what is the torque required to produce the same angle of twist?
[TES-2006]
(a) 1/4 of the original value (b) 1/2 of the original value
(c) Same as the original value (d) Double the original value
IES-12. Ans. (d)
T GO

z or Q= E if Oisconst. T o J if Jis doubled then T is also doubled.
J L R GJ

IES-13. While transmitting the same power by a shaft, if its speed is doubled, what
should be its new diameter if the maximum shear stress induced in the shaft

remains same? [TES-2006]
1 1
(a) — of the original diameter (b) —= of the original diameter
2 7
. : 1 . .
(c) \/E of the original diameter (d) 14 of the original diameter
(2)”
IES-13. Ans. (d) Power (P) = torque(T)xangular speed(w)
it PisconstTa  if +=2=1 or T'=(T/2)
1) T o 2
16T _16(T/2) (d’] 1
o= =——~ or|—|=—
xd’ 7z(d’)3 d) 32
IES-14. For a power transmission shaft transmitting power P at N rpm, its diameter is
proportional to: [TES-2005]
1/3 172 2/3
P P P P
(@ — b) | — © | — | —
N N N N
3
IES-14. Ans. (a) Power, P=Tx22N  and 7= 16{ or T =7
60 zd 16
3 13
or p= 79 2N g =—4§0 P or da [Ej
16 60 z°J N N

IES-15. A shaft can safely transmit 90 kW while rotating at a given speed. If this shaft
is replaced by a shaft of diameter double of the previous one and rotated at
half the speed of the previous, the power that can be transmitted by the new
shaft is: [TES-2002]
(a) 90 kW (b) 180 kW (c) 360 kW (d) 720 kW

IES-15. Ans. (c¢)

IES-16. The diameter of shaft A is twice the diameter or shaft B and both are made of
the same material. Assuming both the shafts to rotate at the same speed, the

maximum power transmitted by B is: [IES-2001; GATE-1994]
(a) The same as that of A (b) Half of A (c) 1/8th of A (d) 1/4th of A
3
IES-16. Ans. (c¢) Power, P=Tx 27N and 7 = 161- orT= erd
60 zd 16
3 Page 287 of 429
or P= ord | 27N orP o &

16 60
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IES-17. When a shaft transmits power through gears, the shaft experiences [IES-1997]
(a) Torsional stresses alone
(b) Bending stresses alone
(¢) Constant bending and varying torsional stresses
(d) Varying bending and constant torsional stresses
IES-17. Ans. (d)

Combined Bending and Torsion

IES-18. The equivalent bending moment under combined action of bending moment M
and torque T is: [IES-1996; 2008; IAS-1996]

(@) yM>+T° (b) %[M +\/M2+T2}
© %[M +T] (@ i[\/MHTﬂ

IES-18. Ans. (b)

IES-19. A solid circular shaft is subjected to a bending moment M and twisting moment
T. What is the equivalent twisting moment T. which will produce the same
maximum shear stress as the above combination? [IES-1992; 2007]

(a) M2+ T2 b)M+T () ~NM*+T? dM-T
IES-19. Ans. (¢) Te= \M*> + T?

IES-20. A shaft is subjected to fluctuating loads for which the normal torque (T) and
bending moment (M) are 1000 N-m and 500 N-m respectively. If the combined
shock and fatigue factor for bending is 1.5 and combined shock and fatigue
factor for torsion is 2, then the equivalent twisting moment for the shaft is:

[TES-1994]
(a) 2000N-m (b) 2050N-m (c) 2100N-m (d) 2136 N-m
TES-20. Ans. (d) T,, =/(1.5x500)’ +(2x1000) = 2136 Nm
IES-21. A member is subjected to the combined action of bending moment 400 Nm and
torque 300 Nm. What respectively are the equivalent bending moment and
equivalent torque? [TES-1994; 2004]
(a) 450 Nm and 500 Nm (b) 900 Nm and 350 Nm
(c) 900 Nm and 500 Nm (d) 400 Nm and 500 Nm
2 2 2 2
IES-21. Ans. (a) Equivalent Bending Moment(M, ) = " “'\g +T_400+ “4(;0 300" _ 450Nm

Equivalent torque (T,) = JM? + T2 =/4002 +300% = 500Nm

IES-22. A shaft was initially subjected to bending moment and then was subjected to
torsion. If the magnitude of bending moment is found to be the same as that of
the torque, then the ratio of maximum bending stress to shear stress would be:

[TES-1993]
(a) 0.25 (b) 0.50 (c) 2.0 (d) 4.0

IES-22. Ans. (c¢) Use equivalent bending moment formula,

1st case: Equivalent bending moment (Me) = M

0+0°+T> T
otzs—— =

2nd case: Equivalent bending momentride)2ss >
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IES-23. A shaft is subjected to simultaneous action of a torque T, bending moment M
and an axial thrust F. Which one of the following statements is correct for this
situation? [TES-2004]
(@) One extreme end of the vertical diametral fibre is subjected to maximum

compressive stress only
(b) The opposite extreme end of the vertical diametral fibre is subjected to
tensile/compressive stress only
(¢) Every point on the surface of the shaft is subjected to maximum shear stress only
(d) Axial longitudinal fibre of the shaft is subjected to compressive stress only

IES-23. Ans. (a)

IES-24. For obtaining the
maximum shear stress
induced in the shaft i [ (Torque Acting : T)
shown in the given
figure, the torque
should be equal to

@T (b)WI+T

(©) {(WI ) + [WTLT ]; ! .

1
212 2
%) {WI+W2L} +T?

Wi. of Shaft: W per Unit Length Gear

™

e i

™™ Wt of Gear: W

RSN

[IES-1999]

wL’
IES-24. Ans. (d) Bending Moment, M = WI +

IES-25. Bending moment M and torque is applied on a solid circular shaft. If the
maximum bending stress equals to maximum shear stress developed, them M is

equal to: [TES-1992]
(a) % b)) T (c) 2T (d) 4T
IES-25. Ans. (a) o = 22 M ang =187
zd 7d

IES-26. A circular shaft is subjected to the combined action of bending, twisting and
direct axial loading. The maximum bending stress o, maximum shearing force
\/§O' and a uniform axial stress o(compressive) are produced. The maximum

compressive normal stress produced in the shaft will be: [TES-1998]

()30 b)20 (o (d) Zero
IES-26. Ans. (a) Maximum normal stress = bending stress o + axial stress (0) = 2 ¢

We have to take maximum bending stress o is (compressive)

2
. . Oy Oy 2
The maximum compressive normal stress = —— || — | + Ty

2
= _276_\/(470}2 +(\/§0)2 =-30

IES-27. Which one of the following statements is correct? Shafts used in heavy duty

speed reducers are generally suhjrciteditny [TES-2004]
(a) Bending stress only
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(b)  Shearing stress only
(¢) Combined bending and shearing stresses
(d) Bending, shearing and axial thrust simultaneously

IES-27. Ans. (c¢)

Comparison of Solid and Hollow Shafts

IES-28. The ratio of torque carrying capacity of a solid shaft to that of a hollow shaft is
given by: [TES-2008]

(a)(1-K*) (b)(1-K* )’1 (c)K* (d)1/K*

Where K =% ; Di = Inside diameter of hollow shaft and D, = Outside diameter of hollow

shaft. Shaft material is the same.
IES-28. Ans. (b) t should be same for both hollow and solid shaft

a1
Ts = Th = E: 4Dg y = L: 1-[&}
T p? l(D“_D,‘l) T, D, -D; T D,
32 °° 32V °
-1
(o
Th

IES-29. A hollow shaft of outer dia 40 mm and inner dia of 20 mm is to be replaced by a
solid shaft to transmit the same torque at the same maximum stress. What

should be the diameter of the solid shaft? [IES 2007]
(a) 30 mm (b) 35 mm (c) 10x(60)Y3 mm (d) 10x(20)¥3 mm
IES-29. Ans. (c) Section modules will be same
T 4 4
G _d e T a et
R, R 40 T 64 d
H s 7 A

or, d3=(10)3 x60 or d=103/60 mm

IES-30. The diameter of a solid shaft is D. The inside and outside diameters of a hollow

D 2D
shaft of same material and length are ﬁ and ﬁ respectively. What is the

ratio of the weight of the hollow shaft to that of the solid shaft? [TES 2007]
(@) 1:1 ®) 1:4/3 (© 1:2 d) 1:3
z(4D* D?
—| ——-—|xLxpxg
W, 4 3 3
IES-30. Ans. (a) — = =1
W ZD2xLx pPXQ
4
IES-31. What is the maximum torque transmitted by a hollow shaft of external radius R
and internal radius r? [IES-2006]
4 4
U 3 3 T 4 4 T 4 4 7R —r
@ —(R°-r’)f. ® —(R"—r")f ) —(R*=r*)f. @ — f
16( ) ’ 2R( ) ’ 8R( ) ’ 320 R )
( fS = maximum shear stress in the shaft material)
T (o4 4
—(R" —r
IES-31. Ans. (b) T = % or T= i><fs = fos = L(R“ —r4).fs.
J R R R 2R

IES-32. A hollow shaft of the same cross-$688i0181%4%ea and material as that of a solid
shaft transmits: [TES-2005]
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(a) Same torque (b) Lesser torque
(c) More torque (d) Cannot be predicted without more data
T, n*+1 D,
IES-32. Ans. (¢) 2 =————, Where n=—"2
Ts  nJn? -1 dy
IES-33. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of
its torque carrying capacity to that of a solid shaft of the same material and the
same outside diameter is: [GATE-1993; IES-2001]
15 3 1 1
(@) — (b) — () = (d) —
16 4 2 16
IES-33. Ans. (a) T = Go L orT-= i if risconst. T a J
J L R R
7Dt = (Dj4
'|'_h ~ J_h B 32 2 ~ 1_5
T J Tt 16
32
IES-34. Two hollow shafts of the same material have the same length and outside

diameter. Shaft 1 has internal diameter equal to one-third of the outer
diameter and shaft 2 has internal diameter equal to half of the outer diameter.
If both the shafts are subjected to the same torque, the ratio of their twists

0,/ 6, will be equal to: [IES-1998]
(a) 16/81 (b) 8/27 (©) 19/27 () 243/256

. (d Y
1 Ql_dl_(%) _243

IES-34. Ans. (d) Qoo— .. =—= =
J Qz d4 _(d/)“ 256
! 3

IES-35. Maximum shear stress in a solid shaft of diameter D and length L twisted
through an angle 0 is t. A hollow shaft of same material and length having
outside and inside diameters of D and D/2 respectively is also twisted through
the same angle of twist 0. The value of maximum shear stress in the hollow

shaft will be: [TES-1994; 1997]
16 8 4
a) —r7 b) =7 c) —7 d)r
(a) 1 OF Ok (@
IES-35. Ans. (d) %: % :% or r= ? if disconst. 7 & R and outer diameter is same in both
the cases.

Note: Required torque will be different.

IES-36. A solid shaft of diameter 'D' carries a twisting moment that develops maximum
shear stress t. If the shaft is replaced by a hollow one of outside diameter 'D'

and inside diameter D/2, then the maximum shear stress will be: [IES-1994]
(a) 1.067 t (b) 1.143 © (c) 1.333 ¢ d)2r
IES-36. Ans. (a) T = Go -L orr= R if Tisconst.z a 1
J L R J J
4
no_od_ D10 6666
15

IES-37. A solid shaft of diameter 100 mugm 2bangids 1000 mm is subjected to a twisting
moment "I The maximum shear stress developed in the shaft is 60 N/mmz2. A
hole of 50 mm diameter is now drilled throughout the length of the shaft. To
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develop a maximum shear stress of 60 N/mm? in the hollow shaft, the torque '"T’
must be reduced by: [IES-1998]
(a) T/4 (b) T/8 (c) T/12 (d)T/16

IES-37. Ans. (d) 7, = E = 16T3 = T'32(d /2)4 or T— = 1—5

J o oxd® d'—(d/2) T 16

.. Reduction= i
16

IES-38. Assertion (A): A hollow shaft will transmit a greater torque than a solid shaft of
the same weight and same material. [TES-1994]
Reason (R): The average shear stress in the hollow shaft is smaller than the
average shear stress in the solid shaft.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true

IES-38. Ans. (a)

IES-39. A hollow shaft is subjected to torsion. The shear stress variation in the shaft

along the radius is given by: ) [TES-1996]
Hollow shaft Parabolic

R
(d)

IES-39. Ans. (¢)

Shafts in Series

IES-40. What is the total angle of
twist of the stepped
shaft subject to torque T
shown in figure given
above?

16T, 38T,

@ 6a* @ e 2 (Yo
© 64T, @ 66T, \,/

7Gd* 7Gd* [IES-2005]
IES-40. Ans. (d) 0=0,+0, =2, T _ T rg, 5. 06Tl
zd* T + Gd* Gd*
G Gx— x(2d)
32 32

Shafts in Parallel

IES-41. For the two shafts connected in parallel, find which statement is true?
(a) Torque in each shaft is the same [IES-1992]
(b)  Shear stress in each shaft is the same
(¢)  Angle of twist of each shaft is the same
(d)  Torsional stiffness of each shaft is the same

IES-41. Ans.
ns. (c) Page 292 of 429
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IES-42. A circular section rod ABC is fixed at ends A and C. It is subjected to torque T
at B. AB = BC = L and the polar moment of inertia of portions AB and BC are 2
J and J respectively. If G is the modulus of rigidity, what is the angle of twist at
point B? [IES-2005]
@) TL ®) TL © TL @ 2TL
a — c) — —
3GJ 2GJ GJ GJ
IES-42. Ans. (a) Org = Ggc
A T C Tosl _ Tacl
p or =—>— or T =2T,
/? G2J GJ A S Tec
f T +Tee=T or T,.=T/3
TL TL
or Qu=Qpz=——7=——
° " 3'GJ 3GJ
IES-43. A solid circular rod AB of diameter D and length L is fixed at both ends. A
torque T is applied at a section X such that AX = /4 and BX = 3L/4. What is the
maximum shear stress developed in the rod? [IES-2004]
16T 12T 8T 4T
(a) 3 (b) 3 (c) 3 (d) 3
7D 7D 7D 7D
IES-43. Ans. (b) O = bxg Ty +Tg =T
A B T (oL
- B
;1 L/4 3L/4 ’ or /4 _° " 4
/J . |/ GJ GJ
X
d or T, =3T; orTAz%,
16 3 T
o _16T, _ g 2T
e 2D3 7D} D3
IES-44. Two shafts are shown in 'T -] Q o

the above figure. These
two shafts will be
torsionally equivalent to
each other if their )
(a) Polar moment of inertias ~ = $ - f”' - é-"' B S S id- - - - -
are the same ! '
(b) Total angle of twists are o ) =l Lyt [, —
the same
(c) Lengths are the same

(d) Strain energies are the
same [TES-1998]

IES-44. Ans. (b)

Previous 20-Years IAS Questions

Torsion Equation

TAS-1.

Assertion (A): In theory of torsion, shearing strains increase radically away
from the longitudinal axis of theargs of 429 [IAS-2001]
Reason (R): Plane transverse sections before loading remain plane after the
torque is applied.
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(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true
IAS-1. Ans. (b)

IAS-2. The shear stress at a point in a shaft subjected to a torque is: [TAS-1995]
(a) Directly proportional to the polar moment of inertia and to the distance of the point
form the axis
(b) Directly proportional to the applied torque and inversely proportional to the polar
moment of inertia.
(¢) Directly proportional to the applied torque and polar moment of inertia
(d) inversely proportional to the applied torque and the polar moment of inertia

TAS-2. Ans. (b) = =
J R
IAS-3. If two shafts of the same length, one of which is hollow, transmit equal torque
and have equal maximum stress, then they should have equal. [IAS-1994]
(a) Polar moment of inertia (b) Polar modulus of section
(c) Polar moment of inertia (d) Angle of twist

T 7 J
TIAS-3. Ans. (b) F = E Here T & 7 are same, so E should be same 1.e. polar modulus of section will

be same.

Hollow Circular Shafts

IAS-4. A hollow circular shaft having outside diameter 'D' and inside diameter ’d’
subjected to a constant twisting moment 'T" along its length. If the maximum

shear stress produced in the shaft is o, then the twisting moment 'T' is given

7 D*-d* z D*—d* r D*-d* z D*-d*
—o,——— b —0,———— — O, ———— d)—o,——
@s% o V% o © 3% o Dt b
T
o, x (D -d* D* - d*
IAS-4. Ans. (b) =37 -7 gives T2 = 32( )ziasu
JOL R R D 16 D
2

Torsional Rigidity

IAS-5. Match List-I with List-II and select the correct answer using the codes given
below the lists: [TAS-1996]
List-I (Mechanical Properties) List-IT ( Characteristics)

A. Torsional rigidity 1. Product of young's modulus and second
moment of area about the plane of
bending

B. Modulus of resilience 2. Strain energy per unit volume

C. Bauschinger effect 3. Torque unit angle of twist

D. Flexural rigidity 4. Loss of mechanical energy due to local
yielding

Codes: A B C D A B C D

(a 1 3 4 2 (b) 3 2 4 1
() 2 4 1 3 (d) 3 1 4 2

IAS-5. Ans. (b)

IAS-6. Assertion (A): Angle of twist per unit length of a uniform diameter shaft
depends upon its torsional rigidity. [IAS-2004]
Reason (R): The shafts are subjectgd t% t40rf(i e only.
(a) Both A and R are individually tru%ggna Rig the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
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(¢) Aistrue but R is false
(d) Ais false but R is true

IAS-6. Ans. (c¢)

Combined Bending and Torsion
IAS-7. A shaft is subjected to a bending moment M = 400 N.m alld torque T = 300 N.m

The equivalent bending moment is: [IAS-2002]
(a) 900 N.m (b) 700 N.m (c) 500 N.m (d) 450 N.m
[nn2 2 [ 1002 2
IAS-7. Ans. (d) Me= 17 '\2/' v _ 400+ 4020 #3007 _ 4s0Nm

Comparison of Solid and Hollow Shafts
IAS-8. A hollow shaft of length L is fixed at its both ends. It is subjected to torque T at

L
a distance of g from one end. What is the reaction torque at the other end of

the shaft? [IAS-2007]
()ZT (b)T ()T (d)T
a) — — c) — —
3 2 3 4
IAS-8. Ans. (¢)

B W

|
[
T
IAS-9. A solid shaft of diameter d is replaced by a hollow shaft of the same material

2
and length. The outside diameter of hollow shaft —— while the inside diameter

NE

d
is ﬁ What is the ratio of the torsional stiffness of the hollow shaft to that of

the solid shaft? [IAS-2007]
2 3 5
>y b) — - d) 2
(a) 3 (b) 5 (c) 3 (d)
2
o (TJ cl Kk, 32(\V3) V3] 5
IAS-9. Ans. (c¢) Torsional stiffness =] — |=—— Or = ==
7 L Ky K2 q¢ 3
32

IAS-10. Two steel shafts, one solid of diameter D and the other hollow of outside
diameter D and inside diameter D/2, are twisted to the same angle of twist per
unit length. The ratio of maximum shear stress in solid shaft to that in the

hollow shaft is: [TAS-1998]
4 8 16
(@ —7 (b) -7 (© —7 @7
9 7 15
IAS-10. Ans. (d) %:%:% or 7= GfR as outside diameter of both the shaft is D so 7 is

same for both the cases.
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Shafts in Series

IAS-11. Two shafts having the same length and material are joined in series. If the
ratio of the diameter of the first shaft to that of the second shaft is 2, then the
ratio of the angle of twist of the first shaft to that of the second shaft is:

[TAS-1995; 2003]
(a) 16 (b) 8 (c) 4 (d)2

1

1
IAS-11. Ans. (a) Angle of twist is proportional to JOOF

IAS-12. A circular shaft fixed at A has diameter D for half of its length and diameter
D/2 over the other half. What is the rotation of C relative of B if the rotation of
B relative to A is 0.1 radian? [IAS-1994]
(a) 0.4 radian (b) 0.8 radian (c) 1.6 radian (d) 3.2 radian
A B

T
’ D D/ (

«—— L2 —e——L2—

(T, L and C remaining same in both cases)

4
IAS-12. Ans. (c) I=% or 6bol or (QOOL4 )= ﬂd
J L J d 32
4
Here i = d - or 6 =1.6radian.
0.1 (d/2)

Shafts in Parallel

IAS-13. A stepped solid circular shaft shown in the given figure is built-in at its ends
and is subjected to a torque T, at the shoulder section. The ratio of reactive
torque T: and T: at the ends is (J1 and J2 are polar moments of inertia):

(a) ﬁ (b) ‘]2_X|1 — 1 —le—— 1, ——
N J, x1, - ) .
© 3k @ b ( R il 9.
JZXII \]2 XI2 ]] 10 }:
[IAS-2001]

IAS-13. Ans. (¢c) 6, =6, or Tl—ll=i or LI i><|—2
GJ, GJ, T, J, |

IAS-14. Steel shaft and brass shaft of same length and diameter are connected by a
flange coupling. The assembly is rigidity held at its ends and is twisted by a
torque through the coupling. Modulus of rigidity of steel is twice that of brass.
If torque of the steel shaft is 500 Nm, then the value of the torque in brass shaft

will be: [TAS-2001]
(a) 250 Nm (b) 354 Nm (c) 500 Nm (d) 708 Nm
IAS-14. Ans. (a)
Q:@zorl= Toly orL:T—ID or-r—'“:ﬁzl orszT—S=250Nm
Jo G, G, G, T, G, 2 2

IAS-15. A steel shaft with bult-in ends is subjected to the action of a torque Mt applied

at an intermediate cross-section 'mn' as shown in the given figure. [TAS-1997]
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Mt C/S 'mn'

e a >l b —»

Assertion (A): The magnitude of the twisting moment to which the portion BC

M.a

a+b
Reason(R): For geometric compatibility, angle of twist at 'mn’' is the same for
the portions AB and BC.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IAS-15. Ans. (a)

is subjected is

IAS-16. A steel shaft of outside diameter 100 mm is solid over one half of its length and
hollow over the other half. Inside diameter of hollow portion is 50 mm. The
shaft if held rigidly at two ends and a pulley is mounted at its midsection i.e., at
the junction of solid and hollow portions. The shaft is twisted by applying
torque on the pulley. If the torque carried by the solid portion of the shaft is
16000kg-m, then the torque carried by the hollow portion of the shaft will be:

[IAS-1997]
(a) 16000 kg-m (b) 15000 kg-m (c) 14000 kg-m (d) 12000 kg-m
2 (100" -50*)
TAS-16. Ans.(b) 0, = 6, or 5 — 4= or T, T, « % _16000x32 ' _45000kgm
GJ, GJ, J, 7 (100%)
32

T T T2
"
Ay e
<

T £ 7

]

it
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Previous Conventional Questions with Answers

Conventional Question IES 2010

Q. A hollow steel rod 200 mm long is to be used as torsional spring. The ratio of
inside to outside diameter is 1 : 2. The required stiffness of this spring is 100
N.m /degree.
Determine the outside diameter of the rod.
Value of G is 8x10* N/mm?. [10 Marks]
Ans. Length of a hollow steel rod = 200mm

Ratio of inside to outside diameter =1 : 2
Stiffness of torsional spring = 100 Nm /degree. = 5729.578 N m/rad

Rigidity of modulus (G) = 8x10* N/ mm?

Find outside diameter of rod : -
We know that

T GO
3 = T Where T = Torque
E= Stiffness(N_M)
0 rad
J = polar moment
Stiffness = % = ﬂ 0 = twist angle in rad
L =length of rod.
d, =2d,
_ T 4 4
J= gx(dz - dy
J= Zx(ied -at) =1
32 d, 2
J = l><di1 x15
32
4 6 2
5729.578Nm /rad = 2210 x()l(; N/m x3_’;xdfx15
5729.578x.2x 32 ~ g
8x10" x tx15 !
d, =9.93x107° m.
d; =9.93mm.

d, =2x9.93 =19.86 mm Ans.

Conventional Question GATE - 1998

Question: A component used in the Mars pathfinder can be idealized as a circular bar
clamped at its ends. The bar should withstand a torque of 1000 Nm. The
component is assembled on earth when the temperature is 30°C. Temperature
on Mars at the site of landing is -70°C. The material of the bar has an
allowable shear stress of 300 MPa and its young's modulus is 200 GPa. Design
the diameter of the bar taking a factor of safety of 1.5 and assuming a
coefficient of thermal expansion for the material of the bar as 12 x 10-¢/°C.

Answer: Given:
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T .. =1000Nm; t.=30°C; t =-70°C; 7, .0 =300MPa

E=200GPa; F0OS.=1.5 a=12x10°/°C

Diameter of the bar,D:

Change in length,sL =L o At,where L = original length,m.

Change in lengthat Mars =L x12x 107 x [30 -~ (—70)] =12x107*L meters

Change inlength  12x107'L
original length L

o, = axial stress = E xlinear strain = 200 x10° x12x10™* = 2.4 x 10°N/m’

From maximum shear stress equation,we have

16TY (o, Y
e =y \07) T2
T
where, 1, = e _ 390 _ 500 pg
FOS 15

Substituting the values, we get

2
4x10" :(%j +(1.2x10°)°
T

Linear strain = =12x10™

16 x1000
or—————

D3

=1.6x10°

T

or D:( 16 x1000

1/3
W] =0.03169 m=31.69 mm
T X 1.0X

Conventional Question IES-2009
Q. In a torsion test, the specimen is a hollow shaft with 50 mm external and 30 mm
internal diameter. An applied torque of 1.6 kN-m is found to produce an
angular twist of 0.4° measured on a length of 0.2 m of the shaft. The Young’s
modulus of elasticity obtained from a tensile test has been found to be 200 GPa.
Find the values of
(i) Modulus of rigidity.
(ii) Poisson’s ratio. [10-Marks]
Ans. We have
T = GO

Where J = polar moment of inertia

J= %(D“ -d4)

- 1(504 - 304) x 10712
32
=5.338x107"
T=1.6 kN-m =1.6x10> N-m
0=0.4°
1=0.2m
E =200 x 10° N/m?

T GO
F ti i) —=—
rom equation (i) I-L
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T
Gx|0.4x —~
1.6x10° x[ ><180}
5.338x1077 0.2

1.6x0.2x103 x 180

0.4xmx5.338x107"
=85.92 GPa

We also have

E=2G1+v)
2 200 =2 x 85.92 (1+v)
= 1+v=1.164
= v=0.164

= G=

Conventional Question IAS - 1996

Question: A solid circular uniformly tapered shaft of length I, with a small angle of
taper is subjected to a torque T. The diameter at the two ends of the shaft are
D and 1.2 D. Determine the error introduced of its angular twist for a given
length is determined on the uniform mean diameter of the shaft.

Answer: For shaft of tapering's section, we have
g 2TL R?+RR,+R} | _32TL|Df+DD,+D}
3Gr RR3 3Gr DD}
1.2)° +1.2x1+ (1)
_sam | (1.2) +1.2x1+(1) [+D,=D and D,=1.2D]
3GzD (1.2)" x(1)
_ 32TL 5 1065
3GzD
Now, D, =220 _4p
3(1.1D)?
g 32TL ( Z _32TL 34 _ 32TL4 2049
3Gr (1_1[)) 3Gr (1_2) D* 3GrD
Error=9=0" _2.1065-2049 _ 5575 5 739,
0 2.1065

Conventional Question ESE-2008
Question: A hollow shaft and a solid shaft construction of the same material have the
same length and the same outside radius. The inside radius of the hollow
shaft is 0.6 times of the outside radius. Both the shafts are subjected to the
same torque.
(i) What is the ratio of maximum shear stress in the hollow shaft to that of
solid shaft?

(ii) What is the ratio of angle of twist in the hollow shaft to that of solid shaft?

Solution: Using I=l=@
J R L
Given, Inside rladlus () _ 06andT, =T, =T
Out side (R)
) IR gives ; For hollow shaft (1) = _ TR
J E(R“ . I‘4)
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and for solid shaft (7 ¢)= TR
T 54
—R
2
4
Thereforei: 4R o= 1 = 1 4:1_15
Ts R*—r 1 [r] 1-0.6
R
(i) 6=——gives 6, — WTL nd o, = — Tt
G.~(R*—r* | =R
e o,
4
Therefore%: 4R = 1 = 1 =115
es R*—r 1 [r] 1-0.6
R

Conventional Question ESE-2006:

Question: Two hollow shafts of same diameter are used to transmit same power. One
shaft is rotating at 1000 rpm while the other at 1200 rpm. What will be the
nature and magnitude of the stress on the surfaces of these shafts? Will it be
the same in two cases of different? Justify your answer.

Answer: We know power transmitted (P) = Torque (T) Xrotation speed (w)
p.D
And shear stress (7) = B = E = A
J wd 27N E(D“—d“)
60 )32

1
Therefore 7 @« — as P, D and d are constant.

So the shaft rotating at 1000 rpm will experience greater stress then 1200 rpm shaft.

Conventional Question ESE-2002
Question: A 5 cm diameter solid shaft is welded to a flat plate by 1 cm filled weld. What
will be the maximum torque that the welded joint can sustain if the
permissible shear stress in the weld material is not to exceed 8 kN/cm?2?
Deduce the expression for the shear stress at the throat from the basic
theory.
Answer: Consider a circular shaft connected to a
plate by means of a fillet joint as shown in
figure. If the shaft is subjected to a torque, e
shear stress develops in the weld. =it —
Assuming that the weld thickness is very o :
small compared to the diameter of the
shaft, the maximum shear stress occurs in
the throat area. Thus, for a given torque
the maximum shear stress in the weld is
d
e
max J
Where T = Torque applied.
d = outer diameter of the shaft
t = throat thickness
J = polar moment of area of the throat
section

_ T 4 g4l T 3
_32[(d+2t) d }_4d xt
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rd
[As t <<d] then T, = 2 =2—T2
Edst Tftd
4
Given
d=5cm=0.05m & t=1cm=0.1m
oo = 8KN Jom? = 200N govpa — 80 105N /m?
(1074)m
T nd’7,,,  mwx0.05°x0.01x80x10° _ 3.142kNm
.. - 2 — 2 — .

Conventional Question ESE-2000
Question: The ratio of inside to outside diameter of a hollow shaft is 0.6. If there is a
solid shaft with same torsional strength, what is the ratio of the outside

diameter of hollow shaft to the diameter of the equivalent solid shaft.
Answer: Let D = external diameter of hollow shaft

So d = 0.6D internal diameter of hollow shaft
And Ds=diameter of solid shaft
From torsion equation

r _
J R
3 T (D* - (0.6D)*}
or, T = = 7 X 3 forhollow shaft
(D /2)
LD“
7J 39 % .
and T=—=1] for solid shaft
R * b,
2
aD? 4 nD
1- (0.6 = S
T3 - (0.8)7 =7 =%
or D ! 7 =1.072
D, 1-(0.6)

Conventional Question ESE-2001

Question: A cantilever tube of length 120 mm is subjected to an axial tension P = 9.0 kN,
A torsional moment T = 72.0 Nm and a pending Load F = 1.75 kN at the free
end. The material is aluminum alloy with an yield strength 276 MPa. Find the

thickness of the tube limiting the outside diameter to 50 mm so as to ensure a
factor of safety of 4.

N D%t
Answer: Polar moment of inertia (J) =2aR’t = =

Page 302 of 429



Chapter-9

Torsion S K Mondal’s
YT o T=Eimi ™ 2T 2x72 18335
J R J 2] D% aD?* wx(0.050)* xt t

2%

, P 9000 9000 57296
Direct stress (0,)=—= = =
A wdt  =(0.050)t t

md
Maximum bending stress (oz)zgzl—é:MTd [J=2I]
~1750x0.120x0.050 x4 106952
1% (0.050)°t t
164248

t

.. Total longitudinal stress (0,) =0, + 0, =

Maximum principal stress

(0) =% 4 [ 2+72 _ 164248 (164248 2+ 18335)"  (276x10°
Vo2 2 2t 2t t B 4

or,t=24%x10°>m=2.4mm

Conventional Question ESE-2000 & ESE 2001

Question:

Answer:

A hollow shaft of diameter ratio 3/8 required to transmit 600 kW at 110 rpm,
the maximum torque being 20% greater than the mean. The shear stress is
not to exceed 63 MPa and the twist in a length of 3 m not to exceed 1.4
degrees. Determine the diameter of the shaft. Assume modulus of rigidity for
the shaft material as 84 GN/mz2.

Let d = internal diameter of the hollow shaft

And D = external diameter of the hollow shaft

(given) d = 3/8 D = 0.375D

Power (P)= 600 kW, speed (N) =110 rpm, Shear stress(7 )= 63 MPa. Angle of twist (0
)=1.4° Length (£) =3m , modulus of rigidity (G) = 84GPa

27N
We know that, P)=T. o="T. % [T is average torque]

= 60xP 60><(6OO><103)
27N 2xwx110
ST =12%xT =1.2x52087 =62504 Nm

First we consider that shear stress is not to exceed 63 MPa

= 52087Nm

or

, T T
From torsion equation — = E
TR T.D
orJ=—-=——
T 2T
or 2[D* — (0.375D)"| = 22D _
32 2x(63x107)
orD=0.1727m=172.7mm ————(i)
. . o 17x1.4 .
Second we consider angle of twist is not exceed 1.4° = radian
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. . T G6
From torsion equation K =—

14
T G6

or —=—
J l

or D" — (0375D)*| = — 22203
32

nxl.S]

84 x10°
( )[ 180

or D=0.1755m =175.5mm — — — —(ii)
So both the condition will satisfy if greater of the two value is adopted
so D=175.5 mm

Conventional Question ESE-1997

Question:

Answer:

Determine the torsional stiffness of a hollow shaft of length L and having
outside diameter equal to 1.5 times inside diameter d. The shear modulus of
the material is G.

Outside diameter (D) =1.5d

Polar modulus of the shaft (J) = l(D4 — d4> = 1d4(1.54 —1)
32 32

Go

T

R L
T 4 4

GO d*(1.5* —1)
32

We know that %:

GOl ~0.4G6d*

L L

orT =

Conventional Question AMIE-1996

Question:

Answer:

The maximum normal stress and the maximum shear stress analysed for a
shaft of 150 mm diameter under combined bending and torsion, were found
to be 120 MN/m2 and 80 MN/m? respectively. Find the bending moment and
torque to which the shaft is subjected.

If the maximum shear stress be limited to 100 MN/mz2, find by how much the
torque can be increased if the bending moment is kept constant.

Given: o =120MN/m?z__ =80MN/m?,d=150mm=0.15m
Part—-1: M T

We know that for combined bending and torsion, we have the following expressions:
1 .
O = d63 [M+\/M2+T2} ———(i)
V4
1 ..
and T = ;33 [\/MZ +T2} ————(ii)
V4
Substituting the given values in the above equations, we have

120=L[M+m] —————— (i)

max

7% (0.15)’
80 = L3[\/M2 T TzJ ————————— (iv)
7x(0.15)
3
or IME T = SOX”TéO'm ~0.053—————— (v)
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Substituting this values in equation (iii), we get
120=—©__1M40.053]
7x(0.150°)

M=0.0265MNm

Substituting for M in equation(v), we have

(0.0265)° + T2 =0.053
or T = 0.0459MNm
Part Il [ 7 = 100MN/ m?]

Increase in torque:
Bending moment(M)to be kept constant =0.0265MNm

3 2
or  (0.0265) +T? =[100X”1X6(0'15) } —0.004391

. T=0.0607 MNm
.. The increased torque = 0.0607 — 0.0459 = 0.0148 MNm

Conventional Question ESE-1996
Question: A solid shaft is to transmit 300 kW at 120 rpm. If the shear stress is not to
exceed 100 MPa, Find the diameter of the shaft, What percent saving in
weight would be obtained if this shaft were replaced by a hollow one whose
internal diameter equals 0.6 of the external diameter, the length, material

Answer:

and maximum allowable shear stress being the same?
Given P= 300 kW, N = 120 rpm, 7=100 MPa, d, =0.6D,,
Diameter of solid shaft, Ds:

2nNT _ 2nx120xT

S K Mondal’s

We know that P= — or 300= —— or T=23873 Nm

60x1000 60x1000

We know that I = T
J R

100x10° x - D
32
D

S

2

T.J
or, T:? or, 23873 =

or, Ds=0.1067 m =106.7mm

Percentage saving in weight:

T, =T,
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[TXJ] _ [TXJ
R J, R
or Di-di) _pa . Di-(0.6D,)
D, D,,

D, ~106.7
J(1-0.6%) ¥1-0.64
Again Wy _ Aulipu9 _ Ay

WS AsLspsg A

S

— D3

or,D, = =111.8mm

S

T 2 2
A, 4(DH—dH)_Dj(1—o.62)_[111.8
A, LY D? 106.7

2
] (1-0.6)" = 0.702
4 s

.. Percentage savings in weight =[1- VV\\//“ x100

S

=(1-0.702)x100 = 29.8%
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10.[| Thin Cylinder

Theory at a Glance (for IES, GATE, PSU)
1. Thin Rings
Uniformly distributed loading (radial) may be due to
either
e Internal pressure or external pressure

e Centrifugal force as in the case of a rotating ring

Case-I: Internal pressure or external pressure
e s=qr Where q = Intensity of loading in kg/cm of Oce

r = Mean centreline of radius

s = circumferential tension or hoop’s
tension

(Radial loading ducted outward)
_ar

e Unit stress, o =

S

A A
(o) r

e Circumferential strain, €= — = ar

E AE

e Diametral strain, (&, ) = Circumferential strain, (&)

Case-II: Centrifugal force

2,2
Wa'r
e Hoop's Tension, S = Where w = wt. per unit length of circumferential element
g
@ = Angular velocity
2
. . S Wo'r

e Radial loading, q =—=

r g

S w
e Hoop's stress, c =—= —.o'r?

A Ag

2. Thin Walled Pressure Vessels
For thin cylinders whose thickness may be considered small compared to their diameter.

Inner dia of the cylinder (d,)
wall thickness (t)

>15 or 20
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3. General Formula

9,0 _P

nhono ot

Where o, =Meridional stress at A

0, =Circumferential / Hoop's stress

P = Intensity of internal gas pressure/ fluid pressure

t = Thickness of pressure vessel.

4. Some cases:

e Cylindrical vessel

_pr_pb __pr_pD

O'_

Yoot 4t >t 2t
T _0,-0, _pr_pD
max 2 4 8t

e Spherical vessel

pr _ pD

[rl >0, = r]

O, =0,=—=— [r :I'2:I‘]
T T T 4 '
e Conical vessel
tan o tan o
o = YRNZ ] and o, =DY1ARE
2tcoso tcosa

Notes:
o Volume 'V' of the spherical shell, V=%Df

1/3
=D, = (ﬂJ

v

e Design of thin cylindrical shells is based on hoop's stress

5. Volumetric Strain (Dilation)

AV
e Rectangular block, ——=¢€, + €, +¢€,
0

e Cylindrical pressure vessel

. .o o, pr
€ 1=Longitudinal strain =—-— yy—2% =——[1-2
mone e “E ol

o,

r
€, =Circumferential strain = £ ,uO-—El _Pr [1 - 2,u]

2Et
pr

S K Mondal’s

—

— R
"(x y
f%é% v
iy

AV pD
Volumetric Strain, — =€, +2 €,=——[5-4u]=——[5-4
olumetric Strain v . 5 [ u] 4Et[ ul

2Et

0

i.e. Volumetric strain, (e, ) = longitudinal strain(e,)+ 2 x circumferential strain (<, )

® Spherical vessels

€=g,=¢,= %[1 _ ,U] Page 309 of 429



Chapter-10 Thin Cylinder S K Mondal’s

AV 3pr
—=3e=——-[1-
v, 2t M

6. Thin cylindrical shell with hemispherical end

Condition for no distortion at the junction of cylindrical and hemispherical portion
1—u

t
t_2 = . Where, t1= wall thickness of cylindrical portion
1 —H

tz = wall thickness of hemispherical portion

7. Alternative method

Consider the equilibrium of forces in the z-direction acting on the part
cylinder shown in figure.

Force due to internal pressure p acting on area 7 D%/4 =p. 7 D%/4
Force due to longitudinal stress sL acting on area 7 Dt = o, 7 Dt

Equating: p. 7 D¥4= o, 7 Dt

o4t 2t

Now consider the equilibrium of forces in the x-direction acting on the

or

sectioned cylinder shown in figure. It is assumed that the
circumferential stress o, is constant through the thickness of the
cylinder.

Force due to internal pressure p acting on area Dz = pDz

Force due to circumferential stress o, acting on area 2tz = o, 2tz

Equating: pDz =, 2tz

2B _ [
2t t

or o, =
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Longitudinal stress

GATE-1. The maximum principal strain in a thin cylindrical tank, having a radius of 25
cm and wall thickness of 5 mm when subjected to an internal pressure of 1MPa,
is (taking Young's modulus as 200 GPa and Poisson's ratio as 0.2) [GATE-1998]
(a) 2.25 x 10+ (b) 2.25 (c) 2.25 x 106 (d) 22.5

pr 1x250

GATE-1. Ans. (a) Circumferential or Hoop stress (o, )= T

=50MPa

Longitudinal stress (o;) = g—: =25MPa

6 6
o, =% ;9S00 5, 2500 5 5,10+
E "E 200x10 200x10

Maximum shear stress

GATE-2. A thin walled cylindrical vessel of well thickness, t and diameter d is fitted
with gas to a gauge pressure of p. The maximum shear stress on the vessel wall

will then be: [GATE-1999]
pd pd pd pd
a) — b) — c) — d) —
()t ()2t ()4t ()8t
GATE-2. Ans. (d) o, = E o = % Maximum shear stress = G G _ pd
2t 4t 2 8t

Change in dimensions of a thin cylindrical shell due to an internal
pressure

Statement for Linked Answers and Questions 3 and 4

A cylindrical container of radius R = 1 m, wall Ll sy PPV
thickness 1 mm is filled with water up to a depth <1 mm
of 2 m and suspended along its upper rim. The T

density of water is 1000 kg/m3 and acceleration 2m

due to gravity is 10 m/s2. The self-weight of the Y
cylinder is negligible. The formula for hoop 1m
stress in a thin-walled cylinder can be used at all ‘L i

points along the height of the cylindrical
container.

[GATE-2008]

GATE-3. The axial and circumferential stress (0,,0,) experienced by the cylinder wall

at mid-depth (1 m as shown) are
(a) (10,10) MPa (b) (5,10) MPa (c) (10,5) MPa (d) (5,5)MPa
GATE-3. Ans. (a) Pressure (P) =h p g=1x1000x 10 = 10 kPa

Axial Stress (0,) = 0, x 27Rt = pg x RL

_ pgRL 1000x10x1x1

or o, = - =10MPa
l 1x10

11 of 429
Circumferential Stress( o, )=¥ = fmi)i 210MPa
X
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GATE-4. If the Young's modulus and Poisson's ratio of the container material are 100
GPa and 0.3, respectively, the axial strain in the cylinder wall at mid-depth is:
(a) 2x10-5 (b) 6 X 10-5 (c) 7x10-5 (d) 1.2 x 105

GATE-4. Ans. (¢) ¢, zﬁ—,u&: 10 ——0.3x 10 - =7x107°
E E 100x10 100x10

Previous 20-Years IES Questions

Circumferential or hoop stress

IES-1. Match List-I with List-II and select the correct answer: [TES-2002]
List-I List-I1
(2-D Stress system loading) (Ratio of principal stresses)
A. Thin cylinder under internal pressure 1. 3.0
B. Thin sphere under internal pressure 2. 1.0
C. Shaft subjected to torsion 3. -1.0
4, 2.0
Codes: A B C A B C
(a) 4 2 3 (b) 1 3 2
() 4 3 2 (d) 1 2 3

IES-1. Ans. (a)

IES-2. A thin cylinder of radius r and thickness t when subjected to an internal
hydrostatic pressure P causes a radial displacement u, then the tangential
strain caused is: [TES-2002]
@ L © — @2

dr r dr r r

IES-2. Ans. (¢)

IES-3. A thin cylindrical shell is subjected to internal pressure p. The Poisson's ratio
of the material of the shell is 0.3. Due to internal pressure, the shell is subjected
to circumferential strain and axial strain. The ratio of circumferential strain to

axial strain is: [TES-2001]
(a) 0.425 (b) 2.25 (c) 0.225 (d) 4.25
IES-3. Ans. (d) Circumferential strain, €, = e _ ,uﬂ = ﬁ(2 — ,u)
T E E 2Et
o . 0, o, pr
Longitudinal strain, € = — — y—%=—(1-2
gitudinal strain, €, = uE 2Et( ,u)

IES-4. A thin cylindrical shell of diameter d, length ‘I’ and thickness t is subjected to

an internal pressure p. What is the ratio of longitudinal strain to hoop strain in

terms of Poisson's ratio (1/m)? [TES-2004]
m-2 m-—2 2m-1 2m+2
b d
@ omei ® omoi © 2 i
Pr

IES-4. Ans. (b) longitudinal stress (o) = ot

Page 312 of 429



Chapter-10 Thin Cylinder S K Mondal’s

IES-5.

hoop stress (o, ) = ?
g_lo. 1_1
.&_E mE _2 m_m-2
& % Ta 4 1 2m-1
E mE 2m

When a thin cylinder of diameter 'd' and thickness 't' is pressurized with an
internal pressure of 'p', (1/m = u is the Poisson's ratio and E is the modulus of

elasticity), then [IES-1998]

d(i1 1
(a) The circumferential strain will be equal to a2
2tE\2 m

1
(b) The longitudinal strain will be equal to p—d 1-—
2tE 2m

(¢) The longitudinal stress will be equal toz—t

(d) The ratio of the longitudinal strain to circumferential strain will be equal to
m-2
2m-1

IES-5. Ans. (d) Ratio of longitudinal strain to circumferential strain

IES-6.

e {2
PO

% uZ=om (2 )

Circumferential strain, €, = Y7,
E E 2Et
Longitudinal strain, €, = 9 yi = ﬂ('I - 2,u)
" E T E 2Bt

A thin cylinder contains fluid at a pressure of 500 N/m2, the internal diameter
of the shell is 0.6 m and the tensile stress in the material is to be limited to 9000
N/m2. The shell must have a minimum wall thickness of nearly [TES-2000]
(a) 9 mm (b) 11 mm (¢) 17 mm (d) 21 mm

IES-6. Ans. (c¢)

IES-7.

A thin cylinder with closed
lids is subjected to internal
pressure and supported at
the ends as shown in figure.
The state of stress at point
X is as represented in

[TES-1999]
I

(@) I (b) I ©) | (d) b

T A AL

l 1 Page 313 of 429 -17 —
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IES-7. Ans. (a) Point 'X' is subjected to circumferential and longitudinal stress, i.e. tension on all
faces, but there is no shear stress because vessel is supported freely outside.

IES-8. A thin cylinder with both ends closed is subjected to internal pressure p. The
longitudinal stress at the surface has been calculated as co. Maximum shear

stress at the surface will be equal to: [IES-1999]
(a)2o, (b) 150, (¢) o, (d) 0.50,
IES-8. Ans. (d)
. . 20_0 — 0O, O,
Longitudinal stress = o, and hoop stress =20, Max. shear stress 5 5

IES-9. A metal pipe of Im diameter contains a fluid having a pressure of 10 kgf/cm?2. 1f
the permissible tensile stress in the metal is 200 kgf/cm2, then the thickness of

the metal required for making the pipe would be: [TES-1993]
(a) 5 mm (b) 10 mm (c) 20 mm (d) 25 mm
d 10x100 1000
IES-9. Ans. (d) Hoop stress = pd or200=———— ort=——=2.5cm
2t 2xt 400
IES-10. Circumferential stress in a cylindrical steel boiler shell under internal

pressure is 80 MPa. Young's modulus of elasticity and Poisson's ratio are
respectively 2 x 105 MPa and 0.28. The magnitude of circumferential strain in
the boiler shell will be: [TES-1999]
(a) 3.44 x 10+ (b) 3.84 x 10+ (c) 4 x 10+ (d) 4.56 x10

1
IES-10. Ans. (a) Circumferential strain = E(Gl - ,uaz)

Since circumferential stress o, = 80 MPa and longitudinal stress o, = 40 MPa

..Circumferential strain = ; [80 —-0.28 x 40] x10% = 3.44 x10™*

2x10° x10°

IES-11. A penstock pipe of 10m diameter carries water under a pressure head of 100 m.
If the wall thickness is 9 mm, what is the tensile stress in the pipe wall in MPa?
[TES-2009]
(a) 2725 (b) 5450 (c) 2725 (d) 1090
Pd

IES-11. Ans. (b) Tensile stress in the pipe wall = Circumferential stress in pipe wall = E
Where, P = pgH = 980000N / m?
980000x10

~. Tensile stress = —————— = 544.44x10°N/ m* = 544.44MN / m” = 544 44MPa
2x9x10

IES-12. A water main of 1 m diameter contains water at a pressure head of 100 metres.
The permissible tensile stress in the material of the water main is 25 MPa.

What is the minimum thickness of the water main? (Take g =10 m/s’ ).

[TES-2009]
(a) 10 mm (b) 20mm (c) 50 mm (d) 60 mm
IES-12. Ans. (b) Pressure in the main = pgh = 1000 x10x1000 = 10® N/mm? = 1000 KPa
Hoop stress = 5, = Pd
2t

10°)(1
20 2x25x10° 50

C

t:
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Longitudinal stress

IES-13. Hoop stress and longitudinal stress in a boiler shell under internal pressure
are 100 MN/m2 and 50 MN/m? respectively. Young's modulus of elasticity and
Poisson's ratio of the shell material are 200 GN/m2 and 0.3 respectively. The

hoop strain in boiler shell is: [IES-1995]
(a) 0.425x107° () 0.5 x107° (c) 0.585 x107° (@ 0.75 x107°
. 1 1
IES-13. Ans. (a) Hoopstrain = —(o, — uo,)=———[100-0.3x50]=0.425x10""
P E( ~H) 2oox1000[ ]
IES-14. 1In strain gauge dynamometers, the use of how many active gauge makes the
dynamometer more effective? [IES 2007]
(a) Four (b) Three (c) Two (d) One
IES-14. Ans. (b)
Volumetric strain
IES-15. Circumferential and longitudinal strains in a cylindrical boiler under internal

steam pressure are & and &, respectively. Change in volume of the boiler
cylinder per unit volume will be: [IES-1993; IAS 2003]
(@) e +2¢, (b) 51‘922 (©)2¢ +¢, (d ‘91252

IES-15. Ans. (¢) Volumetric stream = 2 X circumferential strain + longitudinal strain

IES-16. The volumetric strain in case of a thin cylindrical shell of diameter d, thickness
t, subjected to internal pressure p is: [TIES-2003; IAS 1997]
pd pd pd pd
a) —.(3-2 b) —.(4-3 c) —.(5-4 d) —.(4-5
@ = (3-20) ® o (4-30) @ = (5-4k) @ = (4-54)

(Where E = Modulus of elasticity, pu = Poisson's ratio for the shell material)
IES-16. Ans. (¢) Remember it.

Spherical Vessel

IES-17. For the same internal diameter, wall thickness, material and internal pressure,
the ratio of maximum stress, induced in a thin cylindrical and in a thin
spherical pressure vessel will be: [TES-2001]
(a) 2 (b) 1/2 (c) 4 (d) 1/4

IES-17. Ans. (a)

IES-18. From design point of view, spherical pressure vessels are preferred over
cylindrical pressure vessels because they [TES-1997]

(a)  Are cost effective in fabrication

(b) Have uniform higher circumferential stress

(¢)  Uniform lower circumferential stress

(d) Have a larger volume for the same quantity of material used
IES-18. Ans. (d)

Previous 20-Years IAS Questions

Circumferential or hoop stress

IAS-1. The ratio of circumferential stress to longitudinal stress in a thin cylinder
subjected to internal hydrostatic pressure is: [TIAS 1994]
(a) 1/2 (b) 1  Page3150f429 (c) 2 d) 4

IAS-1. Ans. (¢)
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IAS-2. A thin walled water pipe carries water under a pressure of 2 N/mm? and
discharges water into a tank. Diameter of the pipe is 25 mm and thickness is
2:5 mm. What is the longitudinal stress induced in the pipe? [IAS-2007]
(@0 (b) 2 N/mm?2 (c) 5 N/mm? (d) 10 N/mm?2
Pr 2x12.5
IAS-2. Ans. (¢) 0 =—= =5N/mm”*
2t 2x2.5
IAS-3. A thin cylindrical shell of mean diameter 750 mm and wall thickness 10 mm has

its ends rigidly closed by flat steel plates. The shell is subjected to internal
fluid pressure of 10 N/mm2 and an axial external pressure Pi. If the
longitudinal stress in the shell is to be zero, what should be the approximate

value of P1? [TAS-2007]
(a) 8 N/mm?2 (b) 9 N/mm? (c) 10 N/mm? (d) 12 N/mm?2
2
10 [ T X ZSO ]
IAS-3. Ans. (c) Tensile longitudinal stress due to internal fluid pressure (O 1) ¢ =
7 xT750%10
tensile. Compressive longitudinal stress due to external pressure p1 ( O ). =
7 %7507
compressive. For zero longitudinal stress (0 1) ¢= (O 1)e.
7x750x10
TAS-4. Assertion (A): A thin cylindrical shell is subjected to internal fluid pressure
that induces a 2-D stress state in the material along the longitudinal and
circumferential directions. [TAS-2000]

Reason(R): The circumferential stress in the thin cylindrical shell is two times
the magnitude of longitudinal stress.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

P P
TAS-4. Ans. (b) For thin cell o, = Tr o, = 2_:

IAS-5. Match List-I (Terms used in thin cylinder stress analysis) with List-II
(Mathematical expressions) and select the correct answer using the codes

given below the lists: [TAS-1998]
List-1 List-II
A. Hoop stress 1. pd/4t
B. Maximum shear stress 2. pd/2t
C. Longitudinal stress 3. pd/20
D. Cylinder thickness 4. pd/8t
Codes: A B C D A B C D
(a) 2 3 1 4 (b) 2 3 4 1
() 2 4 3 1 (d) 2 4 1
IAS-5. Ans. (d)

Longitudinal stress

IAS-6. Assertion (A): For a thin cylinder under internal pressure, At least three strain
gauges is needed to know the stref8gtatetothpletely at any point on the shell.
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Reason (R): If the principal stresses directions are not know, the minimum
number of strain gauges needed is three in a biaxial field. [TAS-2001]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IAS-6. Ans. (d) For thin cylinder, variation of radial strain is zero. So only circumferential and
longitudinal strain has to measurer so only two strain gauges are needed.

Maximum shear stress

IAS-7. The maximum shear stress is induced in a thin-walled cylindrical shell having
an internal diameter 'D' and thickness’t’ when subject to an internal pressure
'p' is equal to: [TAS-1996]
(a) pD/t (b) pD/2t (c) pD/4t (d) pD/8t

IAS-7. Ans. (d) Hoop stress(o,) = % and Longitudinalstress(c,) = % ST = 0°2_U' = F;—[t)

Volumetric strain

IAS-8. Circumferential and longitudinal strains in a cylindrical boiler under internal
steam pressure are & and &, respectively. Change in volume of the boiler
cylinder per unit volume will be: [TES-1993; TAS 2003]
(@) +2s, (b)ee; (¢)2¢ +¢, (d)e/e,

IAS-8. Ans. (¢) Volumetric stream = 2 x circumferential strain + longitudinal strain.

IAS-9. The volumetric strain in case of a thin cylindrical shell of diameter d, thickness

t, subjected to internal pressure p is: [IES-2003; IAS 1997]

pd pd pd pd
—.(3-2 b) —.(4-3 —.(5-4 d) —.(4-5
@ 2 (3-24) ®) E (4-34)  © IE (5-4p) @ JE (4-5u)
(Where E = Modulus of elasticity, p = Poisson's ratio for the shell material)

IAS-9. Ans. (¢) Remember it.

IAS-10. A thin cylinder of diameter ‘d’ and thickness 't' is subjected to an internal

pressure 'p' the change in diameter is (where E is the modulus of elasticity and

n is the Poisson's ratio) [IAS-1998]
pd’ pd’ pd’ pd”
2— b 1 2 d 2
() 4tE( 1) ()ZtE( + 1) © £ (2+p) (@ 4tE( + 1)

IAS-10. Ans. (a)

IAS-11. The percentage change in volume of a thin cylinder under internal pressure
having hoop stress = 200 MPa, E = 200 GPa and Poisson's ratio = 0-25 is:
[TIAS-2002]
(a) 0.40 (b) 0-30 (c) 025 (d) 020

P
IAS-11. Ans. (d) Hoop stress(o, ) = “L =200x10° P,
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Volumetric strain (e,) = E(5 —4u) = i(5 —4u)

2Et 2E
6
:&109(5_4“)_25) :L
2x200x10 1000

IAS-12. A round bar of length [, elastic modulus E and Poisson's ratio p is subjected to

an axial pull 'P'. What would be the change in volume of the bar? [IAS-2007]
Pl PI1-2 Pl Pl
(@) ———— @ DA=24) © £ @ —
(1-2n)E E E

IAS-12. Ans. (b)

) Pe—i) E — P
o,=—, o0,=0 and o0,=0 [ N

A |"' ]. -"l

— X — GX
ore, =—, 8y——IUE

o

and ¢, =—u—=

= TH E

or £, =&, +&,+¢, :%(1-2@ :A—PE(I—Z,U)

N =g, xV =g, Al :PEI(I—Zu)

IAS-13. If a block of material of length 25 cm. breadth 10 cm and height 5 cm undergoes
a volumetric strain of 1/5000, then change in volume will be: [IAS-2000]
(a) 0.50 cm3 (b) 0.25 cm3 (c) 0.20 cm3 (d) 0.75 cm3
IAS-13. Ans. (b)

Volume change(dV)
Initial volume(V)

Volumetricstrain(e, ) =

x25%10%x5=0.25cm’

or (6V)=¢g,xV = !
5000
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Previous Conventional Questions with Answers

Conventional Question GATE-1996

Question:

Answer:

A thin cylinder of 100 mm internal diameter and 5 mm thickness is subjected
to an internal pressure of 10 MPa and a torque of 2000 Nm. Calculate the
magnitudes of the principal stresses.

Given: d=100mm=0.1m; t=5mm =0.005m; D=d+ 2t =0.1 +2x 0.005 =

0.11 m p =10 MPa, 10 x 106N/m2; T= 2000 Nm.

p_d_10x106><0.1

4t 4x0.005
6

Circumferential stress, o, =0, = pd_ 10x10°x0.1_ 100MN / m?

b2t 2x0.005

To find the shear stress, using Torsional equation,

=50x10°N/m? = 50MN / m?

Longitudinal stress, 0, =0, =

T ¢
—=—,we have
J R
2000 x(0.05+0.005
oy IR TxR x(0.05+ ) _ 24.14MN/ 2

4 J T T
E(D“ —d4) 5(0.11“ —0.14)

Principal stresses are:

2
o, +0 o, —C 2
_ 9% y x y
Oy = 2 i\/( 2 J +(Txy)

2
:50+2100i\/(50—2100j (24147

=75+34.75=109.75 and 40.25MN/ m?
o, (Major principal stress) =109.75MN/ m?;

o, (minor principal stress) =40.25MN/ m?;

Conventional Question IES-2008

Question:

Answer:

A thin cylindrical pressure vessel of inside radius ‘r’ and thickness of metal ‘t’
is subject to an internal fluid pressure p. What are the values of
(i) Maximum normal stress?

(ii) Maximum shear stress?

I

Circumferential (Hoop) stress <O'C ) = _pt
I
Longitudinal stress (af ) == F;_t

B i O'C — O'é p r
Therefore (i1)) Maximum shear stress, (7 max) = =—

2 4t

Conventional Question IES-1996

Question:

Answer:

A thin cylindrical vessel of internal diameter d and thickness t is closed at
both ends is subjected to an internal pressure P. How much would be the
hoop and longitudinal stress in the material?

For thin cylinder we know that Page 319 of 429



Chapter-10 Thin Cylinder S K Mondal’s

. . Pd
Hoop or circumferential stress (GC> = E
Pd
And longitudinal stress (G ¢ ) :E
Therefore 6, = 20,
Conventional Question IES-2009
Q. A cylindrical shell has the following dimensions:

Length =3 m

Inside diameter =1 m

Thickness of metal = 10 mm

Internal pressure = 1.5 MPa

Calculate the change in dimensions of the shell and the maximum intensity of

shear stress induced. Take E = 200 GPa and Poisson’s ratio v =0.3 [15-Marks]
Ans. We can consider this as a thin cylinder.
pd
H t , 0y =—
oop stresses, G; 9t
d
Longitudinal stresses, 6o = I;—t
Shear stress = 01~ %
_pd
8t
Hence from the given data
6
o, = MLO";= 0.75x10°
2x10x10"
=75 MPa
6
Gy = MLO"; = 37.5x10°
4x10x10
=37.5 MPa
¢, Hoop strain
1
g =— - Vo
1 E ( 1 2)
Pd
=——(2-v
w2
6
_ 1.5x§0 x1 9(2_0.3)
4%x10x107° x200x10
6
_ 37.5x 109 (2 : 0.3)
200x10
=0.31875x1073
ad

=0.3187x1073
d

. change in diameter,

Ad=1x%0.31875x 102 m
=0.31875 mm
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Logitudinal strain, ¢,

pd

1-2
€ =4 2)
6
_ 37.5><109 (1-2x0.3)
200x10
=7.5x107°
All_75 1078

or Al =7.5x10°x3
=2.25x10"*m = 0.225mm

= Change in length = 0.225 mm and maximum shear stress,
_pd_ 1.5x10°x1
8t 8x10x107
=18.75 MPa

Conventional Question IES-1998
Question: A thin cylinder with closed ends has an internal diameter of 50 mm and a
wall thickness of 2.5 mm. It is subjected to an axial pull of 10 kN and a torque
of 500 Nm while under an internal pressure of 6 MN/m?
(i) Determine the principal stresses in the tube and the maximum shear
stress.
(ii) Represent the stress configuration on a square element taken in the load
direction with direction and magnitude indicated; (schematic).
Answer: Given: d=50mm =0.05mD=d+2t=50+2x2.5=55mm = 0.055 m;
Axial pull, P =10 kN; T= 500 Nm; p = 6MN/m?
(i) Principal stresses (0;,,) in the tube and the maximum shear stress (t
_p_d+ P _6><106><0.05 10x10°

o, = = +
“ 4t gzdt 4x25x10°  7x0.05x2.5x10°
=30x10° +25.5x10° =55.5x10°N/ m?

pd 6x10°x0.05
o =———
Y2t 2x25x10°

Principal stresses are:

o to o, -0
01,2:[ . Ji[ . yJﬂfy ()

-z -t

32

max )'

=60x10°

Use Torsional equation,

L|—|

where J=3—”2(D ~d*)= 2| (0.085)" ~(0.05)" | ~2.848x 107 m*

(J =polar moment of inertia)

Substituting the values in(i),we get
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50 ¢
2.848x107  (0.055/2)
500x(0.055/2
or _ 500( _7)=48.28><106N/m2
2.848x10

Now, substituting the various values in eqn. (1), we have

_(55.5x106+60><106]+\/(55.5><106—60><106
192 -

2 2
_ (55.5+60)x10°
B 2

J+(48.28><106 )

++/4.84x10" +2330.96 x 10"

=57.75x10° + 48.33x10° =106.08MN / m?,9.42MN / m?
Principal stresses are : o, =106.08MN / m?; o, = 9.42MN/ m?
o,~c, 106.08-9.42

Maximum shear stress,z,, = 7 = > =48.33MN/m?
(i) Stress configuration on a square element :
Pd
2t
Y
P Square | (.ECL s
(’% Yot element 4t ndt
X
|2
2t
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Theory at a Glance (for IES, GATE, PSU)
1. Thick cylinder

Inner dia of the cylinder (d,)
wall thickness (t)

<150r20

2. General Expression

s -fa
[ i) \'. )L—- D, P
g\? 't\\:"k./ q {__/ // q,_\_\_\_ E t

3. Difference between the analysis of stresses in thin & thick cylinders
e In thin cylinders, it is assumed that the tangential stress o, is uniformly distributed over
the cylinder wall thickness.
In thick cylinder, the tangential stress o, has the highest magnitude at the inner surface of
the cylinder & gradually decreases towards the outer surface.
e The radial stress 0, is neglected in thin cylinders while it is of significant magnitude in case

of thick cylinders.

4. Strain

e Radial strain, € =—.

e Circumferential /Tangential strain €,=—

. ) o o O
e Axial strain, €,= EZ — /,I[Er + E‘)
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5. Stress

2
: _ b

e Axial stress, O, =

r—r

e Radial stress, 0, = A——

r

o Circumferential /Tangential stress, o, = A+—
e

S K Mondal’s

[Note: Radial stress always compressive so its magnitude always —ive. But in some books they

assume that compressive radial stress is positive and they use, O,

6. Boundary Conditions

AtT=r, o, =-p,
At r=r, o, =—p,

2 2 2.2

T — I r°r
7. A=w and B=(p—P)——"5=
Pl (ry —r°)

8. Cylinders with internal pressure (p;) i.e. p,=0

S
z 2 2
b —F
PR . :
e O, =7 |5~ [ -ive means compressive stress]
R f _I‘ i
2 [ .2 ]
I r
. L=+ 2p,, - 5 +1
b —F _r _

(a) At the inner surface of the cylinder

) r=r

(i) o, =—p,

(i) o, =+ P& 1)
b —F
r2

0 i

(IV) Tmax = rz . r2 'pi

(b) At the outer surface of the cylinder
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Mr=r,

(o, =0

(iii) o, = 22piri22
r2—r

o] I
(¢) Radial and circumferential stress distribution within the cylinder wall when only

internal pressure acts.

2 2

R ol P
T 2 2 2

L= r|

2 [ 2]

r’|. r

o o=l
L-r| r|

(a) At the inner surface of the cylinder

@) r=r
(i) o, =0

2p,1,
(111) O, = —W

(b) At the outer surface of the cylinder

@) r=To
(i1) o, =—P,

r? +r?
(iii) o, = _Pollo #1) (2° K )

A f
(c) Distribution of radial and circumferential stresses within the cylinder wall when

only external pressure acts
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10. Lame's Equation [for Brittle Material, open or closed end]
There is a no of equations for the design of thick cylinders. The choice of equation depends upon two

parameters.
e Cylinder Material (Whether brittle or ductile)

e Condition of Cylinder ends (open or closed)

When the material of the cylinder is brittle, such as cast iron or cast steel, Lame's Equation is used to

determine the wall thickness. Condition of cylinder ends may open or closed.
It is based on maximum principal stress theory of failure.

There principal stresses at the inner surface of the cylinder are as follows: (1) (i1) & (iii)

(I) O, =_pi
2 2
o =
pr’
(l") o, =+W

0 1

* o, >0,>0,

. o . r o + D
e 0, isthe criterion of design = Ot P
i oy — b

e Forr, =r +t

e t=rXx fo-t—er‘—l (Lame's Equation)
O, — pi

_ O-ult

[ ] =

" fos
11. Clavarino's Equation [for cylinders with closed end & made of ductile material]
When the material of a cylinder is ductile, such as mild steel or alloy steel, maximum strain theory

of failure is used (St. Venant's theory) is used.

Three principal stresses at the inner surface of the cylinder are as follows (1) (i1) & (ii1)
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(I) o, =—p
2 2
(“)O-t =+ pi(!o +£i )
(ro - )
p.r;
my)o, =+—————
( ) Z (roz_riz)
1
. et:E[Jt ~(o, +o, )]
o 0,4/ fos
[ Et=_=—
E E
e Oro=o0, —u(o, +o,). Where 02%
fos

e O is the criterion of design

r_ [o+1-2pp,
L\ o-(+u)p

e Forro=ri+t
t=r ’M —1| (Clavarion's Equation)
o-(1+m)p

12. Birne's Equation [for cylinders with open end & made of ductile material]
When the material of a cylinder is ductile, such as mild steel or alloy steel, maximum strain theory

of failure is used (St. Venant's theory) is used.

Three principal stresses at the inner surface of the cylinder are as follows (i) (i1) & (iii)

(I) O-r :_pi
. p.(r}+r?)
1 =t—
( )O-t (r02 —|"|2)
(iio, =0
e O0=0, O, where G:%
fos

e O isthe criterion of design

L_ ot (A-)p

i o—(+u)p,

t=rx /L—,u)p. -1 (Birnie's Equation)
o—(1+1)p
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[GAIL exam 2004]

O,
Where o, =f—y for ductile material

oS

= Gur for brittle material
fos

14. Compound Cylinder (A cylinder & A Jacket)

When two cylindrical parts are assembled by shrinking or press-fitting, a contact pressure is
created between the two parts. If the radii of the inner cylinder are a and ¢ and that of the

outer cylinder are (c- 0) and b, 0 being the radial interference the contact pressure is given
by:

b*—c*)(c*—a’
o Eo|(b"—c’)@—a)
c| 2c°(b*—a’)

Where E is the Young's modulus of the material

The inner diameter of the jacket is slightly smaller than the outer diameter of cylinder

When the jacket is heated, it expands sufficiently to move over the cylinder

As the jacket cools, it tends to contract onto the inner cylinder, which induces residual

compressive stress.

There is a shrinkage pressure 'P' between the cylinder and the jacket.

The pressure 'P' tends to contract the cylinder and expand the jacket

The shrinkage pressure 'P' can be evaluated from the above equation for a given amount of

interference O

The resultant stresses in a compound cylinder are found by supervision losing the 2- stresses
= stresses due to shrink fit

= stresses due to internal pressure

Derivation:

CYLINDER JACKET P

Jacket

Cylinder

CYLINDER JACKET

Due to interference let us assume 6j = increase in inner diameter

of jacket and &, = decrease in outer diameter of cylinder.

50 5=[,| +[3,| i.e. without sign.
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Now §; =€, ¢ €,= tangential strain
S R
E t r
o,=circumferential stress
cP|b? 4 c? : b?+c?
== e () +%
E|b°—cC (b -C )
0,=-p(radialstress)
_p(c* +a%)
And in similarway 5, =€, ¢ =%[0t —uo, |Jc t (c* —a®)
O, = _p
_ cP|c*+a’ . L .
= m-u ———(ii) Here -ive signrepresents contraction
Adding (i) & (ii)
s=ls | als _Pc|  2c*(b®—a?%) ; P_@(bz—cz)(cz—az)
e _‘i‘+|C|_ 2 A2\(p2 42 0 - 212 A2
E [(b®—c“)(c” —a“) c 2c“(b® —a%)

15. Autofrettage

Autofrettage is a process of pre-stressing the cylinder before using it in operation.

We know that when the cylinder is subjected to internal pressure, the circumferential stress at the

inner surface limits the pressure carrying capacity of the cylinder.

In autofrettage pre-stressing develops a residual compressive stresses at the inner surface. When
the cylinder is actually loaded in operation, the residual compressive stresses at the inner surface
begin to decrease, become zero and finally become tensile as the pressure is gradually increased.

Thus autofrettage increases the pressure carrying capacity of the cylinder.

16. Rotating Disc

The radial & circumferential (tangential) stresses in a rotating disc of uniform thickness are given

by

2

2p2
o = L2 (3+ﬂ)(Rg iR _@_HJ
r

2 2p2
o, =22 (3+/¢)[R§+Rf+@—l+3ﬂ.r2j
8 r 3+u

Where Ri = Internal radius
Ro = External radius
© = Density of the disc material
@ = Angular speed Page 329 of 429

M = Poisson's ratio.
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1—
Or, Hoop’s stress, 6, = (%j.pa)z.{Rg + (3—“) Riz}
TH

Radial stress, o, = (3 ;'UJ.pa)z [ROZ - Ri2]
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Lame's theory

GATE-1. A thick cylinder is subjected to an internal pressure of 60 MPa. If the hoop
stress on the outer surface is 150 MPa, then the hoop stress on the internal

surface is: [GATE-1996; IES-2001]
(a) 105 MPa (b) 180 MPa (c) 210 MPa (d) 135 MPa
GATE-1. Ans. (c¢) If internal pressure = p;; External pressure = zero
2 2
Circumferential or hoop stress (oc) = %{%4— 1}
rF—ro|r
At p, =60MPa, o, =150MPa and r=r,
r2 o |r? r? r? 150 5 rY 9
~.150 = 60—~ 2 +1(=120—- ofr———=—=— or|-=| ==
rf—rf[rf } =1 - 120 4 i) 5
satr=r,
2 2
0, =60 | 41| = soxix(gmj ~ 210 MPa
fo = i 4 S

Previous 20-Years IES Questions

Thick cylinder

IES-1. If a thick cylindrical shell is subjected to internal pressure, then hoop stress,
radial stress and longitudinal stress at a point in the thickness will be:
(a) Tensile, compressive and compressive respectively [TES-1999]
(b)  All compressive
(¢) All tensile
(d) Tensile, compressive and tensile respectively

IES-1. Ans. (d) Hoop stress — tensile, radial stress — compressive and longitudinal stress — tensile.

i Po

Radial and cilrcumferential stress Distribution of radial and circumferential
distribution within the cylinder wall stresses within the cylinder wall when only
when only internal pressure acts. external pressure acts.

IES-2. Where does the maximum hoop stress in a thick cylinder under external
pressure occur? [TES-2008]
(a) At the outer surface (b) At the inner surface
(c) At the mid-thickness (d) At the 2/3*d outer radius
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IES-2. Ans. (b) ;

Circumferential or hoop stress = o,

IES-3. In a thick cylinder pressurized from inside, the hoop stress is maximum at
(a) The centre of the wall thickness (b) The outer radius [TES-1998]
(c) The inner radius (d) Both the inner and the outer radii

IES-3. Ans. (c¢)

IES-4. Where does the maximum hoop stress in a thick cylinder under external
pressure occur? [TES-2008]
(a) At the outer surface (b) At the inner surface
(c) At the mid-thickness (d) At the 2/3*d outer radius

IES-4. Ans. (a) Maximum hoop stress in thick cylinder under external pressure occur at the outer
surface.

IES-5. A thick-walled hollow cylinder having outside and inside radii of 90 mm and 40
mm respectively is subjected to an external pressure of 800 MN/m2. The
maximum circumferential stress in the cylinder will occur at a radius of

[TES-1998]
(a) 40 mm (b) 60 mm (c) 65 mm (d) 90 mm
IES-5. Ans. (a)
IES-6. In a thick cylinder, subjected to internal and external pressures, let r1 and rz2 be

the internal and external radii respectively. Let u be the radial displacement of
a material element at radius r, I, 2T > I}. Identifying the cylinder axis as z axis,

the radial strain component &, is: [TES-1996]

(a) u/r byu/é (c) du/dr (d) du/d6
IES-6. Ans. (c) The strains e: and £¢ may be given by

Page 332 of 429



Chapter-11 Thick Cylinder S K Mondal’s

T

£ = aau’ =%[O} -vo, | since o, =0
r
r+u, )A0-rA0 u 1
oy T e L]
o,
or

1m, -

-

T L |

1

|
I
A A B B Representation of radial and
circumferential strain.

Lame's theory

IES-7. A thick cylinder is subjected to an internal pressure of 60 MPa. If the hoop
stress on the outer surface is 150 MPa, then the hoop stress on the internal
surface is: [GATE-1996; IES-2001]
(a) 105 MPa (b) 180 MPa (c) 210 MPa (d) 135 MPa

IES-7. Ans. (c) If internal pressure = p;; External pressure = zero

2 2
. . ol
Circumferential or hoop stress (oc) = %{% + 1}
re—r’|r

o

At p, =60MPa, o, =150MPa and r =r,

r? r? 150 5
+1]=120—- of V—/——=——7=— or
} r2—r? r’-r> 120 4 [

-

2
o

r..2
+.150 = 60— 2[

I,.2

ro i o

satr=r,
2
I

o, =60—

c 2 2
o —F

r-2

2
FH} - 60x§x[9+1j - 210 MPa
. 4 \5
IES-8. A hollow pressure vessel is subject to internal pressure. [TES-2005]

Consider the following statements:

1. Radial stress at inner radius is always zero.

2. Radial stress at outer radius is always zero.

3. The tangential stress is always higher than other stresses.

4. The tangential stress is always lower than other stresses.

Which of the statements given above are correct?

(a) 1and 3 (b) 1 and 4 (¢)2and 3 (d) 2 and 4
IES-8. Ans. (¢)

IES-9. A thick open ended cylinder as shown in the

figure is made of a material with permissible

normal and shear stresses 200 MPa and 100 MPa

respectively. The ratio of permissible pressure

based on the normal and shear stress is:

[di =10 cm; do = 20 cm]
(a) 9/56 (b) 8/5
(c) 7/5 (d) 4/5
[TES-2002]

IES-9. Ans. (b)

Longitudinal and shear stress

IES-10. A thick cylinder of internal radius and external radius a and b is subjected to
internal pressure p as well as external pressure p. Which one of the following
statements is correct? Page 333 of 429 [TES-2004]
The magnitude of circumferential stress developed is:

(a) Maximum at radius r = a (b) Maximum at radius r =b
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(c) Maximum at radius r = v/ab (d) Constant

IES-10. Ans. (d)
B Pr’-Pr’> Pa’-Pb?
ch=A+r—2 A= R =-P
(Pl B Po )rozrl2
O'C = —P B = 2 > =0
—

IES-11. Consider the following statements: [TES-2007]

In a thick walled cylindrical pressure vessel subjected to internal pressure, the
Tangential and radial stresses are:

1. Minimum at outer side
2. Minimum at inner side
3. Maximum at inner side and both reduce to zero at outer wall
4. Maximum at inner wall but the radial stress reduces to zero at outer wall
Which of the statements given above is/are correct?
(a) 1and 2 (b) 1 and 3 (c) 1and 4 (d) 4 only
IES-11. Ans. (¢)
IES-12. Consider the following statements at given point in the case of thick cylinder
subjected to fluid pressure: [TES-2006]
1. Radial stress is compressive
2 Hoop stress is tensile
3. Hoop stress is compressive
4. Longitudinal stress is tensile and it varies along the length
5 Longitudinal stress is tensile and remains constant along the length of the
cylinder

Which of the statements given above are correct?

(a) Only 1, 2 and 4 (b)Only 3and4 (c) Only 1,2 and 5 (d) Only 1,3 and 5
IES-12. Ans. (¢) 3. For internal fluid pressure Hoop or circumferential stress is tensile.

4. Longitudinal stress is tensile and remains constant along the length of the cylinder.

IES-13. A thick cylinder with internal diameter d and outside diameter 2d is subjected
to internal pressure p. Then the maximum hoop stress developed in the

cylinder is: [IES-2003]
2 5
(@ p (b) 3 p (c) 3 p (d) 2p

IES-13. Ans. (c) In thick cylinder, maximum hoop stress

2
s
SR 2) .5

Ohoop = PX—5—3 >=5P
r-2 - r-1 d 2 9 3
2
Compound or shrunk cylinder
IES-14. Autofrettage is a method of: [IES-1996; 2005; 2006]
(a) Joining thick cylinders (b) Relieving stresses from thick cylinders
(c) Pre-stressing thick cylinders (d) Increasing the life of thick cylinders

IES-14. Ans. (¢)

IES-15. Match List-I with List-II and select the correct answer using the codes given

below the Lists: [TES-2004]
List-1 List-1I
A. Wire winding 1. Hydrostatic stress

B. Lame's theory 2. Strengthening of thin cylindrical shell
C. Solid sphere subjected to uniform Page 33807 Sbrengthening of thick cylindrical shell
pressure on the surface
D. Autofrettage 4. Thick cylinders
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Coeds: A B C D A B C D
(a) 4 2 1 3 (b) 4 2 3 1
(¢ 2 4 3 1 (d) 2 4 1 3

IES-15. Ans. (d)

IES-16. If the total radial interference between two cylinders forming a compound
cylinder is 6 and Young's modulus of the materials of the cylinders is E, then
the interface pressure developed at the interface between two cylinders of the

same material and same length is: [TES-2005]
(a) Directly proportional of E x § (b) Inversely proportional of E/ &
(c) Directly proportional of E/ & (d) Inversely proportional of E / &
IES-16. Ans. (a) 5 PD, 2D? (D§ _ Df)
et D. »! E |[(p2-D3)(D:-D?)]

//'/d_x\ "PaEs

Alternatively : if E TthenP T
andif § T thenPTsoP a ES

D

+«——— [, ————»

IES-17. A compound cylinder with inner radius 5 cm and outer radius 7 cm is made by
shrinking one cylinder on to the other cylinder. The junction radius is 6 cm
and the junction pressure is 11 kgf/cm2. The maximum hoop stress developed in

the inner cylinder is: [TES-1994]
(a) 36 kgf/cm? compression (b) 36 kgf/cm? tension
(c) 72 kgf/cm? compression (d) 72 kgf/em? tension.

IES-17. Ans. (¢

Thick Spherical Shell

IES-18. The hemispherical end of a pressure vessel is fastened to the cylindrical
portion of the pressure vessel with the help of gasket, bolts and lock nuts. The
bolts are subjected to: [IES-2003]
(a) Tensile stress (b) Compressive stress (c) Shear stress (d) Bearing stress

IES-18. Ans. (a)

Previous 20-Years IAS Questions

Longitudinal and shear stress

IAS-1. A solid thick cylinder is subjected to an external hydrostatic pressure p. The
state of stress in the material of the cylinder is represented as: [TAS-1995]
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{a) b} TP
P— «—P
P— «—P
s
{c} lP () S
P P
P e P
P————

IAS-1. Ans. (¢)

Distribution of radial and circumferential stresses within the cylinder wall when only
external pressure acts.
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Previous Conventional Questions with Answers

Conventional Question IES-1997

Question:

Answer:

The pressure within the cylinder of a hydraulic press is 9 MPa. The inside
diameter of the cylinder is 25 mm. Determine the thickness of the cylinder
wall, if the permissible tensile stress is 18 N/mm?2

Given: P =9 MPa = 9 N/mm?2, Inside radius, r1 = 12.5 mm;

o, = 18 N/'mm?

Thickness of the cylinder:

. . 7 +1?
Using the equation;o, =p| 5—% |,we have
2 1
ry +12.5%
18=9| 2 =2
2-125
or r,=21.65mm

-. Thickness of the cylinder =r, —r, =21.65-12.5=9.15mm

Conventional Question IES-2010

Q.

Ans.

A spherical shell of 150 mm internal diameter has to withstand an internal
pressure of 30 MN/m2. Calculate the thickness of the shell if the allowable
stress is 80 MN/m2.
Assume the stress distribution in the shell to follow the law
2b b
o, =a——3and00 =a+—. [10 Marks]

r 1‘3

A spherical shell of 150 mm internal diameter internal pressure = 30 MPa.
Allowable stress = 80 MN/m?

2b
Assume radial stress = 6, =a — Y

r
Circumference stress = 6, =a + -

r

At internal diameter (r)
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o, = —30N / mm?

o= 80N / mm?
B0=a-—22 . (i)
(75)
80=a+—— . i1
75y (i1)
Soluing eq"” (1) & (i1)
110x 75 130
b = a=
3 3
At outer Radius (R) radial stress should be zero
3 2b
o=a-— ?
3
e = 20 2X110XT5" 19049 3077
a 130
Ix—=
R =89.376mm

There fore thickness of cylinder = (R —r)
=89.376-75=14.376 mm

Conventional Question IES-1993
Question: A thick spherical vessel of inner 'radius 150 mm is subjected to an internal
pressure of 80 MPa. Calculate its wall thickness based upon the
(i) Maximum principal stress theory, and
(ii) Total strain energy theory.
Poisson's ratio = 0.30, yield strength = 300 MPa
Answer: Given:

r, =150mm; p(o, ) =80MPa =80 x10°N/m?; u=l=0.30;
m

o =300MPa =300 x10°N/m?
Wall thickness t:
(i)Maximum principal stress theory :

2
We know that,o. [%} <o (Where K = "_ZJ

2
or 8Ox106(i2+nﬁ300x106

or K>1.314

or K=1.314

i.e. I'—2=1.314 orr,=rx1.314=150%x1.314 =197.1mm
I

.. Metal thickness, t=r, —r, =197.1-150 = 47.1 mm

(1) Total strain energy theory:

2 2 2
Use oy + 0, — no,0, <o,
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025 207 [K“ (1+ 1)+ (1 — ,u)}
= (K2 _1)2
(sooxmﬁ)z N 2><(80><106)2 [K4(1+03)+(1—o.3)]
(<

or 3002 (K2 —1)2 = 2x 802 (1.3K* +0.7)
gives K=1.86 or 0.59

It is clear thatK >1
. K=1.364

or 2-1.364 orr, =150 x1.364 = 204.6 mm
r‘l

t=r,-r,=204.6-150=54.6 mm

Conventional Question ESE-2002

Question:

Answer:

What is the difference in the analysis of think tubes compared to that for thin
tubes? State the basic equations describing stress distribution in a thick
tube.

The difference in the analysis of stresses in thin and thick cylinder:

(1) In thin cylinder, it is assumed that the tangential stress is uniformly distributed
over the cylinder wall thickness. In thick cylinder, the tangential stress has highest
magnitude at the inner surface of the cylinder and gradually decreases towards the
outer surface.

(11) The radial stress is neglected in thin cylinders, while it is of significant magnitude
in case of thick cylinders.

Basic equation for describing stress distribution in thick tube is Lame's equation.

o, :%—A and o, :%JFA

Conventional Question ESE-2006

Question:

Answer:

What is auto frettage?

How does it help in increasing the pressure carrying capacity of a thick
cylinder?

Autofrettage is a process of pre-stressing the cylinder before using it in operation.

We know that when the cylinder is subjected to internal pressure, the circumferential
stress at the inner surface limits the pressure carrying capacity of the cylinder.

In autofrettage pre-stressing develops a residual compressive stresses at the inner
surface. When the cylinder is actually loaded in operation, the residual compressive
stresses at the inner surface begin to decrease, become zero and finally become tensile
as the pressure is gradually increased. Thus autofrettage increases the pressure
carrying capacity of the cylinder.

Conventional Question ESE-2001

Question:

When two cylindrical parts are assembled by shrinking or press-fitting, a
contact pressure is created between the two parts. If the radii of the inner
cylinder are a and ¢ and that of the outer cylinder are (c- ) and b, d being
the radial interference the contact pressure is given by:

Es|(b®—¢*)(c* ~a")
¢ | 2c}(b*-aY)

Where E is the Young's modalys3ed £heo material, Can you outline the steps
involved in developing this important design equation?

P
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Answer:

CYLINDER JACKET P

CYLINDER JACKET

Jacket

Cylinder

Due to interference let us assume 6j =increase in inner diameter
of jacket and 5, = decrease in outer diameter of cylinder.

o) 8=‘6j‘ +[3,| i.e. without sign.

Now 3, =€, ¢ €,= tangential strain
1
—E[Gt —ucr]c
o,=circumferential stress
_cP b2+c2+u___(i) +p(b2+cz)
E |b?—c? (b*-c?)
0,=-p(radialstress)
And in similarway 6, =€, ¢
1 __petra)
=E{ct —po, |c t (c2 —a2>
c, =—p
_cP|c*+a’ y o .
= Ela_gz " ———(ii) Here -ive signrepresents contraction
Adding (i) &(ii)
Pc| 2c?(b*—a?)
"'8:‘61‘+|80|:_ 2 2\~2_ A2
E [(b®—c”)(c” —a)
_@ (b2 _CZ)(CZ _a2)

r P Proveds4o of 429
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Conventional Question ESE-2003

Question: A steel rod of diameter 50 mm is forced into a bronze casing of outside
diameter 90 mm, producing a tensile hoop stress of 30 MPa at the outside
diameter of the casing.
Find (i) The radial pressure between the rod and the casing
(ii) The shrinkage allowance and
(iii) The rise in temperature which would just eliminate the force fit.
Assume the following material properties:

E.=2x105 MPa, s =0.25 , o, =1.2x107°/°C
Ep=1x10°MPa, p, =03, 1, =1.9x107/°C

Answer:
P
/ 90—§
/% Steel Rod
i Brénze casin
Steel rod Bronze casing g

There is a shrinkage pressure P between the steel rod and the bronze casing. The
pressure P tends to contract the steel rod and expand the bronze casing.
(i) Consider Bronze casing, According to Lames theory

2 pg2
o, :rEZ+A Where A = B —Pfo.

02 — riz
2,2
roz _ riz
P =P, B,=0and
A= Pr? B= Prir? 2Pr?
ro2 _ riz d roz _ riz roz _ riz
Pr? Pr? 2Pr?
V=S+A=—F"— +—5— =
r’ rF—r? o r2—r? ot —r?
2 .2 2 2
or, P=30(r0—2ri):15 o =15 DOF _4lmpa=33.6MPa
2r r 50

Therefore the radial pressure between the rod and the casing is P= 33.6 MPa.

(ii) The shrinkage allowance:
Let 0= increase in inert diameter of bronze casing
0 c= decrease in outer diameter of steel rod
1st consider bronze casing:

Tangential stress at the inner surface(s, ), = riz +A

90
Pii P P(2+rd) s0)
=202+ i 20 21:33_6><—2=63.6MPa
90" _,

2 2
rh—r> Iy —r, rZ—r
Page 341 of 429 %
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), =P =-33.6MPa

longitudial stress(c, ), =0

and radial stress(c

r

Therefore tangential strain (c, ), = é[(ct),- — (o, )j}

1
1x10°
200 = (g )j xd, =7.368 x10™* x 0.050 = 0.03684mm

J

[63.6 +-0.3x33.6] =7.368x10"

2nd Consider steel rod:
Circumferential stress (c,), = —P

and radial stress (o, ), = —P
1

-8, =(g,), xd. :E_[(Gt>5 — (o, ), xd,
= —P—d‘(1 —u) = —Mﬁ — 0.3] = —0.00588 mm [reduction]
E 2x10

S

Total shrinkage =‘6j‘+|6c|=0.04272mm[it is diametral] = 0.02136 mm [radial]

(iii) Let us temperature rise is (At)

As oy > oy due to same temperature rise steel not will expand less than bronze

casing. When their difference of expansion will be equal to the shrinkage then
force fit will eliminate.

d. x oy x At —d. x o, x At = 0.04272
0.04272 0.04272

oty [0, —a, ] 50x[1.9x10°° —1.2x10°°

=122°C

Conventional Question AMIE-1998

Question:

Answer:

A thick walled closed-end cylinder is made of an Al-alloy (E = 72 GPa,
1

— =0.33), has inside diameter of 200 mm and outside diameter of 800 mm.
m

The cylinder is subjected to internal fluid pressure of 150 MPa. Determine the
principal stresses and maximum shear stress at a point on the inside surface
of the cylinder. Also determine the increase in inside diameter due to fluid
pressure.

Given: I, = %0 =100mm =0.1m;r, =¥ =400mm = 0.4;p = 150MPa = 150MN / m?;

E=72GPa=72x10°N/m% —-=0.33 =
m

Principal stress and maximum shear stress:
Using the condition in Lame’s equation:

Atr=0.1m, o, =+p =150MN/m?
r=04m, o,=0

Substituting the values in the above equation we have
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b ,
150=(0 1)2—a ————(|)
b i

From(i)and(ii), we get
a=10 and b=1.6

Y . p=1301 ..
MN/m? )
[ . |
\"h..:..-l/ :
1 i
Voo
B 1
b
: '
% 1
i
I
HE
r=01mi—»
—r,=04m—
The circumferential (or hoop)stress by Lame's equation,is given by
o, = b +a
c r2
1.6 2 :
- (o, )max ,atr(=r)=0.1m= 07+10 =170MN/m?(tensile), and
(0,),, .atr(=r,)=0.4m= 1'462 +10 = 20MN/m? (tensile).

-.Principal stresses are 1770 MN/m? and 20MN/m?

Maximum shear stress, = (% ) ;(GC o _170-20 _gyn g

Increase in inside diameter,od, :

2 2
We know,longitudinal(or axial) stress, o, = zpr1 == 150: (0.1) >=10MN/m?
rn,—n (0.4) —(0.1)

Circumferential (or hoop)strain atthe inner radius,is given by :

1 1
e1=E[ac +u(o,-0)] =72x—109[170x106 +0.33(150 - 10) x 10° | = 0.003
Also, e1=5—d1
d1
or 0.003:5—d1
0.1

5d, =0.003x0.1=0.003m or 0P3gnM?3 of 429



Theory at a Glance (for IES, GATE, PSU)
1. A spring is a mechanical device which is used for the efficient storage

and release of energy.

12.| Spring

2. Helical spring — stress equation

Let us a close-coiled helical spring has coil diameter D, wire diameter d and number of turn n. The

spring material has a shearing modulus G. The spring index,C = I If a force ‘P’ is exerted in both

ends as shown.

The work done by the axial
force 'P' is converted into
strain energy and stored in
the spring.

U=(average torque)

X(angular displacement)

:Ixe
2

From the figure we get, 6 L
GJ

Torque (T)=@

2
length of wire (L)=mrDn
Polar moment of Inertia(J)=

4P?D°n

Therefore U=————
Gd

According to Castigliano's theorem, the displacement corresponding to force P is obtained by

md*

partially differentiating strain energy with respect to that force.

2R3 3
Therefore 6 =8—U:i 4p [Z n = 8PD4n
oP 0P| Gd Gd
8PD’n

Axial deflection 6 = 7
Gd

Spring stiffness or spring constant (k)=

12
5

Gd*
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16T 16(PD/2) 8PD

xd® d? - 7d®

P 4P _8PD(0.5d)

The torsional shear stress in the bar, 7, =

The direct shear stress in the bar, 7, = =—=—
zd?) zd® zd D
4

8PD(1+O'5dJ=K 8PD

Therefore the total shear stress, 7=17,+7, =

7d? D S zd?®
8PD
* xd?

=K

Where K, =1+ is correction factor for direct shear stress.

3. Wahl!’s stress correction factor

K 8PI33
zd
Where K = (:((j: _1 + 0'((3:1 5jis known as Wahl’s stress correction factor

Here K = KiK¢; Where K_is correction factor for direct shear stress and K. is correction

factor for stress concentration due to curvature.

Note: When the spring is subjected to a static force, the effect of stress concentration is neglected

due to localized yielding. So we will use, 7 = K 82[3)
T
4. Equivalent stiffness (keq)
Spring in series (6, =0, +0,) Spring in Parallel (6, =8,=6,)
K,
——MAN—
L:L-FL or Keqzﬁ Keq=K1+K2
eq 1 2 I<l + KZ
Shaft in series (6 =6, + 6,) Shaft in Parallel (6, =6, =6, )
A B C T — e,
[ v e 07
Ty |
L L, ] K, K,
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L:L+L OrK :& Keq:K1+K2

K, K K, K, +K,
5. Important note

e Ifa springis cut into ‘n’ equal lengths then spring constant of each new spring = nk
e When a closed coiled spring is subjected to an axial couple M then the rotation,

¢_64MDnc
Ed*

6. Laminated Leaf or Carriage Springs

3P
e Central deflection, 0 = 5
8Enbt
. . 3PL
e Maximum bending stress, 6, = >
2nbt

Where P =1load on spring
b = width of each plate
n = no of plates
L= total length between 2 points
t =thickness of one plate.

7. Belleville Springs

Load,P = % (h —8)[h —§Jt +t’
(1—=p")k, Dy 2

Where, E = Modulus of elasticity

0= Linear deflection

| =Poisson’s Ratio

ks =factor for Belleville spring s

D, = outside diamerer ‘ !

h = Deflection required to flatten Belleville spring :]h
t = thickness

e Total stiffness of the springs kror = stiffness per spring X No of springs
e In aleaf spring ratio of stress between full length and graduated leaves = 1.5
e Conical spring- For application requiring variable stiffness

Belleville Springs -For application requiring high capacity springs into small space
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Helical spring

GATE-1. If the wire diameter of a closed coil helical spring subjected to compressive
load is increased from 1 cm to 2 cm, other parameters remaining same, then
deflection will decrease by a factor of: [GATE-2002]
(a) 16 (b) 8 (c) 4 (d) 2

3
GATE-1. Ans. (a) 5= DN
Gd

GATE-2. A compression spring is made of music wire of 2 mm diameter having a shear
strength and shear modulus of 800 MPa and 80 GPa respectively. The mean coil
diameter is 20 mm, free length is 40 mm and the number of active coils is 10. If
the mean coil diameter is reduced to 10 mm, the stiffness of the spring is

approximately [GATE-2008]
(a) Decreased by 8 times (b) Decreased by 2 times
(c) Increased by 2 times (d) Increased by 8 times
GATE-2. Ans. (d) S tant (K) = P_ Gd* Ko !
ns. pring constan =—= or —
s 8D°N D’

3 3
K, _ D, _(20) 3
K, D, 10
GATE-3. Two helical tensile springs of the same material and also having identical mean
coil diameter and weight, have wire diameters d and d/2. The ratio of their
stiffness is: [GATE-2001]
(a)1 (b) 4 (c) 64 (d) 128
G.d* d*

Therefore koo—
n

P
GATE-3. Ans. Spri tant (K) =— =
ns. (¢) Spring constant (K) 5 SD°'N

GATE-4. A uniform stiff rod of length 300 mm /\/\ﬁ\/\/\/—§
and having a weight of 300 N is
pivoted at one end and connected to 5, 1y,
a spring at the other end. For
keeping the rod vertical in a stable V:
position the minimum value of ‘% w
spring constant K needed is:

(a) 300 N/m (b) 400N/m 190 mm
(¢) 500N/m (d) 1000 N/m

i

r/
AN
[GATE-2004]

GATE-4. Ans. (c¢) Inclined it to a very low angle, d@

For equilibrium taking moment about ‘hinge’
I W 300

W x| —d@g —k(|d0)><|=0 ork=—= =500N/m
2 2l 2x0.3

GATE-5. A weighing machine consists of a 2 kg pan resting on spring. In this condition,
with the pan resting on the spring, the length of the spring is 200 mm. When a
mass of 20 kg is placed on the I;) Mt}x&}gngth of the spring becomes 100 mm.
For the spring, the un- -deformed engt and the spring constant k (stiffness)
are: [GATE-2005]
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(a) 1o =220 mm, k = 1862 N/m (b) 1o =210 mm, k = 1960 N/m

(c¢) I =200 mm, k = 1960 N/m (d) 1o =200 mm, k = 2156 N/m
GATE-5. Ans. (b) Initial length = I, m and stiffness = k N/m

2xQ= k(l0 —0.2)

2xg+20xg=k(l, —0.1)

Just solve the above equations.

Springs in Series

GATE-6. The deflection of a spring with 20 active turns under a load of 1000 N is 10 mm.
The spring is made into two pieces each of 10 active coils and placed in parallel
under the same load. The deflection of this system is: [GATE-1995]
(a) 20 mm (b) 10 mm (¢c) 5 mm (d) 2.5 mm

GATE-6. Ans. (d) When a spring is cut into two, no. of coils gets halved.

.. Stiffness of each half gets doubled.
When these are connected in parallel, stiffness = 2k + 2k = 4k
Therefore deflection will be % times. = 2.5 mm

Previous 20-Years IES Questions

Helical spring

IES-1. A helical coil spring with wire diameter ’d’ and coil diameter 'D' is subjected to
external load. A constant ratio of d and D has to be maintained, such that the
extension of spring is independent of d and D. What is this ratio? [IES-2008]

D4/3 d4/3
(a)D?/d* (b)d® / D* (c) e (d)F
PD°N
IES-1. Ans. (a) 0 = 8 2
Gd
T =Fx 9; U= 1 TO
2 2
T= @, 0= l
2 GJ
L=nDN
U= 1(@)2 (Lj _4FDN
202 )\ay)  ad .
_ U _8FD°N
oF  Gd*
IES-2. Assertion (A): Concentric cylindrical helical springs are used to have greater
spring force in a limited space. [IES-2006]

Reason (R): Concentric helical springs are wound in opposite directions to
prevent locking of coils under heavy dynamic loading.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Ais false but R is true
IES-2. Ans. (b)

IES-3. Assertion (A): Two concentric helical springs used to provide greater spring
force are wound in opposite directions. [TES-1995; IAS-2004]

Reason (R): The winding in opposite directions in the case of helical springs
prevents buckling.

(a) Both A and R are individually trG89%8R3&R #8he correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
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(¢) Aistrue but R is false
(d) Ais false but R is true

IES-3. Ans. (c) It is for preventing locking not for buckling.

IES-4. Which one of the following statements is correct? [IES-1996; 2007; IAS-1997]
If a helical spring is halved in length, its spring stiffness
(a) Remains same (b) Halves (c) Doubles (d) Triples

4

IES-4. Ans. (c) Stiffness of sprin(k) = Gd

3 SO koo1 andnwiil be half

D°n n

IES-5. A body having weight of 1000 N is dropped from a height of 10 cm over a close-
coiled helical spring of stiffness 200 N/ecm. The resulting deflection of spring is
nearly [TES-2001]
(a) 5cm (b) 16 cm (c) 35 cm (d) 100 cm

IES-5. Ans. (b) mg(h+Xx) = %kxz

IES-6. A close-coiled helical spring is made of 5 mm diameter wire coiled to 50 mm
mean diameter. Maximum shear stress in the spring under the action of an
axial force is 20 N/mm?. The maximum shear stress in a spring made of 3 mm
diameter wire coiled to 30 mm mean diameter, under the action of the same

force will be nearly [TES-2001]
(a) 20 N/mm? (b) 33.3 N/mm? (c) 55.6 N/mm?2 (d) 92.6 N/mm?

IES-6. Ans. (c¢) User =k, SF;?

IES-7. A closely-coiled helical spring is acted upon by an axial force. The maximum

shear stress developed in the spring is 7. Half of the length of the spring is cut
off and the remaining spring is acted upon by the same axial force. The

maximum shear stress in the spring the new condition will be: [TES-1995]
(@)% T b) T 2T D47
8PD . . .
IES-7. Ans. (b) User =K, e it is independent of number of turn
IES-8. The maximum shear stress occurs on the outermost fibers of a circular shaft
under torsion. In a close coiled helical spring, the maximum shear stress
occurs on the [TES-1999]

(a) Outermost fibres  (b) Fibres at mean diameter (c) Innermost fibres (d) End coils
IES-8. Ans. (¢)

IES-9. A helical spring has N turns of coil of diameter D, and a second spring, made of
same wire diameter and of same material, has N/2 turns of coil of diameter 2D.
If the stiffness of the first spring is k, then the stiffness of the second spring

will be: [TES-1999]
(a) k/4 (b) k/2 (c) 2k (d) 4k
) Gd* ) ) Gd* Kk
IES-9. Ans. (a) Stiffness (k) = ———;Second spring,stiffness (k,)=————=—
64R°N 3 N 4
64(2R) x?

IES-10. A closed-coil helical spring is subjected to a torque about its axis. The spring
wire would experience a [TES-1996; 1998]
(a) Bending stress
(b) Direct tensile stress of uniform intensity at its cross-section
(¢) Direct shear stress
(d) Torsional shearing stress

IES-10. Ans. (a)

IES-11. Given that: [TES-1996]
d = diameter of spring, R = mean radius of coils, n = number of coils and G =

modulus of rigidity, the stiffness of the close-coiled helical spring subject to an
axial load W is equal to Page 349 of 429
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@ Gd* ) Gd’® © Gd* @ Gd*
a — C
64R°n 64R°n 32R’n 64R’n
IES-11. Ans. (a)

IES-12. A closely coiled helical spring of 20 cm mean diameter is having 25 coils of 2 cm
diameter rod. The modulus of rigidity of the material if 107 N/em2. What is the
stiffness for the spring in N/em? [TES-2004]
(a) 50 (b) 100 () 250 (d) 500

Gd* 107(N/em?)x2*(cm*)

= =100N/cm
8D°n 8x203(cm3)><25

IES-12. Ans. (b) Stiffness of sprin(k) =

IES-13. Which one of the following expresses the stress factor K used for design of

closed coiled helical spring? [IES-2008]
4C-4 4C-1 0.615 4C-4 0.615 4C -1

(a) (b) +— (c) +— (d)
4C -1 4C-14 C 4C -1 C 4C -4

Where C = spring index
IES-13. Ans. (b)

IES-14. In the calculation of induced shear stress in helical springs, the Wahl's
correction factor is used to take care of [TES-1995; 1997]
(a) Combined effect of transverse shear stress and bending stresses in the wire.
(b) Combined effect of bending stress and curvature of the wire.
(¢) Combined effect of transverse shear stress and curvature of the wire.
(d) Combined effect of torsional shear stress and transverse shear stress in the wire.
IES-14. Ans. (c¢)

IES-15. While calculating the stress induced in a closed coil helical spring, Wahl's

factor must be considered to account for [TES-2002]
(a) The curvature and stress concentration effect (b) Shock loading
(c) Poor service conditions (d) Fatigue loading

IES-15. Ans. (a)

IES-16. Cracks in helical springs used in Railway carriages usually start on the inner
side of the coil because of the fact that [TES-1994]

(a) It is subjected to the higher stress than the outer side.
(b) It is subjected to a higher cyclic loading than the outer side.
(¢) Itis more stretched than the outer side during the manufacturing process.
(d) It has alower curvature than the outer side.
IES-16. Ans. (a)

IES-17. Two helical springs of the same material and of equal circular cross-section
and length and number of turns, but having radii 20 mm and 40 mm, kept
concentrically (smaller radius spring within the larger radius spring), are
compressed between two parallel planes with a load P. The inner spring will

carry a load equal to [TES-1994]
(a) P/2 (b) 2P/3 (c) P/9 (d) 8P/9
3 3
IES-17. Ans. (d) VL:R—'3=£§) =l; W, =Vi SoW, +M= PorWw :§P
W, R 40 8 8 8 9

IES-18. A length of 10 mm diameter steel wire is coiled to a close coiled helical spring
having 8 coils of 75 mm mean diameter, and the spring has a stiffness K. If the
same length of wire is coiled to 10 coils of 60 mm mean diameter, then the
spring stiffness will be: [TES-1993]
(a) K (b) 1.25 K () 1.56 K (d)1.95K

Gd*

P Where G and d issame
n

IES-18. Ans. (¢) Stiffnessof spring (k) =
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Therefore L = ! = ! I

K, RY(n 75V (8 1.56
R,)\n,) L60)\10
IES-19. A spring with 25 active coils cannot be accommodated within a given space.
Hence 5 coils of the spring are cut. What is the stiffness of the new spring?

(a) Same as the original spring (b) 1.25 times the original spring [IES-2004]
(c) 0.8 times the original spring (d) 0.5 times the original spring
. . Gd* 1 k, n 25
IES-19. Ans. (b) Stiffness of spring (k) =—— .. ka— or2=—"1=""-125
8D°n n k, n, 20

IES-20. Wire diameter, mean coil diameter and number of turns of a closely-coiled steel
spring are d, D and N respectively and stiffness of the spring is K. A second
spring is made of same steel but with wire diameter, mean coil diameter and
number of turns 2d, 2D and 2N respectively. The stiffness of the new spring is:

[TES-1998; 2001]
(a) K (b) 2K (c) 4K (d) 8K
4

IES-20. Ans. (a) Stiffness of spring (k) = %

IES-21. When two springs of equal lengths are arranged to form cluster springs which
of the following statements are the: [TES-1992]
1. Angle of twist in both the springs will be equal
2. Deflection of both the springs will be equal
3. Load taken by each spring will be half the total load
4. Shear stress in each spring will be equal

(a) 1 and 2 only (b) 2 and 3 only (c) 3 and 4 only (d) 1, 2 and 4 only
IES-21. Ans. (a)
IES-22. Consider the following statements: [TES-2009]

When two springs of equal lengths are arranged to form a cluster spring

1. Angle of twist in both the springs will be equal

2. Deflection of both the springs will be equal

3. Load taken by each spring will be half the total load

4. Shear stress in each spring will be equal

Which of the above statements is/are correct?

(a) 1 and 2 (b) 3and 4 (c)2 only (d) 4 only
IES-22. Ans. (a) Same as [[ES-1992]
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Close-coiled helical spring with axial load
IES-23. Under axial load, each section of a close-coiled helical spring is subjected to

(a) Tensile stress and shear stress due to load [TIES-2003]

(b) Compressive stress and shear stress due to torque
(¢) Tensile stress and shear stress due to torque
(d) Torsional and direct shear stresses

IES-23. Ans. (d)

IES-24. When a weight of 100 N falls on a spring of stiffness 1 kN/m from a height of 2

m, the deflection caused in the first fall is: [TES-2000]
(a) Equal to 0.1 m (b) Between 0.1 and 0.2 m
(c) Equal to 0.2 m (d) More than 0.2 m

IES-24. Ans. (d) use mg(h + X) = %kx2

Subjected to 'Axial twist'

IES-25. A closed coil helical spring of mean coil diameter 'D' and made from a wire of
diameter 'd' is subjected to a torque '"T" about the axis of the spring. What is the
maximum stress developed in the spring wire? [IES-2008]

8T 16T 32T 64T
a)— b c d
();zd3 ()”d3 ()ﬂd3 ()”ds

IES-25. Ans. (b)

Springs in Series

IES-26. When a helical compression spring is cut into two equal halves, the stiffness of

each of the result in springs will be: [TES-2002; IAS-2002]
(a) Unaltered (b) Double (c) One-half (d) One-fourth
IES-26. Ans. (b)
Page 352 of 429
IES-27. If a compression coil spring is cut into two equal parts and the parts are then

used in parallel, the ratio of the spring rate to its initial value will be: [IES-1999]
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(a1 (b) 2 (c) 4 (d) Indeterminable for want of sufficient data
IES-27. Ans. (c) When a spring is cut into two, no. of coils gets halved.
.. Stiffness of each half gets doubled.
When these are connected in parallel, stiffness = 2k + 2k = 4k

Springs in Parallel

IES-28. The equivalent spring stiffness for the
system shown in the given figure (S is
the spring stiffness of each of the three
springs) is:

(a) S/2 (b) S/3
(c) 25/3 @S

Rigid bar

IES-28. Ans. (c) L=L+l ors, ZES
S, 2S S 3

e

IES-29. Two coiled springs, each having stiffness K, are placed in parallel. The stiffness
of the combination will be: [TES-2000]

(a) 4K (b)2K () B (d)j
IES-29. Ans. (b) W =kd =k,0 +k,0

IES-30. A mass is suspended at the bottom of two springs in series having stiffness 10
N/mm and 5 N/mm. The equivalent spring stiffness of the two springs is nearly
[TES-2000]
(a) 0.3 N/mm (b) 3.3 N/mm (c) 5 N/mm (d) 15 N/mm
1 1 1 10
IES-30. Ans. (b) S_ =—+— 0orS, =—

10 5 ¢ 3 Page 353 of 429
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IES-31. Figure given above shows a spring-

mass system where the mass m is

fixed in between two springs of

stiffness Si1 and S:. What is the S
equivalent spring stiffness? 1
(a) S1- S (b) Si+ S2
(©) (S1+ S2)/ S1 Se @ (Si- So) m
S1Se

52

[TES-2005]
IES-31. Ans. (b)

IES-32. Two identical springs
labelled as 1 and 2 are @ @
arranged in series and F -
subjected to force F as
shown in the given

figure.
Assume that each spring constant is K. The strain energy stored in spring 1 is:
[TES-2001]
F 2 F 2 F 2 F 2
(@ —— (b) — (©) — (d)
2K 4K 8K 16K

2
1 1 F
IES-32. Ans. (c) The strain energy stored per spring :E kx?/2= EX keq X (—J /2 and here total
eq
force ‘F’ is supported by both the spring 1 and 2 therefore keq = k + k =2k

o

IES-33. What is the equivalent stiffness (i.e. spring
constant) of the system shown in the given

figure? 10 Coils
(a) 24 N/mm (b) 16 N/mm K, =8N/mm
(c) 4 N/mm (d) 5.3 N/mm
K, =2 5 Coils
i [TES-1997]

IES-33. Ans. (a) Stiffness Ki of 10 coils spring = 8 N/mm
.. Stiffness Ks of 5 coils spring = 16 N/mm
Though it looks like in series but they are in parallel combination. They are not subjected
to same force. Equivalent stiffness (k) = k1 + k2 = 24 N/mm

Previous 20-Years IAS Questions

Helical spring

IAS-1. Assertion (A): Concentric cylindrical helical springs which are used to have
greater spring force in a limited sprage3pd Wéivnd in opposite directions.
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Reason (R): Winding in opposite directions prevents locking of the two coils in
case of misalignment or buckling. [TAS-1996]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Ais true but R is false
(d) Ais false but R is true

IAS-1. Ans. (a)

IAS-2. An open-coiled helical spring of mean diameter D, number of coils N and wire
diameter d is subjected to an axial force' P. The wire of the spring is subject to:

[TAS-1995]

(a) direct shear only (b) combined shear and bending only
(c) combined shear, bending and twisting (d) combined shear and twisting only

IAS-2. Ans. (d)

IAS-3. Assertion (A): Two concentric helical springs used to provide greater spring
force are wound in opposite directions. [TES-1995; IAS-2004]

Reason (R): The winding in opposite directions in the case of helical springs
prevents buckling.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true
IAS-3. Ans. (c) It is for preventing locking not for buckling.

TAS-4. Which one of the following statements is correct? [TES-1996; 2007; IAS-1997]
If a helical spring is halved in length, its spring stiffness
(a) Remains same (b) Halves (c) Doubles (d) Triples
4
TAS-4. Ans. (c) Stiffness of sprin(k) = E§3Dd3 SO koo1 andnwiil behalf
n n
IAS-5. A closed coil helical spring has 15 coils. If five coils of this spring are removed
by cutting, the stiffness of the modified spring will: [IAS-2004]
(a) Increase to 2.5 times (b) Increase to 1.5 times
(c) Reduce to 0.66 times (d) Remain unaffected
Gd* 1 K, N, 15
IAS-5. Ans. (b) K=— orKa— or 2=—L=—=15
8D°N N K, N, 10
IAS-6. A close-coiled helical spring has wire diameter 10 mm and spring index 5. If the
spring contains 10 turns, then the length of the spring wire would be: [IAS-2000]
(a) 100 mm (b) 157 mm (c) 500 mm (d) 1570 mm

IAS-6. Ans. (d) | =7Dn=7(cd)n=7zx(5x10)x10=1570mm

IAS-7. Consider the following types of stresses: [IAS-1996]
1. torsional shear 2. Transverse direct shear 3. Bending stress
The stresses, that are produced in the wire of a close-coiled helical spring
subjected to an axial load, would include

(a) 1 and 3 (b) 1 and 2 (¢c)2and 3 (d)1,2and 3
IAS-7. Ans. (b)
IAS-8. Two close-coiled springs are subjected to the same axial force. If the second

spring has four times the coil diameter, double the wire diameter and double
the number of coils of the first spring, then the ratio of deflection of the second
spring to that of the first will be: [IAS-1998]

(a) 8 ®) 2 © % d) 1/16
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D, | N,
gPDN 5, (DN _#x2_

or == =
Gd* S, ( d, ]“ 2*

IAS-8. Ans. (a) 6 =

IAS-9. A block of weight 2 N falls from a height of 1m on the top of a spring: If the
spring gets compressed by 0.1 m to bring the weight momentarily to rest, then
the spring constant would be: [IAS-2000]
(a) 50 N/m (b) 100 N/m (c) 200N/m (d) 400N/m

IAS-9. Ans. (d) Kinetic energy of block = potential energy of spring

or W><h:%k,)(2 or k:ZV\ih:%N/m=4OON/m

X

IAS-10. The springs of a chest expander are 60 cm long when unstretched. Their
stiffness is 10 N/mm. The work done in stretching them to 100 cm is: [IAS-1996]
(a) 600 Nm (b) 800 Nm (c) 1000 Nm (d) 1600 Nm

IAS-10. Ans. (b) E = +kx? = +xJ_TON__
2% 73 1
— M
1000

IAS-11. A spring of stiffness 'k' is extended from a displacement x: to a displacement x2
the work done by the spring is: [TAS-1999]

x{1-0.6}"m? = 800Nm

1 1 1 1 X +X, )
(a) Ek X; _Ek X; (b) Ek(xl -X,)’ () Ek(xl +X,)° @ k(%)

IAS-11. Ans. (a) Work done by the spring is = %k X12 —%k Xg

IAS-12. A spring of stiffness 1000 N/m is stretched initially by 10 ecm from the
undeformed position. The work required to stretch it by another 10 cm is:
[TAS-1995]
(a) 5 Nm (b) 7 Nm (c) 10 Nm (d) 15 Nm.

IAS-12. Ans. (d) E= %k(XE -x}) = %X']OOOX{O.ZOZ ~0.10°} =15Nm

Springs in Series

IAS-13. When a helical compression spring is cut into two equal halves, the stiffness of
each of the result in springs will be: [IES-2002; IAS-2002]
(a) Unaltered (b) Double (c) One-half (d) One-fourth

IAS-13. Ans. (b)

IAS-14. The length of the chest-expander spring when it is un-stretched, is 0.6 m and its
stiffness is 10 N/mm. The work done in stretching it to 1m will be: [IAS-2001]
(2) 800 J (b) 1600 J (c) 3200 J (d) 6400 J

IAS-14. Ans. (a)

10N

R
(1000]

x0.4°m* =800J

1
Work done =§k.x2 =—X

2

1 10N
1mm

j><(1—0.6)2 mzzéx
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Springs in Parallel

IAS-15. The equivalent spring stiffness for the
system shown in the given figure (S is
the spring stiffness of each of the three
springs) is:

(a) S/2 (b) S/3
(c) 25/3 @S

Rigid bar

[TES-1997; IAS-2001]

;25

IAS-15. Ans. (c) in%—l orsS, :ES
S, 2S S 3

e

W]
IAS-16. Two identical springs, each of stiffness K, are W
assembled as shown in the given figure. The i
combined stiffness of the assembly is:
(a) K2 (b) 2K
©K (d) (1/2)K
I
775%777
[IAS-1998]

IAS-16. Ans. (b) Effective stiffness = 2K. Due to applied force one spring will be under tension and
another one under compression so total resistance force will double.

Flat spiral Spring

IAS-17. Mach List-I (Type of spring) with List-II (Application) and select the correct

answer: [TAS-2000]
List-1 List-II
A. Leaf/Helical springs 1. Automobiles/Railways coachers
B. Spiral springs 2. Shearing machines
C. Belleville springs 3. Watches
Codes: A B C A B C
(a 1 2 3 (b) 1 3 2
() 3 1 2 (d) 2 3 1

IAS-17. Ans. (b) Page 357 of 429
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Semi-elliptical spring

IAS-18.

The ends of the leaves of a semi-elliptical leaf spring are made triangular in
plain in order to: [TAS 1994]
(a) Obtain variable I in each leaf

(b)  Permit each leaf to act as a overhanging beam

(c) Have variable bending moment in each leaf

(d) Make Mil constant throughout the length of the leaf.

IAS-18. Ans. (d) The ends of the leaves of a semi-elliptical leaf spring are made rectangular in plan

in order to make M/I constant throughout the length of the leaf.
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Previous Conventional Questions with Answers

Conventional Question ESE-2008

Question: A close-coiled helical spring has coil diameter D, wire diameter d and number
of turn n. The spring material has a shearing modulus G. Derive an
expression for the stiffness k of the spring.

Answer: The work done by the
axial force 'P' is
converted into strain
energy and stored in
the spring.

U=(average torque)

x(angular displacement)
:Ixe
2

From the figure we get, 6 It
GJ

Torque (T)=?

length of wire (L)=mDn

4

. T
Polar moment of Inertia(J)=
4P?D%n
Gd*
According to Castigliano's theorem, the displacement corresponding to force P is
obtained by partially differentiating strain energy with respect to that force.

Therefore U=

213 3
Therefore 6 :8_U:£ 4p D4 ni_ 8PD4n
oP 0P| Gd Gd
P Gd*
So Spring stiftness, (k)=—=
pring () s 8D°n

Conventional Question ESE-2010

Q. A stiff bar of negligible weight transfers a load P to a combination of three
helical springs arranged in parallel as shown in the above figure. The springs
are made up of the same material and out of rods of equal diameters. They are
of same free length before loading. The number of coils in those three springs
are 10, 12 and 15 respectively, while the mean coil diameters are in ratio of 1 :
1.2 : 1.4 respectively. Find the distance ‘x’ as shown in figure, such that the stiff
bar remains horizontal after the application of load P. [10 Marks]

Pag
Ans. Same free length of spring before loading
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The number of coils in the spring 1,2 and 3 is 10, 12 and 15 mean diameter of spring 1,2
and 3 in the ratio of 1: 1.2 : 1.4 Find out distance x so that rod remains horizontal
after loading.

Since the rod is rigid and remains horizontal after the load p is applied therefore the
deflection of each spring will be same

8, =08, =08;=0 (say)
Spring are made of same material and out of the rods of equal diameter

G,=G,=G,=G and d,=d,=d, =d
Load in spring 1

_ Gd*'s  Gd's  Gd's

" 64R’n, 64R’x10 640R’
Load in spring 2
_ Gd's Gd*s _ Ga% @
 64xRln, 64x(1.2x12R?  1327.10R>
Load in spring 3
. Gd*% Gd*s _ Gd%
 64R2n, 64x(1.4)°x15R?  2634.2R}
From eqr (1) & (2)

1

2

3

640
2 1327.1° "
P, =0.482P,
from eq" (1) & (3)
 — 949 _p _(.2430P,
2634.2

Taking moment about the line of action P,
P,xL+P,x2L=Px
0.4823 PL+0.2430 P, x2L =Px.
(0.4823+0.486)P,LL

X = P (4)
total load in the rod is
P=P,+P,+P,
P =P, +.4823P, +0.2430P,
P=1725 P ... (5)

Equation (4) & (5)
< 0.9683 L _ 0.9683 L
1.725 P, /P,  1.725
x=0.5613 L

=0.5613L

Conventional Question ESE-2008

Question:

Answer:

A close-coiled helical spring has coil diameter to wire diameter ratio of 6. The
spring deflects 3 ecm under an axial load of 500N and the maximum shear
stress is not to exceed 300 MPa. Find the diameter and the length of the
spring wire required. Shearing modulus of wire material = 80 GPa.
4
Stiffness,K = E = i
) 8D3n Page 360 of 429



Chapter-12

Spring S K Mondal’s
500 (80x10°)xd

or, =
0.03 8x6°xn

or,d =3.6x10"*n———(i)

For static loading correcting factor(k)

k=[1+°j] _ [1 +0'—5] —1.0833
c 6

[given c=% =06]

8PD

d3

We know that (7)=k

T

_ 8kPC

T

d2

ot

=5.252x10"°m =5.252mm

q _\/1.0833><8><500><6
7 x300x10°

So D=cd=6%5.252mm=31.513mm

From, equation (i) n=14.59 ~15

Now length of spring wire(L) =nDn =7 x31.513%x15 mm =1.485m

Conventional Question ESE-2007

Question:

Answer:

A coil spring of stiffness 'k' is cut to two halves and these two springs are
assembled in parallel to support a heavy machine. What is the combined
stiffness provided by these two springs in the modified arrangement?

When it cut to two halves stiffness of

each half will be 2k. Springs in parallel. E
Total load will be shared so

Total load = W+W W w
or 8.K,, =98.(2k)+5.(2k)
or K, =4k.
2k 2k

AR AR R R AR R EREEEA YA Y

Conventional Question ESE-2001

Question:

Answer:

A helical spring B is placed inside the coils of a second helical spring A ,
having the same number of coils and free axial length and of same material.
The two springs are compressed by an axial load of 210 N which is shared
between them. The mean coil diameters of A and B are 90 mm and 60 mm and
the wire diameters are 12 mm and 7 mm respectively. Calculate the load
shared by individual springs and the maximum stress in each spring.

Gd*
8D°N
Here load shared the springs are arranged in parallel
Equivalent stiffness (k, )=k , +k;

4 3 4 3
oo ] (2], - [12] {22] 259
dg 7

Hear —A=
K Dy 90
Let total deflection is X' m X =& 36@)@9'0@ = 210N
Equivalet stiffness K, + K

The stiffness of the spring (k) =
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Load shared by spring 'A'(F,) = K, xX = 210 __ 210 =15IN

K 1 ]
B 1+ ——
[”k ] [ *5.559

A

Load shared by spring 'A'(F;) = K; XX = (210 — 151) =59N

For static load: 7= 1+E 8P|33
nd
() ={1+ 0.5 ’8X151X0'0?O=21.362Mpa
max [90] x(0.012)
12
(7s) =1+ 0.5 8X59X0'0630=27.816 -
- [60] 1x(0.007)
7

Conventional Question AMIE-1997

Question: A close-coiled spring has mean diameter of 75 mm and spring constant of 90
kN/m. It has 8 coils. What is the suitable diameter of the spring wire if
maximum shear stress is not to exceed 250 MN/m2? Modulus of rigidity of the
spring wire material is 80 GN/m2. What is the maximum axial load the spring
can carry?

Answer: Given D=75mm; k=80kN/m; n=8
7=250MN/m? G=80GN/m?=80x10°N/m?

Diameter of the spring wire, d:

T=T><%d3 (where T =P xR)
We know, P x0.0375=(250x 106)X%d3 ———(i)
Also P=ké
or P=80x10%x¢o ___(ii)
Using the relation:
_8PD°n 8P x(0.075)’ x8 =

o

—33.75x10™ x—
Gd* 80x10° xd°* ST

Substituting for ¢ in equation (ii), we get

P=80x10°x33.75x10™" Xdi“ or d=0.0128m or 12.8mm

Maximum axial load the spring can carry P:
From equation (i), we get

P x0.0375 = (250 x10°) x %x (0.0128)’; o P=27452N=2.7452kN
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Theory at a Glance (for IES, GATE, PSU)

1. Introduction

Strut: A member of structure which carries an axial compressive load.

Column: If the strut is vertical it is known as column.

A long, slender column becomes unstable when its axial compressive load reaches a value
called the critical buckling load.

If a beam element is under a compressive load and its length is an order of magnitude larger
than either of its other dimensions such a beam is called a columns.

Due to its size its axial displacement is going to be very small compared to its lateral
deflection called buckling.

Buckling does not vary linearly with load it occurs suddenly and is therefore dangerous
Slenderness Ratio: The ratio between the length and least radius of gyration.

Elastic Buckling: Buckling with no permanent deformation.

Euler buckling is only valid for long, slender objects in the elastic region.

For short columns, a different set of equations must be used.

2. Which is the critical load?

At this value the structure is in equilibrium regardless of the magnitude of the angle
(provided it stays small)

Critical load is the only load for which the structure will be in equilibrium in the disturbed
position

At this value, restoring effect of the moment in the spring matches the buckling effect of the
axial load represents the boundary between the stable and unstable conditions.

If the axial load is less than Pe the effect of the moment in the spring dominates and the
structure returns to the vertical position after a small disturbance — stable condition.

If the axial load is larger than Pe: the effect of the axial force predominates and the structure
buckles — unstable condition.

Because of the large deflection caused by buckling, the least moment of inertia I can be
expressed as, I = Ak2

Where: A is the cross sectional area and r is the radius of gyration of the cross sectional area,

min

A

l.e. kmin =
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should be taken in order to find the critical stress.

measure of the column's flexibility.

Theories of Column
Note that the smallest radius of gyration of the column, i.e. the least moment of inertia I

3. Euler’s Critical Load for Long Column

Assumptions:

(1) The column is perfectly straight and of uniform cross-section

(i1) The material is homogenous and isotr:

(i11) The material behaves elastically

opic

S K Mondal’s

I/ k is called the slenderness ratio, it is a

(iv) The load is perfectly axial and passes through the centroid of the column section.

(v) The weight of the column is neglected.

P _7:2EI

.=
Euler’s critical load, ¢ I 2
e

Where ¢ =Equivalent length of column (15t mode of bending)

4. Remember the following table

Case Diagram

Both ends hinged/pinned

I 1
i
i
i — ‘-’r
7%
pin/pin
vz
Both ends fixed
. ]
ViziA
fixed/fixed
One end fixed & other end free
fixed/free

hinged

1‘ﬁxed

Page 365 of 429
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°El

4T°El

n°El
40*

Equivalent

length(le)

[NSHEN

2/
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7]
\T
. . .
One end fixed & other end pinned l \\‘ ot B
/hinged !
8 t| promL #
. L .
I
I
L1
A .f!
fixed/pin {fixed

5. Slenderness Ratio of Column

2
P, = il IZEI where I=A k2.
n’EA

2? k .. = least radius of gyration
( kmin J

.. Slenderness Ratio =

min

6. Rankine’s Crippling Load
Rankine theory is applied to both
e Short strut /column (valid upto SR-40)
¢ Long Column (Valid upto SR 120)

short-column line

P.rlA empirical failure zone
Johnson line
tangent point

Euler line

(Splp slenderness ratio S,

Construction of column failure lines

e Slenderness ratio

" P
- (o, = critical stress)zf

e Crippling Load , P
c A

Y
1+K'(€ej
k

where k' = Rankine constant =

o
2
n'E

£
NG

< depéinds ¥ thtderial & end conditions

S K Mondal’s
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6, =crushing stress

e For steel columns

K= ! for both ends fixed
25000

= for one end fixed & other hinged 20< E_e <100
12500 k

7. Other formulas for crippling load (P)
e Gordon’s formula,

Ac

P=——=C— b=aconstant, d = least diameter or breadth of bar

2
1+b (fe]
d
¢ Johnson Straight line formula,

P= (SCA|:1 - C[%ﬂ ¢ = a constant depending on material.

e Johnson parabolic formulae :

“f

where the value of index b' depends on the end conditions.

P=a,A

e Fiddler’s formula,

=2 (o.r0.)(Joren) ~2om. |

8. Eccentrically Loaded Columns

where, 6, =

e Secant formula

()] e

A k? 2k EA

r /[
Where 6, =maximum compressive stress (
M

P =load
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Theories of Column
A = Area of ¢/s

y.= Distance of the outermost fiber in compression from the NA

e = Eccentricity of the load

1,= Equivalent length

k = Radius of gyration :\/%

E = Modulus of elasticity of the material

M = P.eSec £ i
2k V EA

Where M = Moment introduced.

Prof. Perry’s Formula

|

(¢}

max

Oy

1128 |2 &Y
o, ) Kk

Where 6, = maximum compressive stress

P Load
Gd = —=
A c/sarea
- = 5 _ Euler's load
A C/S area

2
p, = Euler's load = nﬁl

e

e'= Versine at mid-length of column due to initial curvature
e = Eccentricity of the load

e, =e'+1.2e

y, = distance of outer most fiber in compression form the NA

k = Radius of gyration

If 6, is allowed to go up to o (permssible stress)

max

Then, 772%
o, +0,(147) \/{Gf+ce(l+n)}2
oy = 5 —~ 5 ~6,0,

Perry-Robertson Formula

¥l
=0.003| ==
7 (k]
V4

14
o, +ce{1+0.003k‘*j o +6,(1+0.003-%
Oy = - k —G6.0;

2 Page 368 0F2429
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9. ISI’s Formula for Columns and Struts

ge
e For ?=0 to 160

0/
P - fos
1+0.2sec Kie‘/fosixpc
k 4E

Where, P. = Permissible axial compressive stress

P. = A value obtained from above Secant formula

o,= Guaranteed minimum yield stress = 2600 kg/cm? for mild steel

fos = factor of safety = 1.68
I

-£ = Slenderness ratio

k
E = Modulus of elasticity = 2.045x10° kg / cm? for mild steel

I
. Forf>160
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Strength of Column

GATE-1. The rod PQ of length L and with
flexural rigidity EI is hinged at
both ends. For what minimum

force F is it expected to buckle?
7El V272l

(a) 2 (b) E
7 El 7°El

b) ———
(c) \/E (b) E

AAUONVUNNANNNNNNAN

Rl A A A
[GATE-2008]
GATE-1. Ans. (b) Axial component of the force Frq=F Sin 450

2
El
We know for both end fixed column buckling load (P) = ”Lz
2
and Fsin45°=P or F= */5:2 El

Equivalent Length

GATE-2. The ratio of Euler's buckling loads of columns with the same parameters
having (i) both ends fixed, and (ii) both ends hinged is:
[GATE-1998; 2002; TES-2001]

(a) 2 (b) 4 (c) 6 (d) 8
GATE-2. Ans. (b) Euler’s buckling loads of columns
47°El

(1) both ends fixed =

|2

7°El

|2

(2) both ends hinged =

Euler's Theory (For long column)

GATE-3. A pin-ended column of length L, modulus of elasticity E and second moment of
the cross-sectional area I is loaded centrically by a compressive load P. The

critical buckling load (P) is given by: [GATE-2006]
El 7*El 7El
P =—— b) P =2 — P =2— d
(a) cr 72'2L2 ( ) cr 3L2 (C) cr L2 ( )
2
Pcr = ”LZEI

GATE-3. Ans. (d)

GATE-4. What is the expression for the crippling load for a column of length ‘I’ with one
end fixed and other end free? [TES-2006; GATE-1994]

27°El °E ’El ’El
@P=""m Pl P ?@154:294—”,2 @ P="
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GATE-4. Ans. (b)

Previous 20-Years IES Questions

Classification of Column

IES-1.

A structural member subjected to an axial compressive force is called

[TES-2008]
(a) Beam (b) Column (c) Frame (d) Strut

IES-1. Ans. (d) A machine part subjected to an axial compressive force is called a strut. A strut may

IES-2.

be horizontal, inclined or even vertical. But a vertical strut is known as a column,
pillar or stanchion.

The term column is applied to all such members except those in which failure would be
by simple or pure compression. Columns can be categorized then as:

1. Long column with central loading

2. Intermediate-length columns with central loading
3. Columns with eccentric loading

4. Struts or short columns with eccentric loading

Which one of the following loadings is considered for design of axles?

(a) Bending moment only [TES-1995]
(b) Twisting moment only

(¢) Combined bending moment and torsion

(d) Combined action of bending moment, twisting moment and axial thrust.

IES-2. Ans. (a) Axle is a non-rotating member used for supporting rotating wheels etc. and do not

transmit any torque. Axle must resist forces applied laterally or transversely to their
axes. Such members are called beams.
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IES-3. The curve ABC is the Euler's P,
curve for stability of column. The ‘:4"'
horizontal line DEF is the
strength limit. With reference to _—N
this figure Match List-I with List- B
II and select the correct answer Bif =~~~ "~~~
using the codes given below the

]

lists:
List-1 List-IT
(Regions) (Column specification) R
A.Ri 1. Long, stable I
B. R2 2. Short
](;. gs i ll\l/lediurn o ) i/ v
. R4 . Long, unstable [IES-1997]
Codes: A B C D A B C D
(a) 2 4 3 1 (b) 2 3 1 4
c 1 2 4 3 (d) 2 1 3 4
IES-3. Ans. (b)
IES-4. Mach List-I with List-II and select the correct answer using the codes given
below the lists: [TAS-1999]
List-1 List-II
A. Polar moment of inertia of section 1. Thin cylindrical shell
B. Buckling 2. Torsion of shafts
C. Neutral axis 3. Columns
D. Hoop stress 4. Bending of beams
Codes: A B C D A B C D
(a) 3 2 1 4 (b) 2 3 4 1
) 3 2 4 1 (d) 2 3 1 4
IES-4. Ans. (b)
Strength of Column
IES-5. Slenderness ratio of a column is defined as the ratio of its length to its
(a) Least radius of gyration (b) Least lateral dimension [TES-2003]
(c) Maximum lateral dimension (d) Maximum radius of gyration
IES-5. Ans. (a)
IES-6. Assertion (A): A long column of square cross section has greater buckling

stability than a similar column of circular cross-section of same length, same
material and same area of cross-section with same end conditions.
Reason (R): A circular cross-section has a smaller second moment of area than
a square cross-section of same area. [TES-1999; IES-1996]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false but R is true

IES-6. Ans. (a)

Equivalent Length

IES-7. Four columns of same material and same length are of rectangular cross-
section of same breadth b. The depth of the cross-section and the end
conditions are, however different are given as follows: [TES-2004]

Column Depth End conditions
1 0.6b Fixed-Fixed
2 0.8b Fixed-hinged
3 1.0b Hinged-Hinged
4 2.6b Fixed-Free
Which of the above columns Euler buckling load maximum?
(a) Column 1 (b) Columnpge 372 of 42dc) Column 3 (d) Column 4

IES-7. Ans. (b)
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IES-8. Match List-I (End conditions of columns) with List-Il (Equivalent length in
terms of length of hinged-hinged column) and select the correct answer using

the codes given below the Lists: [IES-2000]
List-I List-11
A. Both ends hinged 1.L
B. One end fixed and other end free 2. L/\/E
C. One end fixed and the other pin-pointed 3. 2L
D. Both ends fixed 4.1L/2
Code: A B C D A B C D
(@ 1 3 4 2 (b) 1 3 2 4
(¢ 3 1 2 4 (d) 3 1 4 2

IES-8. Ans. (b)
IES-9. The ratio of Euler's buckling loads of columns with the same parameters
having (i) both ends fixed, and (ii) both ends hinged is:
[GATE-1998; 2002; IES-2001]

(a) 2 (b) 4 (c) 6 (d) 8
IES-9. Ans. (b) Euler’s buckling loads of columns
47°E|

(1) both ends fixed =

|2

7°El

|2

(2) both ends hinged =

Euler's Theory (For long column)
IES-10. What is the expression for the crippling load for a column of length ‘I’ with one

end fixed and other end free? [IES-2006; GATE-1994]
(@) P= Zﬂlel ®) P :% (© P= 4”;EI @ P =@

IES-10. Ans. (b)

IES-11. Euler's formula gives 5 to 10% error in crippling load as compared to
experimental results in practice because: [TES-1998]

(a) Effect of direct stress is neglected
(b) Pin joints are not free from friction
(c) The assumptions made in using the formula are not met in practice

(d) The material does not behave in an ideal elastic way in tension and compression
IES-11. Ans. (¢)

IES-12. Euler's formula can be used for obtaining crippling load for a M.S. column with
hinged ends.

Which one of the following conditions for the slenderness ratio E is to be

satisfied? [TES-2000]
I I I I
(a) 5<—<8 (b) 9<—<18 (c) 19<—<40 (d) — =80
k K k k
IES-12. Ans. (d)
IES-13. If one end of a hinged column is made fixed and the other free, how much is the
critical load compared to the original value? [IES-2008]
(a) % (b) % (c) Twice (d) Four times

IES-13. Ans. (a) Critical Load for both ends hinged = 7 2EI/ [2
And Critical Load for one end fixed, and other end free = 7 2EI/4/2

IES-14. If one end of a hinged column is made fixed and the other free, how much is the
critical load compared to the original value? [TIES-2008]
(a) % (b) % (c) Twice (d) Four times

2
IES-14. Ans. (a) Original load = ”IZE' Page 373 of 429
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When one end of hinged column is fixed and other free. New Le = 2LL
2 2
Bl _=El = 1xOriginaI value

.. New load = — =
(2L)? 42 4

IES-15. Match List-I with List-II and select the correct answer using the code given

below the Lists: [TES-1995; 2007; IAS-1997]
List-I (Long Column) List-II (Critical Load)
A. Both ends hinged 1. 7 2El/4]2
B. One end fixed, and other end free 2.4 m2El/ 2
C. Both ends fixed 3.2 m2El/ I2
D. One end fixed, and other end hinged 4. 72El/ [2
Code: A B C D A B C D
(a) 2 1 4 3 b) 4 1 2 3
() 2 3 4 1 d 4 3 2 1
IES-15. Ans. (b)
IES-16. The ratio of the compressive critical load for a long column fixed at both the
ends and a column with one end fixed and the other end free is: [IES-1997]
(a)1:2 (b) 1: 4 (c) 1: 8 (d) 1: 16

IES-16. Ans. (d) Critical Load for one end fixed, and other end free is 7 2EI/4[2 and both ends fixed
is4 m2EI/ ]2

IES-17. The buckling load will be maximum for a column, if [TES-1993]
(a) One end of the column is clamped and the other end is free
(b)  Both ends of the column are clamped
(c)  Both ends of the column are hinged
(d) One end of the column is hinged and the other end is free
IES-17. Ans. (b) Buckling load of a column will be maximum when both ends are fixed

IES-18. If diameter of a long column is reduced by 20%, the percentage of reduction in
Euler buckling load is: [TIES-2001]
(a) 4 (b) 36 (c) 49 (d) 59

2

o dt—(d*) 4
TES-18. Ans. (d) P:”L'f' Pool or Pood®or PP — d(4 ) =1—(0'—§dj ~0.59
p

IES-19. A long slender bar having uniform rectangular cross-section 'B x H' is acted
upon by an axial compressive force. The sides B and H are parallel to x- and y-
axes respectively. The ends of the bar are fixed such that they behave as pin-
jointed when the bar buckles in a plane normal to x-axis, and they behave as
built-in when the bar buckles in a plane normal to y-axis. If load capacity in

either mode of buckling is same, then the value of H/B will be: [IES-2000]
(a) 2 (b) 4 (c) 8 (d) 16
2 2 '
El 47°El 3 3
IES-19. Ans. (a) P, zﬁ—z and P, =2 — as P, =P then =4I orﬁ = 4><£ OI'E: 2
L Y L 12 12 B
IES-20. The Euler's crippling load for a 2m long slender steel rod of uniform cross-

section hinged at both the ends is 1 kN. The Euler's crippling load for 1 m long

steel rod of the same cross-section and hinged at both ends will be: [IES-1998]

(a) 0.25 kN (b) 0.5 kN (c) 2kN (d) 4 kN

7’El
>

IES-20. Ans. (d) For column with both ends hinged, P =

If 1 is halved, P will be 4 times.

IES-21. If oc and E denote the crushing stress and Young's modulus for the material of
a column, then the Euler formula can be applied for determination of cripping
load of a column made of this material only, if its slenderness ratio is:

P 374 of 429
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2| E 2| E
(c) More than 77| — (d) Less than 77| —
O-C O-C
IES-21. Ans. (a) For long column Pguler < Perushing
2 2 2 2 2
or ”2EI<O'CA orﬂ<qA or(lgj >7ZE or IE>7z1/E/aC
I, l, k o, k
IES-22. Four vertical columns of same material, height and weight have the same end
conditions. Which cross-section will carry the maximum load? [IES-2009]
(a) Solid circular section (b) Thin hollow circular section
(c) Solid square section (d) I-section

IES-22. Ans. (b)

Rankine's Hypothesis for Struts/Columns

IES-23. Rankine Gordon formula for buckling is valid for [TES-1994]
(a) Long column (b) Short column
(c) Short and long column (d) Very long column

IES-23. Ans. (¢)

L}
Prof. Perry's formula
IES-24. Match List-I with List-IT and select the correct answer using the code given

below the lists: [IES-2008]
List-I (Formula/theorem/ method) List-IT (Deals with topic)

A. Clapeyron's theorem 1. Deflection of beam

B. Maculay's method 2. Eccentrically loaded column

C. Perry's formula 3. Riveted joints

4. Continuous beam

Code: A B C A B C
@) 3 2 1 ®) 4 1 2
© 4 1 3 @ 2 4 3

IES-24. Ans. (b)

Previous 20-Years IAS Questions

Classification of Column

IAS-1. Mach List-I with List-II and select the correct answer using the codes given
below the lists: [TAS-1999]
List-1 List-II
A. Polar moment of inertia of section 1. Thin cylindrical shell
B. Buckling 2. Torsion of shafts
C. Neutral axis 3. Columns
D. Hoop stress 4. Bending of beams
Codes: A B C D A B C D
(a) 3 2 1 4 (b) 2 3 4 1
© 3 2 4 1 @ 2 3 1 4
IAS-1. Ans. (b)
Strength of Column
IAS-2. Assertion (A): A long column of square cross-section has greater buckling
stability than that of a column of circular cross-section of same length, same
material, same end conditions and same area of cross-section. [IAS-1998]

Reason (R): The second moment of area of a column of circular cross-section is
Page 375 of 429 . .
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(a) Both A and R are individually true and R is the correct explanation of A
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(b) Both A and R are individually true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false but R is true

IAS-2. Ans. (a)
IAS-3. Which one of the following pairs is not correctly matched? [TAS-2003]
(a) Slenderness ratio :  The ratio of length of the column to the least radius of gyration
(b) Buckling factor : The ratio of maximum load to the permissible axial load on the
column
(c¢) Short column : A column for which slenderness ratio < 32
(d) Strut : A member of a structure in any position and carrying an axial

compressive load
IAS-3. Ans. (b) Buckling factor: The ratio of equivalent length of the column to the least radius of
gyration.

Equivalent Length

IAS-4. A column of length 'T' is fixed at its both ends. The equivalent length of the

column is: [TAS-1995]
(a)21 () 0.51 (21 @

IAS-4. Ans. (b)

IAS-5. Which one of the following statements is correct? [TAS-2000]

(a)  Euler's formula holds good only for short columns
(b) A short column is one which has the ratio of its length to least radius of gyration
greater than 100
(¢) A column with both ends fixed has minimum equivalent or effective length
(d) The equivalent length of a column with one end fixed and other end hinged is half
of its actual length
IAS-5. Ans. (c) A column with both ends fixed has minimum equivalent effective length (1/2)

Euler's Theory (For long column)
47°El

"
1>

IAS-6. For which one of the following columns, Euler buckling load =

(@) Column with both hinged ends [TAS-1999; 2004]
(b) Column with one end fixed and other end free
(¢) Column with both ends fixed
(d)  Column with one end fixed and other hinged
IAS-6. Ans. (c¢)
IAS-7. Assertion (A): Buckling of long columns causes plastic deformation. [IAS-2001]
Reason (R): In a buckled column, the stresses do not exceed the yield stress.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false but R is true
IAS-7. Ans. (d) And Critical Load for one end fixed, and other end free = 7 2EI1/4]2

IAS-8. Match List-I with List-II and select the correct answer using the code given

below the Lists: [IES-1995; 2007; IAS-1997]
List-I (Long Column) List-II (Critical Load)
A. Both ends hinged Page 376 of a0l 7T 2EL/AL

B. One end fixed, and other end free 2.4 w2El/ ]2
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C. Both ends fixed 3.2 7 2El/ [2
D. One end fixed, and other end hinged 4. r2El/ 12
Code: A B C D A B
(a) 2 1 4 3 (b) 4 1
© 2 3 4 1 d 4 3
IAS-8. Ans. (b)
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Previous Conventional Questions with Answers

Conventional Question ESE-2001, ESE 2000
Question: Differentiate between strut and column. What is the general expression used
for determining of their critical load?

Answer: Strut: A member of structure which carries an axial compressive load.
Column: If the strut is vertical it is known as column.
) _ Compressive force
For strut failure due to compression or o, =
Area
If o, >0, it fails.
2
n El
Euler's formula for column ( P ) = 7
e

Conventional Question ESE-2009
Q. Two long columns are made of identical lengths ‘I’ and flexural rigidities ‘ET’.
Column 1 is hinged at both ends whereas for column 2 one end is fixed and the
other end is free.
(i) Write the expression for Euler’s buckling load for column 1.
(ii) What is the ratio of Euler’s buckling load of column 1 to that column 2? [ 2 Marks]

Ans. (i) 2 2
n°El n“El, .
Pl =7; P2 = 4L2 (I'lght)
For columnl,bothendhinged|l, =L
P
(i) —L1-4
P,

Conventional Question ESE-2010

Q. The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is
subjected to a compressive force of 10 kN due to internal pressure. The piston end
of the rod is guided along the cylinder and the other end of the rod is hinged at the
cross-head. The modulus of elasticity for piston rod material is 200 GPa. Estimate
the factor of safety taken for the piston rod design. [2 Marks]

Pﬁ wZOmml&P

P
P PL 4 ’El

o=—;8=—; ¢ =——; P, == (considering one end of the column is fixed and
A'CTAE T 2 7 ( &

other end is hinged)

Pe = Euler Crippling load

Compressive load, P, =0, x Area =10 kN

2n2 x (200 x 109) x (‘rc x 0.020* /64)

Ans.

e

Euler’s load, P, = 5 =63.278 kN
0.7)
FS= Euler's load
" Compressiveload
FS = 63'278:6.3
10
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Conventional Question ESE-1999
Question: State the limitation of Euler's formula for calculating critical load on
columns
Answer: Assumptions:
(1) The column is perfectly straight and of uniform cross-section
(i1) The material is homogenous and isotropic
(111) The material behaves elastically
(iv) The load is perfectly axial and passes through the centroid of the column section.
(v) The weight of the column is neglected.

Conventional Question ESE-2007
Question: What is the value of Euler's buckling load for an axially loaded pin-ended
(hinged at both ends) strut of length 'lI' and flexural rigidity 'EI'? What would
be order of Euler's buckling load carrying capacity of a similar strut but
fixed at both ends in terms of the load carrying capacity of the earlier one?
Answer: From Euler's buckling load formula,
y n’El
Critical load (P, ) = ——
e

Equivalent length (¢, )= ¢ for both end hinged = % for both end fixed.

2
So for both end hinged (P, )., = “TE'
n’El  4n’El

and for both fixed (P,),., =

I

2

Conventional Question ESE-1996

Question: Euler's critical load for a column with both ends hinged is found as 40 kN.

What would be the change in the critical load if both ends are fixed?

Answer: We know that Euler's critical laod,

n’El
2
e

¢, =equivalent length]

For both end hinged (£ o) = ¢

And For both end fixed (£¢) = £/2

2
(PEuIer )b.e.h. = nTIEI=40 kN(leen)

Pruer= [Where E = modulus of elasticity, I = least moment of inertia

2 2
:(;r/g')z - 4x"£'25' — 440 =160kN

and (PEuIer )b.e.F.

Conventional Question ESE-1999

Question: A hollow cast iron column of 300 mm external diameter and 220 mm internal
diameter is used as a column 4 m long with both ends hinged. Determine the
safe compressive load the column can carry without buckling using Euler's
formula and Rankine's formula
E =0.7x105 N/mm?, FOS = 4, Rankine constant (a) = 1/1600

Crushing Stress (0,) =567 N/mm?

Answer: Given outer diameter of column (D) = 300 mm = 0.3 m.
Inner diameter of the column (d) = 220 mm = 0.22 m.
Length of the column (£) =4 m

End conditions is both ends hinged. Therefore equivalent length (£ )={¢=4m.
Yield crushing stress (0,) = 567 MPa = 567x106 N/m?
Rankine constant (a) = 1/ 1600 aRag&3790#2805 N/mm?2 = 70 x 10 N/m?
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Moment of Inertia (1) = &(D“ —d*) 0.3* —0.22%|=2.826 x10*m"*

T

64

=0.093m

T 4 4
54D 0 )_\/D2+d2 _\/0.32+0.222
4

Slenderness ratio(k)= IK =

Area(A) = %(DZ —d?)= %(0.32 ~0.22?)=0.03267 m?

(i) Euler's buckling load, P:

uler

Bl n*x(70x10°)x(2.826x107*)

I:)Euler - £2e - 42 - 122MN
.-.Safe load = Pever _ 122 _ 3.05MN
fos 4
(if)Rankine's buckling load, P, e
567x10°%) % 0.03267
Rankine — GC.A 7 = ( 1 > 4 > = 8.59 MN
1+a.|—=2 oo X
A 1600 X[0.093]
.-.Safe load = France _ 859 _ 2.148 MPa
fos 4

Conventional Question ESE-2008

Question:

Answer:

A both ends hinged cast iron hollow cylindrical column 3 m in length has a
critical buckling load of P kN. When the column is fixed at both the ends, its
critical buckling load raise by 300 kN more. If ratio of external diameter to
internal diameter is 1.25 and E = 100 GPa determine the external diameter of
column.

B 7*El
c 12
For bothe end hinged column
P=$— ——()
For both end fixed column
P+300= mEl _ 47’El i

ba) -

Dividing (ii) by (i) we get

P+300 _ 4 or P=100kN

Moment of inertia of a hollow cylinder c¢/s is

T a  aa  PL
| = (D*—d*) =
64( ) m°E
100x10°%)32
orD“—d“:%< ) =1.8577x10°°

7 w2 x100x10°
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given 9:1.25 ord - D
d 1.25-5
1 4
or D*1—|——| |=1.8577x10°°
1.25

or D=0.0749 m =74.9 mm

Conventional Question AMIE-1996

Question:

Answer:

A piston rod of steam engine 80 cm long in subjected to a maximum load of 60
kN. Determine the diameter of the rod using Rankine's formula with
permissible compressive stress of 100 N/mm?2. Take constant in Rankine's

formula as

1
0 for hinged ends. The rod may be assumed partially fixed

with length coefficient of 0-6.
Given: | =80 cm =800mm ;P =60kN=60x10°N, o, =100N/ mm?;

a :L for hinged ends; length coefficient =0.6
7500

To find diameter of the rod, d:
Use Rankine’s formula

o A

| 2
1+a(ej
k

Here |, =0.61=0.6 x800 =480 mm [ length coefficient=0.6]

1oox[Zd2j
60x10° =

, 1 [480 2
7500|d/ 4

Solving the above equation we get the value of ‘d’

Note: Unit of d comes out from the equation will be mm as we put the equivalent
length in mm.

or d=33.23mm

Conventional Question ESE-2005

Question:

Answer:

A hollow cylinder CI column, 3 m long its internal and external diameters as

80 mm and 100 mm respectively. Calculate the safe load using Rankine
formula: if

(i) Both ends are hinged and
(ii) Both ends are fixed.

Take crushing strength of material as 600 N /mm’, Rankine constant 1/1600
and factor of safety = 3.

Moment of Inertia (I)=&(0.14 —0.08*)m* =2.898 x10 °m*
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Area(A) = %(0.12 —0.08) =2.8274x10 °m’

—6
Radius of gyration (k) =\/I :\/ 2.898 <10 — =0.032m
A 2.8274x10

PRankine=L2; [¢.= equivalent length]

1+al-¢&

(600 1 06) X (2.8274 ><10*3)

(i) = 5 ; [€.=1=3 m for both end hinged]
1-1-[ 1 ><[ 3
1600) (0.032
=2.61026kN
Safe load (P)= Pranine _ 26126 _ 87.09kN
FOS 3

(if) For both end fixed, ¢, = A =1.5m
(600x10°)x(2.8274x10°°)

PRankine = 1 ) 1 5 2 - 7148 kN
1600 10.032
Safe load (P)= Pranne _ 1148 _ 535 7N
FOS 3

Conventional Question AMIE-1997
Question: A slender column is built-in at one end and an eccentric load is applied at the
free end. Working from the first principles find the expression for the

maximum length of column such that the deflection of the free end does not
exceed the eccentricity of loading.

Answer: Above figure shows a slender column of length T. The column is built in at one end B
and eccentric load P is applied at the free end A.

Let y be the deflection at any section XX distant x from the fixed end B. Let ¢ be the
deflection at A.

The bending moment at the section XX is given by
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2
E|27y P(s+e-y) ————(i)
2 2
Elj—y+Py P(6+e) or j_y gy—EPI(§+e)

The solution to the above differential equation is

y=C, cos{x\/g}rc2 sin{x\/g}r(&Jre) ——— (i)

Where C,and C, are the constants.

At the endB,x=0andy=0

. 0=C, cos 0+C, sin0+(5+e)
or C,=—(5+e)

Differentiating equation (ii) we get
dy =-C ‘/P sin x‘/E +C, ,/E cos x,/E
dx El El El El
Again,at the fixed end B,

When x =0,— dy

5+e,/ x0+C, ‘/ cosO
or

At the free end A,x =0y=0
Substituting for x and y in equation(ii), we have

5:_(5+e)co{z\/g}(a+e)
cos{e\/g}:;e —)

It is mentioned in the problem that the deflection of the free end does not exceed the
eccentricity. It means that 0 =e
Substituting this value in equation (iii), we have

P e 1
cos| l,|— | = e
El| 0+e 2

Z\/Ezcos1 .z
El 2 3

7 |El

3VP

Conventional Question ESE-2005

Question:

A long strut AB of length '/' is of uniform section throughout. A thrust P is
applied at the ends eccentrically on the same side of the centre line with
eccentricity at the end B twice than that at the end A. Show that the
maximum bending moment occurs at a distance x from the end A,

Where, tan(x)= ~— 20 and k= /%

sink?
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Answer: Let at a distance 'x' from end A deflection of the
beam isy 1 n A
d’y — X
- El =—P.
dx? y
d’y P
or +—y=0
dx? El y

dly ., /P :
or —= +k°y=0 'k = ,[—given
dx? Ty [ El g

C.F of this differential equation

y = A cos kx + B sin kx, Where A & B constant.
Itisclearatx=0,y=¢e

Andatx= /7, y=2e

2e —ecosk/

2e = Acosk/+Bsink/? or B= -
sink/?

2e —ecosk/
sink/{
Where bending moment is maximum,

the deflection will be maximum so g—y =0

X

..y =ecoskx + sinkx

: d—>/:—eksinkx+k.

e

2e —ecosk?
sink?

oskx =0

2 —cosk/?
sink/¢

or tankx =

Conventional Question ESE-1996

Question: The link of a mechanism is subjected to axial compressive force. It has solid
circular cross-section with diameter 9 mm and length 200 mm. The two ends
of the link are hinged. It is made of steel having yield strength = 400 N/mm?
and elastic modulus = 200 kN/mm2. Calculate the critical load that the link
can carry. Use Johnon's equation.

Answer: According to Johnson's equation

- [ﬁz

P =0, A
y 4nm’E | k

cr

2
Hear A=area of cross section= % = 63.62mm?

least radius of gyration (k) =\/£ = =—=2.55mm
For both end hinged n=1
2
-.P, =400x63.62{1— 5 400 3 [200] =15.262kN
4 x1x 7" x(200x10°)x(2.25

Conventional Question GATE-1995
Question: Find the shortest length of a hinggd steghgolumn having a rectangular cross-
section 600 mm x 100 mm, for which the elastic Euler formula applies. Take
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yield strength and modulus of elasticity value for steel as 250 MPa and 200
GPa respectively.

Answer: Given: Cross-section, (=b x d) = 600 mm x 100 mm = 0.6 m x 0.1 m = 0.06 m2;
Yield strength = %: 250MPa = 250MN / m?;E = 200 GPa =200 x10"°N / m?

Length of the column,L:

3 3
Leastareamomentofinertia, | = bd = 0.6x0.1 =5%x10"°m*
12 12
-5
Also, kol 25X10° g aaa 104 m?
A 0.6x0.1
[ 1=AK? (where A = area of cross-section, k =radius of gyration)]
From Euler's formula for column, we have
2 2
Crushing load, P, = WL—EI = WL—zEI
For bothendhinged type of column,L =L
2 2
or P, = l IIE_'ZAk
2
or Yield stress [&] —Z EI
A L
2 2
or 12=" Ek
(PCr /A)

Substituting the value,we get
_ 7? x200x10° x0.0008333

L2
250 x10°

=6.58

L=2.565m

Conventional Question GATE-1993
Question: Determine the temperature rise necessary to induce buckling in a Im long
circular rod of diameter 40 mm shown in the Figure below. Assume the rod to

be pinned at its ends and the coefficient of thermal expansion as20x107°®/°C
. Assume uniform heating of the bar.

40mm dia. rod

" im »
Answer: Letusassume the buckling load be'P".
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0L =L.ox.At, Where At is the temperature rise.

or A=t
L. x
AISO, 6'_ = & or P — 6LAE
AE L
m2El o
Po =2 — — —(where L,=equivalentlength)
2
or WLZEI = 6"'6 £ |aL,=L Forbothendhinged|
2
or sL="1
LA
At oL 2 |

"Lx LALx LA«
Substituting the values,we get
7% x - x(0.040)"
Temperature rise At = 64 =49.35°C
(1)° x % % (0.040)" x20%10°°

So the rod will buckle when the temperature rises more than 49.35°C.
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1. Resilience (U) P

Theory at a Glance (for IES, GATE, PSU)

Resilience is an ability of a material to absorb energy when  p,

elastically deformed and to return it when unloaded. Arsa=112 Pion

The strain energy stored in a specimen when stained within

the elastic limit is known as resilience. o

U= xVolume| or U=E E><Vo|ume
2E 2

2 2
9

2. Proof Resilience

Maximum strain energy stored at elastic limit. i.e. the strain energy stored in the body upto
elastic limit.
This is the property of the material that enables it to resist shock and impact by storing

energy. The measure of proof resilience is the strain energy absorbed per unit volume.

3. Modulus of Resilience (u)

The proof resilience per unit volume is known as modulus of resilience. If G is the stress due to

gradually applied load, then

c*° e’ E
u=——| or |u= ——

2 2

4. Application

> p23 L p2 b l
P°L 4 4
U :2AE= . + d2 L4 d L
2Z(2O|)2E 2.“7E

Le

Strain energy becomes smaller & smaller as the cross sectional area of bar

is increased over more & more of its lengthi.e. AT, U

5. Toughness

This is the property which enables a material to be twisted, bent or stretched under impact

load or high stress before rupture. It 11387 B @fieldered to be the ability of the material to
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absorb energy in the plastic zone. The measure of toughness is the amount of energy

absorbed after being stressed upto the point of fracture.
e Toughness is an ability to absorb energy in the plastic range.
e The ability to withstand occasional stresses above the yield stress without fracture.
e Toughness = strength + ductility
e The materials with higher modulus of toughness are used to make components and

structures that will be exposed to sudden and impact loads.

Modulus of Toughness a

e The ability of unit volume of material
Imelastic

to absorb energy in the plastic range.

e The amount of work per unit volume —

that the material can withstand

without failure.

oY

e The area under the entire stress strain
diagram is called modulus of toughness,
which is a measure of energy that can Ur= Xy 3;
be absorbed by the unit volume of
material due to impact loading before it

fractures.

6. Strain energy in shear and torsion

e Strain energy per unit volume, (u,)

2

2
uS :T_ 01', uS = G}/
2G 2

e Total Strain Energy (U) for a Shaft in Torsion

1
U ==T
=514

2 2 d 0
.'.Uszl Lo LG9 !
2\ GJ 2

2
or |U —T“‘;“—ZELJ d

TG r?

e Cases

2
oSolid shaft, U, = mx x 7p
4G

2 xz(D'-d*)L 2 (D*+d?)
eHollowshaft, U, =% x > =% —xVolume
4G D 4G D
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2

«Thin walled tube, U, =——xsLt
4G

where s = Length of mean centre line

: . GJ * o GI'F(PR .
e Conical spring, U, =— (—j — ( ) .Rda (R =Radius)
> 2I dx 2 J;
P2 27n
= J. R’da (R varies with oc)
2GJ

e Cantilever beam with load 'p' at end, U, = 3 (lz)hl(;}

2p3
e Helical spring , U, = nPG? n (- L=27Rn)

7. Strain energy in bending.

e Strain energy stored in beam.

L 2
u, = *—.d x
° £2E|
L 2 2
or sz—lj -,-d{:_M_
2 3 dx El
e Cases
P2L3
o Cantilever beam with a endload P, U, = ¢El

P2 L3
o Simply supported with a load P at centre, U, = 9GE

e Important Note
0 For pure bending
M is constant along the length ‘I’

oML
El
2 2
e U= |\2/IEL if Misknown = El6 if curvature @/ L isknown

o0 For non-uniform bending

e Strain energy in shear is neglected

e Strain energy in bending is only considered.

8. Castiglione’s theorem
oU

oP,

n

=5 Page 389 of 429
~ %n
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N _ Ly (M)
op El op

e Note:

0 Strain energy, stored due to direct stress in 3 coordinates

U :é[Z(GX)Z —2y26xcy]

o Ifo,=0,=0,in case of equal stress in 3 direction then

30?2 o’ ,
=— _[-2ul]=—  (volume strain ener
2E ! H] 2k ( %)

Page 390 of 429
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Strain Energy or Resilience

GATE-1. The strain energy stored in the beam with flexural rigidity EI and loaded as
shown in the figure is: [GATE-2008]

P P
- Lat— ZL‘i— L

P2 2pP2?° 4p?3 8p2®
(b) () (d)
3El 3EI 3E 3EI

M dx “M2dx  °p Mzdx 5 M2dx
GATE-1. A + +
us. <) f o B R

L 3L

= 2[ :X +if M;jx By symmetryf M dx f M dx

(a)

_2L (Px)?dx °F(PL)?dx  4P2°
B [ »[ ~ 3E

3
GATE-2.

is the deflection under the load P of a cantilever beam [length L, modulus

of elasticity, E, moment of inertia-I]. The strain energy due to bending is:
[GATE-1993]

2 L3 2 L3 PZ L3 P2 L3
(a ) (b ) (c) (d)
3El 6El 4ElI 48El
GATE-2. Ans. (b) We may do it taking average
. . P PC P
Strain energy = Average force x displacement = | — [X =
2 ) 3El 6El

Alternative method: In a funny way you may use Castiglione’s theorem, 6 = 8_P Then

3 3

ZLFJ) :F;IE_I U= f oU = f iap Partially integrating with respect to P we get
P 23

6El
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GATE-3. The stress-strain behaviour of a i 4
material is shown in figure. Its igg
resilience and toughness, in Nm/m3,

are respectively § 90
(a) 28 X 10%, 76 x 104 2
(b) 28 x 104, 48 x 104 %

(c) 14 x 104, 90 x 104 30

(d) 76 x 104

0.004 0.008 0.012
Strain (mm/mm)
[GATE-2000]
GATE-3. Ans. (c) Resilience = area under this curve up to 0.004 strain

- %x0.004><70><106 —14%10* Nm/m®

Toughness = area under this curve up to 0.012 strain

=14x10* +70x10° ><(0.012—0.004)+%x(0.012—0.004)x(’120—70)><1O6 Nm/m3
=90x10* Nm/m?
GATE-4. A square bar of side 4 cm and length 100 cm is subjected to an axial load P. The

same bar is then used as a cantilever beam and subjected to all end load P. The
ratio of the strain energies, stored in the bar in the second case to that stored

in the first case, is: [GATE-1998]
(a) 16 (b) 400 (c) 1000 (d) 2500
W 2
— | AL 5 3
A WAL
GATE-4. Ans.(d) U, = =
2E 2AE
213 213 213
6E| —a* a
12
2 2
or$:%:4x(@j = 2500 .
U a 4
Toughness
GATE-5. The total area under the stress-strain curve of a mild steel specimen tested up
to failure under tension is a measure of [GATE-2002]
(a) Ductility (b) Ultimate strength (c) Stiffness (d) Toughness

GATE-5. Ans. (d)

Previous 20-Years IES Questions

Strain Energy or Resilience

IES-1. What is the strain energy stored in a body of volume V with stress o due to
gradually applied load? [TES-2006]
oE oFE? oV’ o’V
(@) — (b) (© (d)
V V E 2E

Where, E = Modulus of elasticity

2

IES-1. Ans. (d) Strain Energy =%.% x V

IES-2. A bar having length L. and uniform cross-section with area A is subjected to
both tensile force P and torque pEgelofzrigothe shear modulus and E is the
Young's modulus, the internal strain energy stored in the bar is: [IES-2003]
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T’L P°L T’L P°L T’L P°L T’L P°L
(a) + (b) + (c) + (d) +
2GJ AE GJ 2AE 2GJ 2AE GJ AE
IES-2. Ans. (¢) Internal strain energy = 1P5+1T6’ = lP&JrlT Tt
2 2 2 AE 2 GJ
IES-3. Strain energy stored in a body of volume V subjected to uniform stress s is:
[TES-2002]
(@sE/V (b) sE/'V (c) sVZ/E (d) s2V/2E

IES-3. Ans. (d)

IES-4. A bar of length L and of uniform cross-sectional area A and second moment of
area ‘I’ is subjected to a pull P. If Young's modulus of elasticity of the bar
material is E, the expression for strain energy stored in the bar will be:

[TES-1999]
P’L PL’ PL’ P’L
(a) (b)— (©— (d)
2AE 2E1 AE AE
. 1 . 1 P P L PL?
IES-4. Ans. (a) Strain energy = — X stress X strain X volume=—x| — [x| —.— ><(AL) =
2 2 \A A E 2AE

IES-5. Which one of the following gives the correct expression for strain energy
stored in a beam of length L. and of uniform cross-section having moment of
inertia ‘I’ and subjected to constant bending moment M? [IES-1997]

ML ML M*2L MZ2L
a)— b)— c d
()El ()ZEl () El ()2E|

IES-5. Ans. (d)

IES-6. A steel specimen 150 MM’ in cross-section stretches by 0:05 mm over a 50 mm
gauge length under an axial load of 30 kN. What is the strain energy stored in
the specimen? (Take E =200 GPa) [TES-2009]
(a) 0.75 N-m (b) 1.00 N-m (c) 1.50 N-m (d) 3.00 N-m

IES-6. Ans. (a) Strain Energy stored in the specimen

2 30000)° x50 x 10
:1P8:1P(&j: P2L _ _ (30000) S __0.75N-m
2 2 \AE 2AE  2x150x10° x200x10
IES-7. What is the expression for the strain energy due to bending of a cantilever
beam (length L. modulus of elasticity E and moment of inertia I)? [TES-2009]
PZ L3 P2 L3 PZ L3 P2 L3
(@) (b) (c) (d)
3El 6El 4El 48El
L 2 2 73\ 23
IES-7. Ans. (b) Strain Energy Stored = IM = P— X = PL
o Z2E 2EI\ 3 X 6El
IES-8. The property by which an amount of energy is absorbed by a material without
plastic deformation, is called: [IES-2000]
(a) Toughness (b) Impact strength (c¢) Ductility (d) Resilience

IES-8. Ans. (d)

IES-9. 30 C 8 steel has its yield strength of 400 N/mm? and modulus of elasticity of 2 x
10> MPa. Assuming the material to obey Hooke's law up to yielding, what is its

proof resilience? [TES-2006]
(a) 0-8 N/mm?2 (b) 0.4 N/mm? (c) 06 N/mm?2 (d) 07 N/mm?2
2 400)°
IES-9. Ans. (b) Proof resilience(Rp) I X ( ) =0.4N/mm?

2 E Pagd 5650 420
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Toughness
IES-10. Toughness for mild steel under uni-axial tensile loading is given by the shaded
portion of the stress-strain diagram as shown in [TES-2003]
(@) (b)
Ty —
o X -
—>E —>c
o %5 é;.\
I = T / - Fracture
—E T :":

-—-——+ E
IES-10. Ans (d) Toughness of material is the total area under stress-strain curve.

Previous 20-Years IAS Questions

Strain Energy or Resilience

IAS-1. Total strain energy stored in a simply supported beam of span, 'L' and flexural
rigidity 'EI 'subjected to a concentrated load 'W' at the centre is equal to:
[TAS-1995]
w2 w2 w2 w2
(a) (b) (c) (d)
40El 60EI 96EI 240El
L p g2 L/2 g g2 L/2 2 213
M M 1 w WL
IAS-1. Ans. (¢) Strain energy = J'ﬂ =2x J. ﬂ =—x f (—Xj dx =
o 2El 2El EI 2 96El
. C e, ou ou
Alternative method: In a funny way you may use Castiglione’s theorem, 6 = 8_P = aW

3
We know that 6 = WL
4 E

for simply supported beam in concentrated load at mid span.

U _ U w®
Then 6= r U= | oU= 3W artially integrating with
P oW 48EI J f partialy mfegrating
w2
respect to W we get U=
96El
IAS-2. If the cross-section of a member is subjected to a uniform shear stress of
intensity 'q' then the strain energy stored per unit volume is equal to (G =
modulus of rigidity). [TAS-1994]
(a) 292G (b) 2G / g2 (c) q2/2G (d) G/2 g2
TIAS-2. Ans. (c)
IAS-3. The strain energy stored in the beam with flexural rigidity EI and loaded as
shown in the figure is: [GATE-2008]
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P P

L 2L L
|
A

P2 2pP?° 4P?° 8pP?L°
(b) (© (d)
3El 3El 3El 3El

(a)

L 4L

TAS-3. Ans. (c) f M dX fM:X JjMzdx +f MZdx

5 | El 5. El
2 3L 2 2 2
M“dx M<dx M“dx M“dx
=2 + By symmet
T
2] Px)2dx T(PL)de _4p
5 | 3El
IAS-4. Which one of the following statements is correct? [IAS-2004]
The work done in stretching an elastic string varies
(a) As the square of the extension (b) As the square root of the extension
(c) Linearly with the extension (d) As the cube root of the extension
2
1 1] (ol
IAS-4. Ans. (a) — = — €2 E = ( 2) E
2E 2 2| L
Toughness
IAS-5. Match List-I with List-II and select the correct answer using the codes given
below the lists: [TAS-1996]
List-I (Mechanical properties) List-IT (Meaning of properties)
A. Ductility 1. Resistance to indentation
B. Hardness 2. Ability to absorb energy during plastic
C. Malleability deformation
D. Toughness 3. Percentage of elongation
4. Ability to be rolled into flat product
Codes: A B C D A B C D
(a) 1 4 3 2 ® 3 2 4 1
(© 2 3 4 1 (d) 3 1 4 2
IAS-5. Ans. (d)

IAS-6. Match List-I (Material properties) with List-I1 (Technical
definition/requirement) and select the correct answer using the codes below

the lists: [TAS-1999]
List-I List-II
A. Hardness 1. Percentage of elongation
B. Toughness 2. Resistance to indentation
C. Malleability 3. Ability to absorb energy during plastic deformation
D. Ductility 4. Ability to be rolled into plates
Codes: A B C D A B C D
(@) 3 2 1 4 b 2 3 4 1
© 2 4 3 1 @ 1 3 4 2
IAS-6. Ans. (b)

IAS-7. A truck weighing 150 kN and travelling at 2m/sec impacts which a buffer
spring which compresses 1.25¢cm per 10 kN. The maximum compression of the
spring is: Page 395 of 429 [TAS-1995]
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(a) 20.00 cm N
(b) 22.85 cm
() 27.66 cm 150N Ty

(d) 30.00 cm OO

IAS-7. Ans. (c¢) Kinetic energy of the truck = strain energy of the spring

3
- [5)
mv: _ 16 500 —0.2766m =27.66cm
X
[ 0.0125 }

1mv2 =1kx2 orx =
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Previous Conventional Questions with Answers

Conventional Question IES 2009

Q.

Ans.

A close coiled helical spring made of wire diameter d has mean coil radius R,
number of turns n and modulus of rigidity G. The spring is subjected to an
axial compression W.

(1) Write the expression for the stiffness of the spring.

(2) What is the magnitude of the maximum shear stress induced in the spring

wire neglecting the curvature effect? [2 Marks]

4
(1) Spring stiffness, K = E _Gd

X  8nD3
SWD
nd?

(2) Maximum shear stress, T =

Conventional Question IES 2010

Q.

Ans.

A semicircular steel ring of mean radius 300 mm is suspended vertically with
the top end fixed as shown in the above figure and carries a vertical load of 200
N at the lowest point.

Calculate the vertical deflection of the lower end if the ring is of rectangular
cross- section 20 mm thick and 30 mm wide.

Value of Elastic modulus is2x10° N/mm?.
Influence of circumferential and shearing forces may be neglected.
[10 Marks]

Load applied, F =200 N
Mean Radius, R = 300 mm

Elastic modules, E = 2x10° N/mm?
I = Inertia of moment of cross — section

3
I= ﬂ b =20 mm
12
d =30 mm
3
20x(30
= % = 45,000 mm*

= Influence of circumferential and shearing force are neglected strain energy at the section.
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T A2
u:J’M @5210
0 AN 4
M=FxRsinb
ﬂ=Rsin6
oF
T 2 . 9 2
Sza_uz FRsmede - FR <
oF El 2EI

0
nFR? _ 71x200x(300)"
2EI 2% 2x10° x 45000
S =3.14x107° mm.

o=

Conventional Question GATE-1996
Question: A simply supported beam is subjected to a single force P at a distance b from
one of the supports. Obtain the expression for the deflection under the load

using Castigliano's theorem. How do you calculate deflection at the mid-point
of the beam?

Answer: Let load P acts at a distance b from the support B, and L be the total length of the

beam.
Reaction at A, R, = PTb and
Reaction at A, Ry :%
P
L a bldl b »
A
B
L C
L
Pb Pa
3 LaC S

L
Strain energy stored by beam AB,
U = Strain energy stored by AC (U ac) + strain energy stored by BC (U Bc)

_Ia(@ sz dx b(@ jz dx _P%a® P%d’
ol L°

—+ X = +
2EI o\ L 2EI 6EIL’ 6EIL
P2b2a> P22q: P? (L—b)2 b?
~emir ) EIL T eEIL [+(a+b)=D)]
2P(L-b)'b* P(L-b) b*
Deflection under the load P, 5=y = U _ ( ) = ( )
oP 6EIL 3EIL

Deflection at the mid-span of the beam can be found by Macaulay's method.
By Macaulay's method, deflection at any section is given by
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3 P(x-a)’
By =22 PO —bz)x—M
6L 6L 6
Where y is deflection at any distance x from the support.
At X = %, i,e. at mid-span,
L 3
P|l—-a
Pbx(L/2) ( j
Ely :M_&([} —b2)x£—2—
6L 6L 2 6
2 Pb(LP-b° ~2a)’
or. Ely - P’ ( )_P(L 2a)
48 12 48
_ P 2 2 72\ _ 3
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15.| Theories of Failure

Theory at a Glance (for IES, GATE, PSU)

1. Introduction

e Failure: Every material has certain strength, expressed in terms of stress or strain, beyond

which it fractures or fails to carry the load.

e Failure Criterion: A criterion used to hypothesize the failure.

e Failure Theory: A Theory behind a failure criterion.

Why Need Failure Theories?

e To design structural components and calculate margin of safety.

e To guide in materials development.

e To determine weak and strong directions.

Failure Mode

e Yielding: a process of global permanent plastic deformation. Change in the geometry of the

object.

e Low stiffness: excessive elastic deflection.

e Fracture: a process in which cracks grow to the extent that the component breaks apart.

e Buckling: the loss of stable equilibrium. Compressive loading can lead to bucking in

columns.

e Creep: a high-temperature effect. Load carrying capacity drops.

Failure Modes:

Excessive elastic Yielding
deformation

Fracture

1. Stretch, twist, or |e Plastic deformation at room

bending temperature

2. Buckling o Creep at elevated
temperatures

3. Vibration e  Yield stress is the important

design factor

. Sudden fracture of brittle
materials

. Fatigue (progressive
fracture)

. Stress rupture at elevated
temperatures

. Ultimate stress 1is the
important design factor

2. Maximum Principal Stress Theory
(W. Rankin’s Theory- 1850) — Brittle Material

The maximum principal stress criterion:
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¢ Rankin stated max principal stress theory as follows- a material fails by fracturing when the

largest principal stress exceeds the ultimate strength ou in a simple tension test. That is, at

the onset of fracture, |01] =0uOR |03| = 0u

e Crack will start at the most highly stressed point in a brittle material when the largest

principal stress at that point reaches oy

e Criterion has good experimental verification, even though it assumes ultimate strength is

same in compression and tension

AC

G1=_

G1= G'-ult

G'-ult

,‘ oy

/

N

\ G2= G'-ult

»

/|

N

\\\ o

v

Gy= — O i

Failure surface according to maximum principal stress theory

e This theory of yielding has very poor agreement with experiment. However, the theory has

been used successfully for brittle materials.

e Used to describe fracture of brittle materials such as cast iron

e Limitations

0 Doesn’t distinguish between tension or compression

0 Doesn’t depend on orientation of principal planes so only applicable to isotropic

materials

e Generalization to 3-D stress case is easy:

O3

3. Maximum Shear Stress or Stress difference theory
(Guest’s or Tresca’s Theory-1868)- Ductile Material

The Tresca Criterion:

e Also known as the Maximum Shear Stress criterion.

e Yielding will occur when the maximum shear stress reaches that which caused yielding in a

simple tension test.
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e Recall that yielding of a material occurred by slippage between planes oriented at 45° to
principal stresses. This should indicate to you that yielding of a material depends on the

maximum shear stress in the material rather than the maximum normal stress.

If 0, >0, >0, Then 0, —0; =0,
e Failure by slip (yielding) occurs when the maximum shearing stress, 7, exceeds the yield

stress 7, as determined in a uniaxial tension test.

e This theory gives satisfactory result for ductile material.

-y -} .‘F ﬂ.'_,lll‘ -

i,

_ﬂ'r

Failure surface according to maximum shear stress theory

4. Strain Energy Theory (Haigh’s Theory)

The theory associated with Haigh

This theory is based on the assumption that strains are recoverable up to the elastic limit, and the
energy absorbed by the material at failure up to this point is a single valued function independent of
the stress system causing it. The strain energy per unit volume causing failure is equal to the strain

energy at the elastic limit in simple tension.

2
O,

u :E[O-f +0; +05 —2u(0,0, + 0,0, +0'30'1)] =£

ol +o;+0;-2u(0,0,+0,0,+ 0,0,) = o? For 3D- stress

y

2 2 2
o, +0, —2u0,0, =0,

y For 2D- stress

5. Shear Strain Energy Theory (Distortion Energy Theory or Mises-Henky
Theory or Von-Misses Theory)-Ductile Material

Von-Mises Criterion:
e Also known as the Maximum Energy of Distortion criterion

e Based on a more complex view of the role (ﬁaﬁ’ﬁé‘%ﬁ?ﬁﬁﬁal stress differences.
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e In simple terms, the von Mises criterion considers the diameters of all three Mohr’s circles as
contributing to the characterization of yield onset in isotropic materials.

e When the criterion is applied, its relationship to the uniaxial tensile yield strength is:
4
(o, — a’z]l +{o,; —a’,]’ + (= —a’,]’ = 20"
e For a state of plane stress (o, =0)

2 2 2
0, —0,0,+0, =0,

e It is often convenient to express this as an equivalent stress, o e:

o —%[(01 —0,) + (0, — 0, ) + (05 —0,)

]1/2

oro, = %[(ox -0, Y + (0, —0, Y +(o, —0,f + 6(Tfy + sz +72 )]1/2

¢ In formulating this failure theory we used generalized Hooke's law for an isotropic material
so the theory given is only applicable to those materials but it can be generalized to
anisotropic materials.

e The von Mises theory is a little less conservative than the Tresca theory but in most cases
there is little difference in their predictions of failure. Most experimental results tend to fall
on or between these two theories.

e It gives very good result in ductile material.
von Mises

Alaximuen Shear

6. Maximum Principal Strain Theory (St. Venant Theory)

According to this theory, yielding will occur when the maximum principal strain just exceeds the
strain at the tensile yield point in either simple tension or compression. If €1 and e2 are maximum

and minimum principal strains corresponding to o1 and oz, in the limiting case

g =—(g, —vo,) Incs]|2|«cs2

gy = [G:—‘L‘Gl} |G:[2|51|

| = m| =

This gives, Eg; =0, —vo, = iGF

Es, =0, —-vo, =0

¥
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g

A

c
0‘!/ c
/Ibc

(o]

Yield surface corresponding to maximum principal strain theory

7. Mohr’s theory- Brittle Material

Mohr’s Theory

Mohr’s theory is used to predict the fracture of a material having different properties in
tension and compression. Criterion makes use of Mohr’s circle

In Mohr’s circle, we note that t depends on o, or 7 =f(0). Note the vertical line PC represents
states of stress on planes with same o but differing 7, which means the weakest plane is the
one with maximum 7, point P.

Points on the outer circle are the weakest planes. On these planes the maximum and
minimum principal stresses are sufficient to decide whether or not failure will occur.
Experiments are done on a given material to determine the states of stress that result in
failure. Each state defines a Mohr’s circle. If the data are obtained from simple tension,
simple compression, and pure shear, the three resulting circles are adequate to construct an
envelope (AB & A'B))

Mohr’s envelope thus represents the locus of all possible failure states.

E FPla.t)

I
Al . B

L ﬁ;! i B

A' Tarsion

Failure envelope

Higher shear stresses are to the left of origin, since most brittle materials have higher strength in

compression

8. Comparison
A comparison among the different failure theories can be made by superposing the yield surfaces as

shown in figure
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Maximum Shear stress or Stress Difference Theory
GATE-1. Match 4 correct pairs between list I and List II for the questions [GATE-1994]

List-1 List-1I

(a) Hooke's law 1. Planetary motion

(b) St. Venant's law 2. Conservation Energy
(c) Kepler's laws 3. Elasticity

(d) Tresca's criterion 4. Plasticity

(e) Coulomb's laws 5. Fracture

(f) Griffith's law 6. Inertia

GATE-1. Ans. (a) - 3, (c) -1, (d) -5, (e) -2
St. Venant's law: Maximum principal strain theory

GATE-2. Which theory of failure will you use for aluminium components under steady

loading? [GATE-1999]
(a) Principal stress theory (b) Principal strain theory
(c) Strain energy theory (d) Maximum shear stress theory

GATE-2. Ans. (d) Aluminium is a ductile material so use maximum shear stress theory

Shear Strain Energy Theory (Distortion energy theory)
GATE-3. According to Von-Mises' distortion energy theory, the distortion energy under
three dimensional stress state is represented by [GATE-2006]

! 102, a2 a2
(a) EE-[OI+02+G’3—2V{U|U‘2+0302+O‘10’3]

1-2v

l+v

3E

2
(c) [crl +c§+c§ -(010,+ 630, +clcr3)]

lra2 2
(d) E[Ul +03 +03- V0,63 630, +01c:3)]
GATE-3. Ans. (c¢)

V, = %{(o] —0,) +(0,— 0, ) +(05 -0, )2} Where E = 2G(1+ u) simplifyand getresult.

GATE-4. A small element at the critical section of a component is in a bi-axial state of
stress with the two principal stresses being 360 MPa and 140 MPa. The
maximum working stress according to Distortion Energy Theory is:

[GATE-1997]
(a) 220 MPa (b) 110 MPa (c) 314 MPa (d) 330 MPa

GATE-4. Ans. (c) According to distortion energy theory if maximum stress (ot) then
or ¢! =c’+0;-0,0,
oro? =360% +140° —360 x 140
oro, =314 MPa
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Previous 20-Years IES Questions

Maximum Principal Stress Theory

IES-1. Match List-I (Theory of Failure) with List-II (Predicted Ratio of Shear Stress to
Direct Stress at Yield Condition for Steel Specimen) and select the correct

answer using the code given below the Lists: [IES-2006]
List-I List-II
A. Maximum shear stress theory 1.10
B. Maximum distortion energy theory 2.0577
C. Maximum principal stress theory 3.062
D. Maximum principal strain theory 4. 050
Codes: A B C D A B C D
(a) 1 2 4 3 (b) 4 3 1 2
(c) 1 3 4 2 (d) 4 2 1 3

IES-1. Ans. (d)

IES-2. From a tension test, the yield strength of steel is found to be 200 N/mm?2. Using
a factor of safety of 2 and applying maximum principal stress theory of failure,
the permissible stress in the steel shaft subjected to torque will be: [TES-2000]
(a) 50 N/mm? (b) 57.7 N/mm? (c) 86.6. N/mm?2 (d) 100 N/mm?2

IES-2. Ans. (d) For pure shear 7 = +o0,

IES-3. A circular solid shaft is subjected to a bending moment of 400 kNm and a
twisting moment of 300 kNm. On the basis of the maximum principal stress
theory, the direct stress is ¢ and according to the maximum shear stress

theory, the shear stress is 7. The ratio o/ 7 is: [TES-2000]
1 3 9 11
— b) = Z d)—

(o) (b) (¢) ()

IES-3. Ans. (¢) & =%(M+\/M2 +T2) and :1—;33(\/M2 +T?)
T T
o M+JM? +T? 4++4%+3° 9

Therefore — =
T M+ T2 J42+32 5
IES-4. A transmission shaft subjected to bending loads must be designed on the basis
of [TES-1996]

(a) Maximum normal stress theory
(b) Maximum shear stress theory
(c) Maximum normal stress and maximum shear stress theories
(d) Fatigue strength
IES-4. Ans. (a)

IES-5. Design of shafts made of brittle materials is based on [IES-1993]
(a) Guest's theory (b) Rankine’s theory (c) St. Venant's theory (d) Von Mises theory

IES-5. Ans. (b) Rankine's theory or maximum principle stress theory is most commonly used for
brittle materials.

Maximum Shear stress or Stress Difference Theory

IES-6. Which one of the following figures represents the maximum shear stress theory
or Tresca criterion? [TES-1999]
O2/0yy
021"63"13 Ty "Iroy]) o5 i'lva

/i
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IES-6. Ans. (b)

IES-7. According to the maximum shear stress theory of failure, permissible twisting
moment in a circular shaft is "I'. The permissible twisting moment will the
same shaft as per the maximum principal stress theory of failure will be:

[TES-1998: ISRO-2008]

(a) T/2 (b) T (c) V2T (d) 2T
O,
IES-7. Ans. (d) Given 7= 1?; = 7“ principal stresses for only this shear stress are
T
O, = \/72 =47 maximum principal stress theory of failure gives
16(2T)

max[o,,0,]=0, = gy

IES-8. Permissible bending moment in a circular shaft under pure bending is M

according to maximum principal stress theory of failure. According to
maximum shear stress theory of failure, the permissible bending moment in
the same shaft is: [TIES-1995]

(a) 1/2M (b)y M (c) \/5 M (d) 2M

IE&&Am;m)a=1%(M+JM2+#) mwr=1§%¢mﬁrﬂ)pMT=o
A T

(32Mj
i o 3
oro, = 32I\3/I and 7 =16—'\£ O \nd ) 16'\3 ThereforeM =M
zd zd 2 2 zd
IES-9. A rod having cross-sectional area 100 x 10-¢ m?2 is subjected to a tensile load.
Based on the Tresca failure criterion, if the uniaxial yield stress of the material
is 200 MPa, the failure load is: [TES-2001]
(a) 10 kN (b) 20 kN (c) 100 kN (d) 200 kN
IES-9. Ans. (b) Tresca failure criterion is maximum shear stress theory.
i o
Weknow that, _Psin26 ore,.. _ P _ % or P=o0,xA
A 2 2A 2 Y
IES-10. A cold roller steel shaft is designed on the basis of maximum shear stress

theory. The principal stresses induced at its critical section are 60 MPa and - 60
MPa respectively. If the yield stress for the shaft material is 360 MPa, the
factor of safety of the design is: [TES-2002]
(a) 2 (b) 3 (c) 4 d)e6

IES-10. Ans. (b)

IES-11. A shaft is subjected to a maximum bending stress of 80 N/mm? and maximum
shearing stress equal to 30 N/mm? at a particular section. If the yield point in
tension of the material is 280 N/mm?2, and the maximum shear stress theory of

failure is used, then the factor of safety obtained will be: [TES-1994]
(a) 2.5 (b) 2.8 (c) 3.0 (d) 3.5
80—0Y’
IES-11. Ans. (b) Maximum shear stress = (T) +30% =50 N/mm?
. . oy 280
According to maximum shear stress theory,7 =—-; .. F.S.= =2.8
2 2x50

IES-12. For a two-dimensional state stress (o, > 0,,0, > 0,0, <0) the designed values

are most conservative if which one of the following failure theories were used?
[TES-1998]
(a) Maximum principal strain theory (b) Maximum distortion energy theory
(c) Maximum shear stress theory imum principal stress theory
IES-12. Ans. (c) Page S(&% Mﬂg
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-
(o] -7
N, Iy P ) L )
N, -7 7 @— Maxmum principal stram theory
h U‘- - = ’/ ', . - .
N i A Maxmmm distortion energy theory
[ e
e N . .
- Oy f-(‘ / .
* /’ 7 G, (o]]
e RN - \II - ..1. N 1 -
Il Ay Maxmumn shear stress theory
! v RPN Maxmum principal stress theory
l, v pa—— _G'\
/. - .
L ~
/- - v

Graphical comparison of different failure theories
Above diagram shows that o, >0,0, <0 will occur at 4t quadrant and most

conservative design will be maximum shear stress theory.

Shear Strain Energy Theory (Distortion energy theory)

IES-13. Who postulated the maximum distortion energy theory? [IES-2008]
(a) Tresca (b) Rankine (c) St. Venant (d) Mises-Henky
IES-13. Ans. (d)
IES-14. Who postulated the maximum distortion energy theory? [IES-2008]
(a) Tresca (b) Rankine (c) St. Venant (d) Mises-Henky
IES-14. Ans. (d)
Maximum shear stress theory —  Tresca
Maximum principal stress theory —  Rankine
Maximum principal strain theory —  St. Venant
Maximum shear strain energy theory —  Mises — Henky
IES-15. The maximum distortion energy theory of failure is suitable to predict the
failure of which one of the following types of materials? [TES-2004]
(a) Brittle materials  (b) Ductile materials  (c) Plastics (d) Composite materials

IES-15. Ans. (b)
IES-16. If oy is the yield strength of a particular material, then the distortion energy
theory is expressed as [TES-1994]

(a) (O'1 —0'2)2 +(0'2 —0'3)2 +(O'3 -0, )2 = 20'5
(b) (0'12 -0 +U32)—2ﬂ(0102 +0,0,+0,0)) = 03
© (o, —02)2 +(o, —03)2 +(o, —01)2 = 30'5

@ (1-2u)(o, +0, +0'3)2 = 2(l+u)0'5
IES-16. Ans. (a)

IES-17. If a shaft made from ductile material is subjected to combined bending and
twisting moments, calculations based on which one of the following failure
theories would give the most conservative value? [IES-1996]
(a) Maximum principal stress theory (b) Maximum shear stress theory.

(d Maximum strain energy theory (d) Maximum distortion energy theory.

IES-17. Ans. (b)
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e
N ¥ _F . N
N, L~ 7« Maximum principal strain theory
. o8 —— . v
NPT e Maximum distortion energy theory
//\' d I/
LI ’
- Oy f-(: / »
. [ o)
A b 1S : ) )
T N At Maximum shear stress theory
! NS ,;_/.\j\ - Maximum principal stress theory
/ P g = n _
. - . ~N
,./ -7 '\

/j‘// M

Maximum Principal Strain Theory

IES-18. Match List-I (Failure theories) with List-II (Figures representing boundaries of
these theories) and select the correct answer using the codes given below the
Lists: [TES-1997]
List-1 List-I1

A. Maximum principal stress a2

theory #___Jfl
1 /J *1
.__.,-rl"’
B. Maximum shear stress theory O
2.
O}
C. Maximum octahedral stress Oz
theory
3.
¥
D. Maximum shear strain Ga
energy theory 4,
97
Code: A B C D A B C D
(a) 2 1 3 4 (b) 2 4 3 1
(c) 4 2 3 1 (d) 2 4 1 3

IES-18. Ans. (d)

Previous 20-Years IAS Questions

Maximum Principal Stress Theory

IAS-1. For 0, # 0, and o3 = 0, what is the physical boundary for Rankine failure

theory? [TAS-2004]
(a) A rectangle (b) An ellipse (c) A square (d) A parabola
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IAS-1. Ans. (¢) Rankine failure theory or

Maximum principle stress theory. 2
i
|
1
7 Q: o
B ol I, R A 4
I
1Oy

Shear Strain Energy Theory (Distortion energy theory)

TIAS-2.

Consider the following statements: [IAS-2007]

1. Experiments have shown that the distortion-energy theory gives an
accurate prediction about failure of a ductile component than any other
theory of failure.

2. According to the distortion-energy theory, the yield strength in shear is less
than the yield strength in tension.

Which of the statements given above is/are correct?

(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2

(o2
IAS-2. Ans. (¢) 7, = £ = 0.5770'y

NG

TAS-3. Consider the following statements: [TAS-2003]
1. Distortion-energy theory is in better agreement for predicting the failure of
ductile materials.
2. Maximum normal stress theory gives good prediction for the failure of
brittle materials.
3. Module of elasticity in tension and compression are assumed to be different
stress analysis of curved beams.
Which of these statements is/are correct?
(a)1,2and 3 (b) 1 and 2 (c) 3 only (d) 1 and 3
IAS-3. Ans. (b)
IAS-4. Which one of the following graphs represents Mises yield criterion? [IAS-
1996]
Tz Tz
a1 / K
(a) (b)
IAS-4. Ans. (d)

Maximum Principal Strain Theory

TAS-5.

Given that the principal stresses 0, > 0, > 0, and o is the elastic limit stress in

simple tension; which one of the following must be satisfied such that the
elastic failure does not occur in accordance with the maximum principal strain
theory? [TAS-2004]

O, 0, o, O3 O, 0, o, O3

| DLy b) = >| L—py=2—py—2

(a)E [E HE ﬂE) ()E (E = ﬂEj
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O O O O O O O (o2
() =>| L+u—2+u-> d =2<| L+u—2-u-=
E ( E “E “E E L “E "E
IAS-5. Ans. (b) Strain at yield point>principal strain
O, _0 0, O3

E E E E
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Previous Conventional Questions with Answers

Conventional Question ESE-2010

Q.

Ans.

@

(1)

(iii)

(iv)

The stress state at a point in a body is plane with

0, =60N/mm* & 0, =—-36N/ mm”*

If the allowable stress for the material in simple tension or compression is
100 N/mm? calculate the value of factor of safety with each of the following
criteria for failure

(1) Max Stress Criteria

(i1) Max Shear Stress Criteria

(i11) Max strain criteria

(iv) Max Distortion energy criteria [10 Marks]

The stress at a point in a body is plane
o, =60 N/ mm? c, =—36 N/ mm?

Allowable stress for the material in simple tension or compression is 100 N/mm?
Find out factor of safety for

Maximum stress Criteria : - In this failure point occurs when max principal stress
reaches the limiting strength of material.

Therefore. Let F.S factor of safety
c (allowable)

F.S

(51:

S_100 N/ mm?
60 N/ mm?

Maximum Shear stress criteria : - According to this failure point occurs at a point in a
member when maximum shear stress reaches to shear at yield point

=1.67 Ans.

Gyt 2
= o, =100 N/mm
fmax =9 R g st
Ymax=61_02 _ 60+36=% — 48 N/mm?
2 2 2

48 = 100

2x F.S
Fg=199 100, 549

2x48 96 T

FS=1.042 Ans.

Maximum Strain Criteria ! — In this failure point occurs at a point in a member when
maximum strain in a bi — axial stress system reaches the limiting value of strain (i.e

strain at yield point)
2
O allowable J

o: +0) —2n0,0, = [ FOS
FOS =1.27

(n=0.3assume)

Maximum Distortion energy criteria ! — In this failure point occurs at a point in a
member when distortion strain energy per unit volume in a bi — axial system reaches the
limiting distortion strain energy at the of yield
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2
c
G) + G5 — G, X G, :[F—Yéj
100

2
60 +(36)° —x60x ~36 = [—J
FS

FS=1.19

Conventional Question ESE-2006

Question:

Answer:

A mild steel shaft of 50 mm diameter is subjected to a beading moment of 1.5
kNm and torque T. If the yield point of steel in tension is 210 MPa, find the
maximum value of the torque without causing yielding of the shaft material
according to

(i) Maximum principal stress theory

(ii) Maximum shear stress theory.

We know that, Maximum bending stress (o, ) = 327“;'
T
and Maximum shear stress (7) = 1(:;
T

Principal stresses are given by:
2
%J +72 = 1d63 M M? 77
TU

(i) According to Maximum principal stress theory

c
_5%
O, =%

2

Maximum principal stress=Maximum stress at elastic limit (ay)

or 1:3 M+ M7 77| =21010°

T
or %[1500%/15002 +T?|=210x10°
7(0.050)

or T=3332 Nm = 3.332 kNm
(i) According to Maximum shear stress theory

G, —O o
T 2 2 Y

max 2 2
or, 6, -0, =0,

or, ZX% M? +T? =210x10°
n

or, T=2096 Nm =2.096 kNm

Conventional Question ESE-2005

Question:

Answer:

Illustrate the graphical comparison of following theories of failures for two-
dimensional stress system:

(i) Maximum normal stress theory

(ii) Maximum shear stress theory

(iii) Distortion energy theory page 414 of 429
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G3
N F 3 .
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N, ol - - 7
- . N Maximum distortion energy theory
. \' . - /
2|, [
PEERN
< O} ,_ > G
b ] N .#| Oy o1
1 N\ 4 Maximum shear stress theory
N ,-‘/\\ < Maxmum principal stress theory
: ¥
~ -~ |0 R
R N ~
/ X
'

Conventional Question ESE-2004

Question:
Answer:

State the Von- Mises's theory. Also give the naturally expression.

According to this theory yielding would occur when total distortion energy absorbed
per unit volume due to applied loads exceeds the distortion energy absorbed per unit
volume at the tensile yield point. The failure criterion is

(o, —02)2 + (o, —03)2 + (o, —01)2 = 203
[symbols has usual meaning]

Conventional Question ESE-2002

Question:

Answer:

Derive an expression for the distortion energy per unit volume for a body
subjected to a uniform stress state, given by the o, and o, with the third

principal stress o, being zero.

According to this theory yielding would occur when total distortion energy absorbed
per unit volume due to applied loads exceeds the distortion energy absorbed per unit
volume at the tensile yield point. Total strain energy Er and strain energy for volume
change Ev can be given as

1 3
B :E(GIEI +0,8, +03e;) and Ey, = EG £

av —av

Substituting strains in terms of stresses the distortion energy can be given as

Ey=Er Ey = 2(1+v)(

At the tensile yield point, 01 = oy, 02 = 03 = 0 which gives

2(1+v) >
dy 6E G}'
The failure criterion is thus obtained by equating Eq and Eqgy , which gives

(o) _‘53)2 +(o, _'53)2 Jr(“za_'i‘il)2 :2‘33

E

In a 2-D situation if 03 = 0, the criterion reduces to

2 2 _ 2

Conventional Question GATE-1996

Question:

Answer:

A cube of 5mm side is loaded as shown in figure below.

(i) Determine the principal stresses 0,,0,,0,.

(ii) Will the cube yield if the yield strength of the material is 70 MPa? Use
Von-Mises theory. Page 415 of 429
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4 1000N
800N
5
BOON | 5 m
S00N
2000N
/ 5 mm

(i)Principal stress 0,,0,,0;

aX:2000:80 N/mm?; o :1000:40 N/mm?
5x5 ¥ 5x5
o, = 500 _ 59 N/mm?; Ty = 800 _ 35 Njmm?
5x5 Y 5x5
o +o oy —0 80+40 , [(80—40Y
o= 2yi\/[ 2y]+7'fy: er i\/[ > ]+(32)2

=60 +/(20)" +(32)° =97.74,22.26
o o, =97.74N/mm?, or 97.74 MPa
and o, =22.96N/mm? or 22.96 MPa

o, = 0, = 20N/mm’ or 22 MPa
(if) Will thecube yieldor not?

According to Von-Mises yield criteria, yielding will occur if

(o, —02)2 + (o, —03)2 + (o, —(71)2 > 207
Now (01—02)24-(02—03)24-(03—(71)2
= (97.74 —22.96)" +(22.96 — 20" + (20 — 97.74)°
—11745.8 ———(i)
and, 202 =2x(70)" = 9800 ———(ii)

Since 11745.8 > 9800 so yielding will occur.
Conventional Question GATE-1995
Question: A thin-walled circular tube of wall thickness t and mean radius r is subjected
to an axial load P and torque T in a combined tension-torsion experiment.
(i) Determine the state of stress existing in the tube in terms of P and T.
(ii) Using Von-Mises - Henky failure criteria show that failure takes place

Jo? +37r% = 0., Where o, is the yield stress in uniaxial tension,
o and 7 are respectively the axial and torsional stresses in the tube.

when

Answer: Mean radius of the tube =r,
Wall thickness of the tube = t,
Axial load =P, and
Torque =T.
(1) The state of stress in the tube:

Page 416 of 429



Chapter-15

Theories of Failure S K Mondal’s

. . . P
Due to axial load, the axial stress in the tube oX = _t
7r
Due to torque, shear stress,

. _T_r_ T T
Y J 27r3t 27t

J :g{(r th)4 — r“} = 2nr°t-neglecting t* higher power of t.

o, =0,7

.. The state of stress in the tube is, o, = ——,0, T

2nrt’ Yo 2mrdt
(1) Von Mises-Henky failure in tension for 2-dimensional stress is

2 2 2
oy, =0y +0; —0,0,

o, +o o, —0

In this case, (71:?X+ %+Tfy,and
o 0'2
X X 2 _
02—?— T—FTXV (ay—O)
2 2 2
2 2 2 2
7 e Sy AR L S S R L ol ey L
12 N4 oo 12 N4 12 N4 2 Vg
2 2 2 2 2 2
o, O ) o 2 o, O ) o 2
e T Bt et R R Ik PR S LS
4 T4 Ty TSNy T T Ty Ty T e T
_|ox o2
4 4 v
zaf+3Tfy
0y = Jf+3rfy

Conventional Question GATE-1994

Question:

Answer:

Find the maximum principal stress developed in a cylindrical shaft. 8 cm in
diameter and subjected to a bending moment of 2.5 kNm and a twisting
moment of 4.2 kNm. If the yield stress of the shaft material is 300 MPa.
Determine the factor of safety of the shaft according to the maximum
shearing stress theory of failure.

Given: d=8cm =0.08 m; M = 2.5 kNm = 2500 Nm; T = 4.2 kNm = 4200 Nm
Ty (0 ) = 300 MPa = 300 MN/m’

Equivalent torque, T, =M? +T? = «/(2.5)2 + (4.2)2 = 4.888kNm
Maximum shear stress developed in the shaft,
L 16T _ 16 x 4.888 x10°

"omd® rx(0.08)

Permissible shear stress = @ =150MN/m?

x10°°® MN/m? = 48.62MN/m?

Factor of safety = 150 Pags gigief 420
48.62
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Theory at a Glance (for IES, GATE, PSU)

Types of Rivets
FIGURE DESCRIPTION
'ﬂ"_"r" LARGE BUTTON HEAD
] NARROW BUTTON HEAD

i —— NARROW BUTTON HEAD
E E - BUTTON HEAD WITH SPLINED SHANK
{:} LARGE BUTTON HEAD
‘E‘ COUNTERSUNK HEAD

{_:.:'— FLAT HEAD

( —— RIVETS | THIN NARROW BUTTON HEAD, SEMITUBULAR

COUNTERSLINK FLAT HEAD, SEMITUBLLAR

FLAT HEAD, SEMITUBULAR
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Riveted and Welded Joint S K Mondal’s

FLAT HEAD SEMITUBULAR, SHOULDER

FLAT HEAD, TUBULAR

FLAT HEAD, TUBULAR

FLAT HEAD THREADED, TUBULAR

FLAT HEAD, CLOSED END,
THREADED TUBULAR HEXAGON

FIGURE

DESCRIPTION

T2

RIVETS

HEXAGON THREADED FLAT HEAD

HEXAGON CLOSE END THREADED FLAT HEAD

THREADED HEXAGON FOR
AUTOMATED ASSEMBLY

SQUARE THREADED FLAT HEAD

BUTTON HEAD, TAPPING

Page 421 of 429



Chapter-16 Riveted and Welded Joint S K Mondal’s

OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 20-Years GATE Questions

Failure of riveted joint

GATE-1. Bolts in the flanged end of pressure vessel are usually pre-tensioned Indicate
which of the following statements is NOT TRUE? [GATE-1999]
(a) Pre-tensioning helps to seal the pressure vessel
(b) Pre-tensioning increases the fatigue life of the bolts
(c) Pre-tensioning reduces the maximum tensile stress in the bolts

(d) Pre-tensioning helps to reduce the effect of pressure pulsations in the pressure vessel
GATE-1. Ans. (c¢)

Statement for Linked Answers and Questions Q2 and Q3

A steel bar of 10 X 50 mm is cantilevered with two M 12 bolts (P and Q) to support a static
load of 4 kN as shown in the figure.

1000 400 100 1.7 m
—}i !-(—)' o SO —
!
P .
P Q
"W"b../ v

4kN

GATE-2. The primary and secondary shear loads on bolt P, respectively, are:
[GATE-2008]
(A) 2 kN, 20 kN (B) 20 kN, 2kN (C) 20kN,0kN (D) OkN, 20 kN

4kN
GATE-2. Ans. (a) Primary (Direct) Shear load = T =2k N

GATE-3. The resultant stress on bolt P is closest to [GATE-2008]
(A) 132 MPa (B) 159 MPa (C) 178 MPa (D) 195 MPa
GATE-3. Ans. (b)

GATE-4. A bolted joint is shown below. The maximum shear stress, in MPa, in the bolts
at A and B, respectively are: [GATE-2007]
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3 holes of M10 x 1.75 mm bolts

(all dimensions in the figure are in mm)

(a) 242.6, 42.5 (b) 425.5, 242.6 (c) 42.5, 42.5 (d) 242.6, 242.6
GATE-4. Ans. (a)

GATE-5. A bracket (shown in figure) is rigidly mounted on wall using four rivets. Each
rivet is 6 mm in diameter and has an effective length of 12 mm. [GATE-2010]

le——32 ple— 32 —p

ry
100 _G.._T._._._._._E..
- i -
L 2 l X
12 e f—— 40—l *12 B
Direct shear stress (in MPa) in the most heavily loaded rivet is:
(a) 4.4 (b) 8.8 (c) 17.6 (d) 35.2
GATE-5. Ans. (b)
F :@:EON and Z:E: 250 =8.8MPa
4 A 7 o
2(6)

Efficiency of a riveted joint

GATE-6. If the ratio of the diameter of rivet hole to the pitch of rivets is 0.25, then the
tearing efficiency of the joint is: [GATE-1996]
(a) 0.50 (b) 0.75 (c) 0.25 (d) 0.87
GATE-6. Ans. (b)
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GATE-7.

Riveted and Welded Joint S K Mondal’s
d f" =150 MPa
— = 0.25
p .
P-d) .
= T75%

A manufacturer of rivets claims that the failure load in shear of his product is

500 + 25 N. This specification implies that

[GATE-1992]

(a) No rivet is weaker than 475 N and stronger than 525 N

(b) The standard deviation of strength of random sample of rivets is 25 N

(¢) There is an equal probability of failure strength to be either 475 Nor 525 N

(d) There is approximately two-to-one chance that the strength of a rivet lies between

475 N to 525 N

GATE-7. Ans. (a)

Previous 20-Years IES Questions

Failure of riveted joint

IES-1.

An eccentrically loaded
riveted joint is shown with 4
rivets at P, Q, R and S.

-

Which of the rivets are the
most loaded?

(a) Pand Q

(b) Q and R

(¢) Rand S

IES-1. Ans. (b)

IES-2.

A riveted joint has been designed to
support an eccentric load P. The load
generates value of F1 equal to 4 kN and F:
equal to 3 kN. The cross-sectional area of
each rivet is 500 mm2. Consider the
following statements:

1. The stress in the rivet is 10 N / mm?2

2. The value of eccentricity L is 100 mm

3. The value of load P is 6 kN

4. The resultant force in each rivet is 6 kN
Which of these statements are correct?

(a) 1 and 2 (b) 2 and 3

(c) 3and 4 (d) 1and 3

IES-2. Ans. (d)
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IES-3.

P=2F,=2x3=6kN F, o
and PL=FI| + Fl =2Fl l
or 6L = 2 x 41 = gl

L 8
or —=—

I 6

Resultant force on rivet,

R =\[F2+F2+2FF,cos0

= J(4) +(3) +2x4x3c0s0

=5kN
S

.. Shear stress on rivet,
R 5x10° A l_. F,

=10 N/mm’
Area 500

If permissible stress in Pin A
plates of joint through a /

pin as shown in the
given figure is 200 MPa,
then the width w willbe 2200

(a) 15 mm w 2000 N
(b) 18 mm -

(c) 20 mm / :

(d) 25 mm l !

2mm Il ‘f T
I8

[TES-1999]

IES-3. Ans. (a) (w — 10) X 2 x 10-6 x 200 X 106 = 2000 N; or w = 15 mm.

IES-4.

For the bracket bolted as P

shown in the figure, the bolts

will develop Bracket
(a) Primary tensile stresses and ‘
secondary shear stresses @ @

(b) Primary shear stresses and
secondary shear stresses

(¢) Primary shear stresses and © D
secondary tensile stresses Load

(d) Primary tensile stresses and

secondary compressive o

stresses

[TES-2000]

IES-4. Ans. (a)

IES-5.

Assertion (A): In pre-loaded bolted joints, there is a tendency for failure to
occur in the gross plate section rather than through holes. [IES-2000]

Reason (R): The effect of pre-loading is to create sufficient friction between the
assembled parts so that no slippage occurs.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(¢c) Aistrue but R is false Page 425 of 429
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IES-5. Ans. (a)

IES-6. Two rigid plates are clamped by means of bolt and nut with an initial force N.
After tightening, a separating force P (P < N) is applied to the lower plate,
which in turn acts on nut. The tension in the bolt after this is: [IES-1996]
(a) N+ P) (b) N-P) (P (d N

IES-6. Ans. (a)

Efficiency of a riveted joint

IES-7. Which one of the following structural joints with 10 rivets and same size of
plate and material will be the most efficient? [TES-1994]

— oo o] 1o 7
fresees ‘E{i:{‘ s
_ _ | 41?;??
(b)
: bbb
i
Tt

£

%

(c) (d)
IES-7. Ans. (b)
IES-8. The most efficient riveted joint possible is one which would be as strong in
tension, shear and bearing as the original plates to be joined. But this can
never be achieved because: [IES-1993]

(a) Rivets cannot be made with the same material
(b) Rivets are weak in compression
(¢) There should be at least one hole in the plate reducing its strength
(d) Clearance is present between the plate and the rivet
IES-8. Ans. (c) Riveted joint can't be as strong as original plates, because there should be at least
one hole in the plate reducing its strength.

Advantages and disadvantages of welded joints

IES-9. Assertion (A): In a boiler shell with riveted construction, the longitudinal scam
is, jointed by butt joint. [TES-2001]
Reason (R): A butt joint is stronger than a lap joint in a riveted construction.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOT the correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-9. Ans. (c¢)
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Previous 20-Years IAS Questions

Failure of riveted joint

TIAS-1. Two identical planks of Pitch distance
wood are connected by I 20 cm
bolts at a pitch distance e
of 20 ecm. The beam is [ im cm
subjected to a bending L R ,J
moment of 12 kNm, the ;10 cm
shear force in the bolts o
will be: -
25 cm
(a) Zero (b) 0.1 kN /
() 0.2kN  (d)4 kN - Im ~
[TAS-2001]
IAS-1. Ans. (a)
IAS-2. Match List-I with List-II and select the correct answer using the code given
below the Lists: [TAS-2007]
List-I List-I1
(Stress Induced) (Situation/ Location)
A. Membrane stress 1. Neutral axis of beam
B. Torsional shear stress 2. Closed coil helical spring under axial load
C. Double shear stress 3. Cylindrical shell subject to fluid pressure
D. Maximum shear stress 4. Rivets of double strap butt joint
Code: A B C D A B C D
(@) 3 1 4 2 b 4 2 3 1
(c) 3 2 4 1 (d) 4 1 3 2
IAS-2. Ans. (c¢)
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Previous Conventional Questions with Answers

Conventional Question GATE-1994

Question: The longitudinal joint of a thin cylindrical pressure vessel, 6 m internal
diameter and 16 mm plate thickness, is double riveted lap point with no
staggering between the rows. The rivets are of 20 mm nominal (diameter with
a pitch of 72 mm. What is the efficiency of the joint and what would be the
safe pressure inside the vessel? Allowable stresses for the plate and rivet
materials are; 145 MN/m? in shear and 230 MN/m?2 in bearing. Take rivet hole
diameter as 1.5 mm more than the rivet diameter.

Answer: Given: Diameter of rivet = 20 mm
Diameter of hole =20 + 1.5 = 21.5 mm
Diameter the pressure vessel, d =6 m
Thickness of the plate, t = 16 mm
Type of the joint: Double riveted lap joint
Allowable stresses:

o, =145MN /I m*; t :120MN/m2;0'c =230 MN | m*

. o 72-(2x215)| 16
Strength of plate in tearing/pitch, R, = X x145
1000 1000
=0.06728 MN
20 Y
Strength of rivert in tearing/pitch,R =2 x| 221 %120
4 11000
=0.0754 MN
. . . 20 16
Strength of plate in crushing/pitch,R, = 2x| ——x——|x230
1000 1000
=0.1472 MN

T%%

O 000000 0 Olgny %’_.,,_ .____,_%

© o o]
0.0 0.0 0 0 O p_l

- »

From the above three modes of failure it can be seen that the weakest element is the
plate as it will have tear failure at 0.06728 MN/pitch load itself.
Stresses acting on the plate for an inside pressure of pN/m2is shown in figure.

Hoop stress = pd = __px6 =187.5p
2t 2x(0.016)
g pd px6
Longitudinal stress =—=——"———-=93.75p

4t 4x(0.016)

. .. . d
Maximum principal stress acting on the plate = l;_t

only(i,e.187.5 p)as there is no shear stress.

or 187.5p < 0.06728 <145

(0.016){72_%;021'5)} .

or p<0.7733 MN /| m* or 0.7733 MPa
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Conventional Question GATE-1995

Question: Determine the shaft diameter and bolt size for a marine flange-coupling
transmitting 3.75 MW at 150 r.p.m. The allowable shear stress in the shaft and
bolts may be taken as 50 MPa. The number of bolts may be taken as 10 and
bolt pitch circle diameter as 1.6 times the shaft diameter.

Answer: Given, P =3.75MW; N =150 r.p.m.;

7, =1, =50 MPa; n =10, D, =16D
Shaft diameter, D :
P 2zNT
60
E 3.78%x10°% = M
60
6
or _3.75x107x60 _ qq799 Nm
27 x150
Also, T=r xZxD
16
or 238732 = 50x10° x %DS

Do [238782x16

20X 10° j =0.28m or 290 mm
X X T

Bolt size,d, :
Bolt pitch circle diameter,D, =1.6 D =1.6x0.29 = 0.464m

D
Now, T:nx%dbzxz-bx(?”j
or 238732 :IOx%dE x50x10° x(#j
or d, =0.0512m or 51.2 mm
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