
SNS COLLEGE OF ENGINEERING 

Kurumbapalayam (Po), Coimbatore – 641 107 

An Autonomous Institution 

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai 

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY 

COURSE NAME: 19CS603-Mobile Application Development 

III YEAR /VI SEMESTER 

UNIT – II Basic Design 
 

Gestures and Touch Events 
 

Gesture recognition and handling touch events is an important part of developing 

user interactions. Handling standard events such as clicks, long clicks, key presses, etc are 

very basic and handled in other guides. This guide is focused on handling other more 

specialized gestures such as: 

 Swiping in a direction 

 Double tapping for zooming 

 Pinch to zoom in or out 

 Dragging and dropping 

 Effects while scrolling a list 

Usage 

Handling Touches 

At the heart of all gestures is the onTouchListener and the onTouch method which has 

access to MotionEvent data. Every view has an onTouchListener which can be specified: 

 

myView.setOnTouchListener(new 

OnTouchListener() { @Override 

public boolean onTouch(View v, MotionEvent event) { 

// Interpret MotionEvent data 

// Handle here 

return true; 

} 

}); 

 



Each onTouch event has access to the MotionEvent which describe movements in terms 

of an action code and a set of axis values. The action code specifies the state change that 

occurred such as a pointer going down or up. The axis values describe the position and 

other movement properties: 

• getAction() - Returns an integer constant such as 

MotionEvent.ACTION_DOWN , MotionEvent.ACTION_MOVE , and 

MotionEvent.ACTION_UP 

• getX() - Returns the x coordinate of the touch event 

• getY() - Returns the y coordinate of the touch event 

Note that every touch event can be propagated through the entire affected view 

hierarchy. Not only can the touched view respond to the event but every layout that 

contains the view has an opportunity as well. 

 

Handling Multi Touch Events 

Note that getAction() normally includes information about both the action as well as the 

pointer index. In single-touch events, there is only one pointer (set to 0), so no bitmap 

mask is needed. In multiple touch events (i.e pinch open or pinch close), however, there are 

multiple fingers involved and a non-zero pointer index may be included when calling 

getAction() . As a result, there are other methods that should be used to determine the 

touch event: 

• getActionMasked() - extract the action event without the pointer index 

• getActionIndex() - extract the pointer index used 

The events associated with other pointers usually start with 

MotionEvent.ACTION_POINTER such as MotionEvent.ACTION_POINTER_DOWN and 

MotionEvent.ACTION_POINTER_UP The getPointerCount() on the MotionEvent can be 

used to determine how many pointers are active in this touch sequence. 

 

Gesture Detectors 

Within an onTouch event, we can then use a GestureDetector to understand 

gestures based on a series of motion events. Gestures are often used for user interactions 

within an app. Let's take a look at how to implement common gestures. 

For easy gesture detection using a third-party library, check out the popular Sensey library 

which greatly simplifies the process of attaching multiple gestures to your views. 



Double Tapping 

You can enable double tap events for any view within your activity

 using the OnDoubleTapListener. First, copy the code for OnDoubleTapListener into 

your application and then you can apply the listener with: 

myView.setOnTouchListener(new 

OnDoubleTapListener(this) { @Override 

public void onDoubleTap(MotionEvent e) { 

Toast.makeText(MainActivity.this,"Double Tap", Toast.LENGTH_SHORT).show(); 

} 

 

 


