— —~

SNS COLLEGE OF ENGINEERING .

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

COURSE NAME :19CS603- MOBILE APPLICATION DEVELOPMENT

[II YEAR /VI SEMESTER
Unit 4- Introduction to I-Android

Topic : Android Architecture

19CS603 - MOBILE APPLICATION DEVELOPMENT / Introduction to I-Android/S.VIJAYALAKSHMI, AP/CST-SNSCE

Android Studio

INSTIZ iP5,

https://developer.android.com/studio/index.html

https://developer.android.com/studio/index.html

Android Application Development

Android development

Android Applications Design

APPLICATION COMPONENTS

Activities

Intents

“Universita;
LI ERNE
~di‘Bologna

-

oy A Services

$SantiOrsola) &
YIMalpighill |

Content Providers

R e Broadcast Receivers

i .
=

I(Dedl] '
UM fame, :

e

Android HelloWorld

Buttonl

Hello world!

FITTITTTS

» An Activity corresponds to a single screen of the Application.

»An Application can be composed of multiples screens
(Activities).

»The Home Activity is shown when the user launches an
application.

» Different activities can exhange information one with each
other.

Android Components: Activities

INSTIEEPFEieTy

»Each activity is composed by a list of graphics components.

»Some of these components (also called Views) can interact with the user by
handling events (e.g. Buttons).

» Two ways to build the graphic interface:

PROGRAMMATIC APPROACH MainActivity.java

Example:

Button button=new Button (this);
TextvView text= new TextView();
text.setText(“Hello world”);

Android Components: Activities -

INSTI e,

»Each activity is composed by a list of graphics components.

»Some of these components (also called Views) can interact with the user by
handling events (e.g. Buttons).

»Two ways to build the graphic interface:

DECLARATIVE APPROACH activity_main.xml

Example:

< TextVvView android.text=@string/hello”

android: textcolor=@color/blue android: layout_width="“fi11_parent”
android: layout_height="wrap_content” />

< Button android.id="@+1d/Button01l”
android:textcolor="@color/blue” android:layout_width="f111_parent”
android: layout_height="wrap_content” />

-Build the application layout through XML files
(like HTML)

-Define two different XML layouts for two

different devices

Device 1 Device 2

HIGH screen pixel densit LOW screen pixel density
A

-At runtime, Android detects the current device

configuration and loads the appropriate

[
Java App Code :
| resources for the application
:
[
[

-No need to recompile!

L N

\ -Just add a new XML file if you need to support

a new device

XML Layout File XML Layout File

Device 1 Device 2

Android Components: Activities -

INSTIEEPPeie]y 5,

»Android applications typically use both the approaches!

DECLARATIVE APPROACH

~ Define the Application layouts and
XML Code :> resources used by the Application
(e.g. labels).
v :> Manages the events, and handles
Java Code the interaction with the user.

Android Components: Activities -

INS TP Peie]y

»Views can generate events (caused by human interactions)
that must be managed by the Android-developer.

User Name

TextEdit

Button

Example

public void onClick(view arg0) {
1f (arg0 == Button) {
// Manage Button events

¥

Android Components: Activities

»The Activity Manager is responsible for creating,
, destroying, managing activities.

» Activities can be on different states: starting,
running, stopped, destroyed, paused.

.| »Only one activity can be on the running state at a
time.

Other applications
__need memory

» Activities are organized on a stack, and have an
event-driven life cycle (details later ...)

Android Components: Activities

INSTIEEPFEieTy

»Main difference between Android-programming and Java (oracle) -
programming:

» Mobile devices have constrained resource capabilities!

» Activity lifetime depends on users’ choice (i.e. change of visibility) as
well as on system constraints (i.e. memory shortage).

» Developer must implement lifecycle methods to account for state
changes of each Activity ...

Android Components: Activities

public class MyApp extends Activity { k////’//’kc

public
public
public
public

void onCreate() { .
void onPause() { .
void onStop() { .
void onDestroy(){ .

Called when the Activity
reated the first time

“~_

.}
} <
.}
.}

. i1l visib]

Called when the Activity

I

Called when the Activity

< nol i<ibl

Called when the Activity

is dismissed

FITYTIDTTS

Android Components: Intents

/. 3///0//9,/,
» Intents: asynchronous messages to activate core Android
components (e.g. Activities).

» Explicit Intent > The component (eg. Activity1) specifies the
destination of the intent (e.g. Activity 2).

4 A 4)
LOGIN

unveren

Welcome Unveren!

PASSWORD

Activityl

Login Intent

Activity2

_ / _ Y

Android Components: Intents

INS TP Peie]y

» Intents: asynchronous messages to activate core Android
components (e.g. Activities).

»Implicit Intent = The component (e.g. Activity1) specifies the type of
the intent (e.g. “View a video”).

4)
=>
o
Multiple choices 1 Tube! E
might be available +
to the user! — <LE)
-
Z’ \) Intent-
E Filters
© 4 D
<
Implicit Intent SN
>
=
—> =
O
N Y)
g y,

Android Components: Services

INSTIEEPFEieTy

» Services: like Activities, but run in background and do not provide an
user interface.

* Used for non-interactive tasks (e.g. networking).

* Service life-time composed of 3 states:

Starting Destroyed
onCreate() onDestroy()
onStart() .

. Running

(on background)

Android Components: Content Providers ~

LA I TIOTS

Each Android application has its own private set of data (managed
through files or through SQLite database).
Content Providers: Standard interface to access and share data

among different applications.

|
APP |

|
» Content

| Provider
e.g. Photo Gallery

__ J ‘

FITY TS

» Publish /Subscribe paradigm

> Broadcast Receivers: An
application can be signaled of
external events.

» Notification types: Call
incoming, SMS delivery, Wifi
network detected, etc

Android Components: Broadcast Recelvers S,

N ST,

BROADCAST RECEIVER example

class WifiReceiver extends BroadcastReceiver {
public void onReceive(Context c, Intent intent) {
String s = new StringBuilder();
wifilList = mainWifi.getScanResults();
for(int 1 = 0; i < wifilist.size(); i++){
s.append(new Integer(i+l).toString() + ".");
s.append((wifiList.get(i)).toString());

s.append("\\n");
}

mainText.setText(sb);

Android Components: Broadcast Recelvers S,

N ST,

BROADCAST RECEIVER example

public class WifiTester extends Activity {
WifiManager mainWifi;
WifiReceiver receiverWifi;
List<ScanResult> wifiList;
public void onCreate(Bundle savedInstanceState) {

mainWifi = (WifiManager) getSystemService(Context. WIFI_SERVICE);

receiverWifi = new WifiReceiver();

registerReceiver(receiverWifi, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));
mainWifi.startScan();

Android Components: System API ~

INSTIEEEEEieTy 5

»Using the components described so far, Android applications can
then leverage the system API

SOME EXAMPLEs ...

» Telephon Manager data access (call, SMS, etc)
» Sensor management (GPS, accelerometer, etc)
» Network connectivity (Wifi, bluetooth, NFC, etc)
» Web surfing (HTTP client, WebView, etc)

» Storage management (files, SQLite db, etc)

> ...

Android Components: Google API

FITSTIONS

» ... or easily interface with other Google services:

Gmca)pxigle Google

APK
FILE

l

l

XML

Files

Distribution

Each Android application is
contained on a single APK file.

» Java Byte-code (compiled for Dalvik JVM)

» Resources (e.g. images. videos, XML layout files)

» Libraries (optimal native C/C++ code)

INSTE S

Android Application Security

4. .)‘///’J//’J//J
* Android applications run with a distinct system identity (Linux user

ID and group ID), in an isolated way.
* Applications must explicitly share resources and data. They do this by

declaring the permissions they need for additional capabilities.
* Applications statically declare the permissions they require.
* User must give his/her consensus during the installation.

ANDROIDMANIFEST.XML

<uses-permission android:name=“android.permission.IACCESS FINE LOCATION" />

<uses-permission android:name=“android.permission.INTERNET" />

