
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

COURSE NAME :19CS603- MOBILE APPLICATION DEVELOPMENT

III YEAR /VI SEMESTER

Unit 4- Introduction to I-Android

Topic : Android Architecture

19CS603 - MOBILE APPLICATION DEVELOPMENT / Introduction to I-Android/S.VIJAYALAKSHMI, AP/CST-SNSCE

1

Android Studio

https://developer.android.com/studio/index.html

https://developer.android.com/studio/index.html

Android Application Development

Eclipse IDE
Android

SDK

Android
Emulator

Android
Mobile
Device

Android development

Android Manifest

Resource XML

Java Source

Generated Class Java Compiler

Android Libraries

.dex
File

Dalvik
VM

Android Applications Design

Activities

Intents

Services

Content Providers

 Broadcast Receivers

APPLICATION COMPONENTS

Android Components: Activities

An Activity corresponds to a single screen of the Application.

An Application can be composed of multiples screens
(Activities).

The Home Activity is shown when the user launches an
application.

Different activities can exhange information one with each
other.

Hello World!

Android HelloWorld

Button1

Android Components: Activities

Each activity is composed by a list of graphics components.
Some of these components (also called Views) can interact with the user by
handling events (e.g. Buttons).
Two ways to build the graphic interface:

Example:

Button button=new Button (this);
TextView text= new TextView();
text.setText(“Hello world”);

PROGRAMMATIC APPROACH MainActivity.java

Android Components: Activities

Each activity is composed by a list of graphics components.
Some of these components (also called Views) can interact with the user by
handling events (e.g. Buttons).
Two ways to build the graphic interface:

Example:

< TextView android.text=@string/hello”
android:textcolor=@color/blue android:layout_width=“fill_parent”
android:layout_height=“wrap_content” />
< Button android.id=“@+id/Button01”
android:textcolor=“@color/blue” android:layout_width=“fill_parent”
android:layout_height=“wrap_content” />

DECLARATIVE APPROACH activity_main.xml

-Build the application layout through XML files

(like HTML)

-Define two different XML layouts for two

different devices

-At runtime, Android detects the current device

configuration and loads the appropriate

resources for the application

-No need to recompile!

-Just add a new XML file if you need to support

a new device

EXAMPLE

Device 1
HIGH screen pixel density

Device 2
LOW screen pixel density

XML Layout File
Device 1

XML Layout File
Device 2

Java App Code

Android Components: Activities

Android Components: Activities

Android applications typically use both the approaches!

DECLARATIVE APPROACH

PROGRAMMATIC APPROACH

Define the Application layouts and
resources used by the Application
(e.g. labels).

Manages the events, and handles
the interaction with the user.

XML Code

Java Code

Android Components: Activities

Views can generate events (caused by human interactions)
that must be managed by the Android-developer.

public void onClick(View arg0) {
 if (arg0 == Button) {
 // Manage Button events
 }
}

Example

B
u

tt
o

n

Te
xt

Ed
it

Android Components: Activities

The Activity Manager is responsible for creating,
destroying, managing activities.

Activities can be on different states: starting,
running, stopped, destroyed, paused.

Only one activity can be on the running state at a
time.

Activities are organized on a stack, and have an
event-driven life cycle (details later …)

Android Components: Activities

Main difference between Android-programming and Java (Oracle) -
programming:

Mobile devices have constrained resource capabilities!

Activity lifetime depends on users’ choice (i.e. change of visibility) as
well as on system constraints (i.e. memory shortage).

Developer must implement lifecycle methods to account for state
changes of each Activity …

Android Components: Activities

public class MyApp extends Activity {

 public void onCreate() { ... }
 public void onPause() { ... }
 public void onStop() { ... }
 public void onDestroy(){ ... }
 ….
}

Called when the Activity
is created the first time.

Called when the Activity
is partially visible.

Called when the Activity
is no longer visible.

Called when the Activity
is dismissed.

Called when the Activity
is created the first time.

Android Components: Intents

Intents: asynchronous messages to activate core Android
components (e.g. Activities).
Explicit Intent The component (e.g. Activity1) specifies the
destination of the intent (e.g. Activity 2).

LOGIN

PASSWORD

Login

unveren

Welcome Unveren!

Login Intent

A
c
ti
v
it
y
1

A
c
ti
v
it
y
2

Android Components: Intents

Intents: asynchronous messages to activate core Android
components (e.g. Activities).
Implicit Intent The component (e.g. Activity1) specifies the type of
the intent (e.g. “View a video”).

View

Implicit Intent

A
c
ti
v
it
y
1

A
c
ti
v
it
y
2

A

c
ti
v
it
y
2

Multiple choices
might be available

to the user!

} Intent-
Filters

Android Components: Services

• Services: like Activities, but run in background and do not provide an
user interface.

• Used for non-interactive tasks (e.g. networking).
• Service life-time composed of 3 states:

Starting Destroyed

Running

(on background)

onCreate()

onStart()
onDestroy()

Android Components: Content Providers

• Each Android application has its own private set of data (managed

through files or through SQLite database).
• Content Providers: Standard interface to access and share data

among different applications.

DB

APP

insert()

update()

delete()

query()

Content

Provider
e.g. Photo Gallery

Android Components: Broadcast Receivers

Publish/Subscribe paradigm

Broadcast Receivers: An
application can be signaled of
external events.

Notification types: Call
incoming, SMS delivery, Wifi
network detected, etc

Android Components: Broadcast Receivers

 class WifiReceiver extends BroadcastReceiver {
 public void onReceive(Context c, Intent intent) {
 String s = new StringBuilder();
 wifiList = mainWifi.getScanResults();
 for(int i = 0; i < wifiList.size(); i++){
 s.append(new Integer(i+1).toString() + ".");
 s.append((wifiList.get(i)).toString());
 s.append("\\n");
 }
 mainText.setText(sb);
 }
 }

BROADCAST RECEIVER example

Android Components: Broadcast Receivers

public class WifiTester extends Activity {
 WifiManager mainWifi;
 WifiReceiver receiverWifi;
 List<ScanResult> wifiList;
 public void onCreate(Bundle savedInstanceState) {
 …
 mainWifi = (WifiManager) getSystemService(Context.WIFI_SERVICE);
 receiverWifi = new WifiReceiver();
 registerReceiver(receiverWifi, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));
 mainWifi.startScan();
}

BROADCAST RECEIVER example

Android Components: System API

Using the components described so far, Android applications can

then leverage the system API …

 Telephon Manager data access (call, SMS, etc)

 Sensor management (GPS, accelerometer, etc)

 Network connectivity (Wifi, bluetooth, NFC, etc)

 Web surfing (HTTP client, WebView, etc)

 Storage management (files, SQLite db, etc)

 ….

SOME EXAMPLEs …

Android Components: Google API

… or easily interface with other Google services:

Each Android application is
contained on a single APK file.

 Java Byte-code (compiled for Dalvik JVM)

 Resources (e.g. images. videos, XML layout files)

Libraries (optimal native C/C++ code)

APK
FILE

XML
Files

C

Android Application Distribution

Android Application Security

• Android applications run with a distinct system identity (Linux user
ID and group ID), in an isolated way.

• Applications must explicitly share resources and data. They do this by

declaring the permissions they need for additional capabilities.
• Applications statically declare the permissions they require.
• User must give his/her consensus during the installation.

<uses-permission android:name=“android.permission.IACCESS_FINE_LOCATION" />

<uses-permission android:name=“android.permission.INTERNET" />

ANDROIDMANIFEST.XML

