Integrating GPS in mobile application

Android location APIs make it easy for you to build location-aware
applications, without needing to focus on the details of the

underlying location technology.

This becomes possible with the help of Google Play services, which facilitates
adding location awareness to your app with automated location tracking,

geofencing, and activity recognition.
This tutorial shows you how to use Location Services in your APP to get the
current location, get periodic location updates, look up addresses etc.

The Location Object

The Location object represents a geographic location which can consist of a
latitude, longitude, time stamp, and other information such as bearing, altitude
and velocity. There are following important methods which you can use with

Location object to get location specific information -

Sr.No. Method & Description

1 float distanceTo(Location dest)
Returns the approximate distance in meters between this location and
the given location.
2 float getAccuracy()
Get the estimated accuracy of this location, in meters.
3 double getAltitude()
Get the altitude if available, in meters above sea level.
4

float getBearing()

10

11

12

13

Get the bearing, in degrees.

double getLatitude()

Get the latitude, in degrees.

double getLongitude()

Get the longitude, in degrees.

float getSpeed()

Get the speed if it is available, in meters/second over ground.

boolean hasAccuracy()

True if this location has an accuracy.

boolean hasAltitude()

True if this location has an altitude.

boolean hasBearing()

True if this location has a bearing.

boolean hasSpeed()

True if this location has a speed.

void reset()

Clears the contents of the location.

void setAccuracy(float accuracy)

Set the estimated accuracy of this location, meters.

14 yoid setAltitude(double altitude)

Set the altitude, in meters above sea level.

15 void setBearing(float bearing)
Set the bearing, in degrees.
16 void setLatitude(double latitude)
Set the latitude, in degrees.
17 void setLongitude(double longitude)
Set the longitude, in degrees.
18 -
void setSpeed(float speed)
Set the speed, in meters/second over ground.
19

String toString()

Returns a string containing a concise, human-readable description of this

object.

Get the Current Location

To get the current location, create a location client which
is LocationClient object, connect it to Location Services using connect() method,
and then call its getLastLocation() method. This method returns the most
recent location in the form of Location object that contains latitude and
longitude coordinates and other information as explained above. To have
location based functionality in your activity, you will have to implement two

interfaces -

. GooglePlayServicesClient.ConnectionCallbacks

. GooglePlayServicesClient.OnConnectionFailedListener

These interfaces provide following important callback methods, which you need

to implement in your activity class -

Sr.No. Callback Methods & Description

abstract void onConnected(Bundle connectionHint)

This callback method is called when location service is connected to the
location client successfully. You will use connect() method to connect to

the location client.

abstract void onDisconnected()

This callback method is called when the client is disconnected. You will

use disconnect() method to disconnect from the location client.

abstract void onConnectionFailed(ConnectionResult result)

This callback method is called when there was an error connecting the

client to the service.

You should create the location client in onCreate() method of
your activity class, then connect it in onStart(), so that Location
Services maintains the current location while your activity is fully
visible. You should disconnect the client in onStop() method, so
that when your app is not visible, Location Services is not
maintaining the current location. This helps in saving battery

power up-to a large extent.

Get the Updated Location

If you are willing to have location updates, then apart from above mentioned

interfaces, you will need to implement LocationListener interface as well. This

interface provide following callback method, which you need to implement in

your activity class -

Sr.No. Callback Method & Description

abstract void onLocationChanged(Location location)

This callback method is used for receiving notifications from the

LocationClient when the location has changed.

Location Quality of Service

The LocationRequest object is used to request a quality of service (QoS) for
location updates from the LocationClient. There are following useful setter
methods which you can use to handle QoS. There are equivalent getter methods

available which you can check in Android official documentation.

Sr.No. Method & Description

1 setExpirationDuration(long millis)
Set the duration of this request, in milliseconds.
2 setExpirationTime(long millis)
Set the request expiration time, in millisecond since boot.
3 setFastestinterval(long millis)
Explicitly set the fastest interval for location updates, in milliseconds.
4 setlnterval(long millis)
Set the desired interval for active location updates, in milliseconds.
5

setNumUpdates(int numUpdates)

Set the number of location updates.

setPriority(int priority)

Set the priority of the request.

Now for example, if your application wants high accuracy location it should
create a location request with setPriority(int) set to
PRIORITY_HIGH_ACCURACY and setInterval(long) to 5 seconds. You can also
use bigger interval and/or other priorities like PRIORITY_LOW_POWER for to
request "city" level accuracy or PRIORITY_BALANCED_POWER_ACCURACY for

"block" level accuracy.

Activities should strongly consider removing all location request
when entering the background (for example at onPause()), or at
least swap the request to a larger interval and lower quality to

save power consumption.

Displaying a Location Address

Once you have Location object, you can
use Geocoder.getFromLocation() method to get an address for a given latitude
and longitude. This method is synchronous, and may take a long time to do its
work, so you should call the method from the doInBackground() method of

an AsyncTask class.

The AsyncTask must be subclassed to be used and the subclass will
override doInBackground(Params...) method to perform a task in the
background and onPostExecute(Result) method is invoked on the Ul thread
after the background computation finishes and at the time to display the result.
There is one more important method available in AyncTask which
is execute(Params... params), this method executes the task with the specified

parameters.

Example

Following example shows you in practical how to to use Location Services in

your app to get the current location and its equivalent addresses etc.

To experiment with this example, you will need actual Mobile
device equipped with latest Android OS, otherwise you will have

to struggle with emulator which may not work.

Create Android Application

Step

Description

You will use Android studio IDE to create an Android application and name
it as Tutorialspoint under a

package com.example.tutorialspoint7.myapplication.
add src/GPSTracker.java file and add required code.

Modify src/MainActivity.java file and add required code as shown below to

take care of getting current location and its equivalent address.

Modify layout XML file res/layout/activity_ main.xmlto add all GUI
components which include three buttons and two text views to show

location/address.
Modify res/values/strings.xml to define required constant values
Modify AndroidManifest.xml as shown below

Run the application to launch Android emulator and verify the result of the

changes done in the application.

Following is the content of the modified main activity file MainActivity.java.

‘ package com.example.tutorialspoint7.myapplication; ‘

‘ import

android.Manifest;import android.app.Activity;import ‘

‘ android.os.Bundle;import android.support.v4.app.ActivityCompat;import‘

android.test mock.MockPackageManager;import android.view.View;import
android.widget.Button;import android.widget.Toast;

public class MainActivity extends Activity {

Button btnShowLocation;
private static final int REQUEST_CODE_PERMISSION = 2;
String mPermission = Manifest.permission.ACCESS_FINE_LOCATION;

// GPSTracker class
GPSTracker gps;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

try {

if (ActivityCompat.checkSelfPermission(this, mPermission)

I= MockPackageManager.PERMISSION_GRANTED) {

ActivityCompat.requestPermissions(this, new String[|{mPermission},

REQUEST_CODE_PERMISSION);

// lIf any permission above not allowed by user, this condition will

execute every time, else your else part will work

}
} catch (Exception e) {

e.printStackTrace();

}

btnShowLocation = (Button) findViewByld(R.id.button);

// show location button click event

btnShowLocation.setOnClickListener(new View.OnClickListener() {

@OQOverride
public void onClick(View arg0) {
// create class object

gps = new GPSTracker(MainActivity.this);

// check if GPS enabled
if(gps.canGetLocation()){

double latitude = gps.getLatitude();
double longitude = gps.getLongitude();

// \nis for new line
Toast.makeText(getApplicationContext(), "Your Location is - \nLat: "
+ latitude + "\nLong: " + longitude, Toast LENGTH_LONG).show();

telse{

// can't get location

// GPS or Network is not enabled

// Ask user to enable GPS/network in settings

gps.showSettingsAlert();

}

}
1
1

Following is the content of the modified main activity file GPSTracker.java.

package com.example.tutorialspoint7.myapplication;

import android.app.AlertDialog;import android.app.Service;import
android.content.Context;import android.content.Dialoglnterface;import
android.content.Intent;import android.location.Location;import

android.location.LocationListener;import

android.location.LocationManager;import android.os.Bundle;import
android.os.IBinder;import android.provider.Settings;import android.util. Log;

public class GPSTracker extends Service implements LocationListener {

private final Context mContext;

// flag for GPS status
boolean isGPSEnabled = false;

// flag for network status

boolean isNetworkEnabled = false;

// flag for GPS status

boolean canGetLocation = false;

Location location; // location
double latitude; // latitude

double longitude; // longitude

// The minimum distance to change Updates in meters
private static final long MIN_DISTANCE_CHANGE_FOR_UPDATES = 10; // 10

meters

// The minimum time between updates in milliseconds

private static final long MIN_TIME_BW_UPDATES = 1000 * 60 *1; // 1 minute

// Declaring a Location Manager

protected LocationManager locationManager;

public GPSTracker(Context context) {
this.mContext = context;

getLocation();

}

public Location getLocation() {
try {
locationManager = (LocationManager)

mContext.getSystemService(LOCATION_SERVICE);

// getting GPS status
isGPSEnabled _
locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER);

// getting network status
isNetworkEnabled = locationManager

isProviderEnabled(LocationManager. NETWORK_PROVIDER);

if (lisGPSEnabled && !isNetworkEnabled) {
// no network provider is enabled
telse {
this.canGetLocation = true;
// First get location from Network Provider
if (isNetworkEnabled) {
locationManager.requestLocationUpdates(
LocationManager NETWORK_PROVIDER,
MIN_TIME_BW_UPDATES,
MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

Log.d("Network", "Network");
if (locationManager != null) {

location = locationManager

.getLastKnownLocation(LocationManager. NETWORK_PROVIDER);

if (location != null) {
latitude = location.getLatitude();
longitude = location.getLongitude();

// if GPS Enabled get lat/long using GPS Services
if (isGPSEnabled) {
if (location == null) {
locationManager.requestLocationUpdates(
LocationManager.GPS_PROVIDER,
MIN_TIME_BW_UPDATES,
MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

Log.d("GPS Enabled", "GPS Enabled");
if (locationManager != null) {
location = locationManager

.getLastKnownLocation(LocationManager.GPS_PROVIDER);

if (location != null) {
latitude = location.getLatitude();
longitude = location.getLongitude();

}
}
}
}
}

} catch (Exception e) {
e.printStackTrace();

}

return location;

/**
* Stop using GPS listener
* Calling this function will stop using GPS in your app

**/

public void stopUsingGPS(){
if(locationManager != null){

locationManager.removeUpdates(GPSTracker.this);

}
}

/**
* Function to get latitude

**/

public double getLatitude(){
if(location != null){

latitude = location.getLatitude();

}

// return latitude

return latitude;

}

/**

* Function to get longitude

**/

public double getLongitude(){
if(location != null){

longitude = location.getLongitude();

}

// return longitude

return longitude;

}

/**
* Function to check GPS/wifi enabled

* @return boolean

**/

public boolean canGetLocation() {

return this.canGetLocation;

}

/**
* Function to show settings alert dialog

* On pressing Settings button will lauch Settings Options
* */

public void showSettingsAlert(){
AlertDialog.Builder alertDialog = new AlertDialog.Builder(mContext);

// Setting Dialog Title
alertDialog.setTitle("GPS is settings");

// Setting Dialog Message
alertDialog.setMessage("GPS is not enabled. Do you want to go to settings

menu?");

// On pressing Settings button
alertDialog.setPositiveButton("Settings”, new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,int which) {

Intent intent =

Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

}
1

//

mContext.startActivity(intent);

on pressing cancel button

alertDialog.setNegativeButton("Cancel”,

DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

}
s

/!

dialog.cancel();

Showing Alert Message

alertDialog.show();

}

@Override

public void onLocationChanged(Location location) {

}

@Override

public void onProviderDisabled(String provider) {

}

@Override

public void onProviderEnabled(String provider) {

}

@Override

public void onStatusChanged(String provider, int status, Bundle extras) {

}

new

new

@OQOverride
public IBinder onBind (Intent arg0) {

return null;

1

Following will be the content of res/layout/activity_main.xml file -

<?xml version = "1.0" encoding = "utf-8"?><LinearLayout xmlns:android =
"http://schemas.android.com/apk/res/android"

android:layout_width = "fill_parent"

android:layout_height = "fill_parent"

android:orientation = "vertical" >

<Button
android:id = "@+id/button”
android:layout_width = "fill_parent"
android:layout_height = "wrap_content”
android:text = "getlocation" />

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new

constants -

<?xml version = "1.0" encoding = "utf-8"7><resources>

<string name = "app_name">Tutorialspoint</string></resources>

Following is the default content of AndroidManifest.xml -

<?xml version = "1.0" encoding = "utf-8"7><manifest xmlns:android
"http://schemas.android.com/apk/res/android"

package = "com.example.tutorialspoint7.myapplication">

<uses-permission android:name =
"android.permission.ACCESS_FINE_LOCATION" />

<uses-permission android:name = "android.permission.INTERNET" />

<application

android:allowBackup = "true"
android:icon = "@mipmap/ic_launcher”
android:label = "@string/app_name"
android:supportsRtl = "true"

android:theme = "@style/AppTheme">

<activity android:name = ".MainActivity">
<intent-filter>

<action android:name = "android.intent.action.MAIN" />

<category android:name = "android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Let's try to run your Tutorialspoint application. I assume that, you have
connected your actual Android Mobile device with your computer. To run the
app from Android Studio, open one of your project's activity files and click
Run @ icon from the toolbar. Before starting your application, Android studio
installer will display following window to select an option where you want to run

your Android application.

=N 3 v .4 @ 1208

GETLOCATION

Now to see location select Get Location Button which will display location

information as follows -

e 3 v .4 0 1208

GETLOCATION

Your Location is -
Lat: 17.4382899
Long: 78.3956938

	The Location Object
	Get the Current Location
	Get the Updated Location
	Location Quality of Service
	Displaying a Location Address
	Example
	Create Android Application

