

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – II **Short Circuit Studies Symmetrical Components**

FAULTS

FAULTS

- Electrical power systems are growing in size and complexity in all sectors such as generation, transmission and distribution.
- Types of faults like short circuit condition in power system network results in severe economic losses and reduces reliability of the electrical system.
- Electrical faults is an abnormal condition caused by equipment failures such as transformers and rotating machines , human errors and environmental conditions.
- These faults case interruption to electric power flows and equipment damages.

Types of Fault

- **Electrical Faults:**
 - Deviation of Voltage and current from nominal values.
 - It causes excessively high currents to flow which causes the damage to equipments and
 - devices.
 - Fault detection and analysis is necessary to design a suitable switchgears, relays and protection devices.

There are mainly two types of faults in electrical power system:

Symmetrical

Unsymmetrical

Symmetrical Fault

- These are very severe faults and occurs infrequently in the power system.
- These are also called a balanced faults and are of two types namely

Line – Line – Line – Ground (L-L-L-G)

Line – Line – Line (L-L-L)

If these faults occur system remains balanced but results in severe damage to the electrical power system equipments.

Symmetrical Faults

LLL Fault

UNSYMMETRICAL FAULTS

- These are very common and less severe than symmetrical faults.
- These are of three types •
 - Line Ground (L-G) _
 - Line Line (L-L) _
 - Double Line Ground (LL-G) _

LINE – GROUND (L-G) FAULTS

- This is most common type of fault and 60 to 70 % of fault are of this type. •
- It causes the conductor to make contact with earth or ground. •

•

DOUBLE LINE – GROUND (LL-G) FAULTS

- 15 to 20 % faults are of this type.
- It make 2 conductors to contact with ground. •

LLG Fault

•

•

LINE – LINE (L-L) FAULTS

- 5 to 10 % faults are of this type.
- When two conductors makes contact with each other , especially while swinging of lines happens.

LLG Fault

Causes of Faults

- Weather Conditions
- Equipment Failures
- Human Errors
- Smoke of Fires

Effects of Electrical Faults

- Over Current Flow
- Danger of operating personnel •
- Lost of equipment
- Disturbs interconnected active circuits •

ASSESMENT

- What percentage of fault occurring in the power system is line to line fault? 1. 5% 30% 25%
 - 15%

ASSESMENT

2. What happens to the value of the fault current in case of SLG fault, if fault impedance is introduced?

a.The fault current increase

- b. The fault current remains same as in case of SLG fault.
- c. The fault current becomes zero
- d. The fault current is reduced

Short Circuit Studies

