

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – III **GAUSS SEIDAL METHOD**

GAUSS SEIDEL METHOD

Algorithm

Step 1:	
	Assume a flat voltage profile 1+j0 for all bu
Step 2:	
	Assume a suitable value of convergence crit
Step 3:	
	Set iteration count k=0 and assume V10 V20
slack bus.	
Step 4:	
	Set bus count p=1
Step 5:	

Check for slack bus. If it is slack bus then go to step-12, otherwise go to next step.

uses except slack bus

iterion ϵ

 $^{0}V_{3}^{0}$ V_n⁰ except

Step 6: Check for generator bus. If it is generator bus go to next step, otherwise go to step 9

Step 7:

Set $|V_p^k| = |V_p|_{spec}$ calculate the reactive power by,

$$Q_{p,cal}^{k+1} = (-1) \operatorname{im} \{ (V_P^k)^* \times [\sum_{q=1}^{p-1} Y_{pq} V_q^{k+1}] \}$$

If the calculated reactive power is within specified limits then consider this bus as generator bus and set $Q_P = Q_{p,cal}^{k+1}$ and go to next step.

$^{1} + \sum_{a=p}^{n} Y_{pa} v_{a}^{k} \}$

If calculated Q violates the specified limit then treat this bus as load bus

if
$$Q_{p,cal}^{k+1} < Q_{p,min}$$

 $Q_{p,cal}^{k+1} > Q_{p,max}$

go to step-9 **Step 8:**

For generator bus the voltage magnitude is constant. The phase of bus voltage calculated by,

$$V_{p,temp}^{k+1} \frac{1}{Y_{pp}} \left[\frac{P_{p-Qp}}{\left(V_{p}^{k}\right)^{*}} - \sum_{q=1}^{p-1} Y_{pq} V_{q}^{k+1} \right]$$

in then $Q_p = Q_{p,min}$ then $Q_p = Q_{p,max}$

$$\sum_{q=p+1}^{n} Y_{pq} v_q^k \bigg]$$

Step 9: For the load bus the value of voltage can be calculated by,

$$V_{p}^{k+1} = \frac{1}{Y_{pp}} \left[\frac{P_{p-Qp}}{(V_{p}^{k})^{*}} - \sum_{q=1}^{p-1} Y_{pq} V_{q}^{k+1} - \sum_{q=1}^{p-1} Y_{q}^{k+1} - \sum_{q=1}^{p-1} Y_{q}^{k+$$

Step 10: An acceleration factor α can be used for faster convergence. $V_{p,acc}^{k+1} = V_p^{k+\alpha}(V_p^{k+1} - V_p^{k})$

Then set,

$$\mathbf{V}_{\mathbf{p}}^{\mathbf{k}+1} = \mathbf{V}_{\mathbf{p},\mathbf{acc}}^{\mathbf{k}+1}$$

Step 11:

Calculate,
$$\Delta V_p^{k+1} = V_p^{k+1} - V_p^k$$

Step 12:

Repeat steps 5 to 11 until all the bus voltages have been calculated. Continue until bus count is n.

be calculated by, $\sum_{q=p+1}^{n} Y_{pq} v_q^k \bigg|$ faster convergence.

α=1.6

Step 13:

Find the largest of the absolute value of change in voltage. $|\Delta V_{max}| < \varepsilon$ then move to next step. Otherwise increment the iteration count and go to step-4.

Step-14

Calculate the line flows and slack bus power using bus voltages.

ASSESSMENT

- In Gauss Seidel method of power flow problem , the number of iteration 1.
- Depends on number of busses a)
- Depends on tolerance b)
- Depends on voltage control busses c)
- Remains fixed d)

ASSESSMENT

2. List some disadvantages of G-S method

Increases the number of iterations with increased number of buses. Slow rate of convergence thus large number of iterations.

GAUSS SEIDEL METHOD

