

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT – V
Stability Studies and Reactive Power
Swing Equation of Synchronous Machine

- Under normal operating conditions, the relative position of the rotor axis and the resultant magnetic field axis is fixed.
- > The angle between the two is known as the power angle and torque angle.
- During any disturbance, the rotor decelerates or accelerates with respect to the synchronously rotating air gap mmf, creating relative motion.
- The equation describing the relative motion is known as swing equation, which is non linear second order differential equation that describes the swing of the rotor of synchronous machine.

- > A synchronous generator s driven by prime mover.
- > The equation governing the rotor motion is given by :

$$J\frac{d^2\theta_m}{dt^2} = T_m - T_e = T_a - 1$$

- Where
 - > J is the total moment of inertia of the rotor mass in kg
 - Tm is the mechanical torque supplied by prime mover in N-m
 - Te is electrical torque output of alternator in N-m

$$\left(J\left(\frac{2}{P}\right)^2 \omega_S \times 10^{-6}\right) \frac{d^2 \theta_e}{dt^2} = P_m - P_e \quad \text{MW}.....3$$

> The above equation can be rewritten as,

$$\mathbf{M} = J \left(\frac{2}{P}\right)^{2} \omega_{s} \times \mathbf{10^{-6}} \text{ moment of inertia in MJ. S/(elect rad)}$$

$$M \frac{d^{2}\theta_{e}}{dt^{2}} = P_{m} - P_{e} \quad \text{MW 4}$$

$$\delta = \theta_{e} - \omega_{s}T................5$$

Rotor angle displacement from synchronously rotating frame called as torque angle or power angle.

$$\frac{d^2\delta}{dt^2} = \frac{d^2\theta_e}{dt^2}.....6$$

$$M\frac{d^2\delta}{dt^2} = P_m - P_e \dots 7$$

> The above equation is called swing equation of synchronous alternator.

ASSESSMENT

- 1. For coherent machines the equivalent inertia constant (H) is given by
- H1H2
- H1 H2
- H1 + H2
- H1 / H2

ASSESSMENT

- 2. Equal area criterion and swing equation are used for ______stability respectively.
- Steady state, Transient
- Transient , Steady state
- Both are used for steady state stability
- Both are used for transient stability

