

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

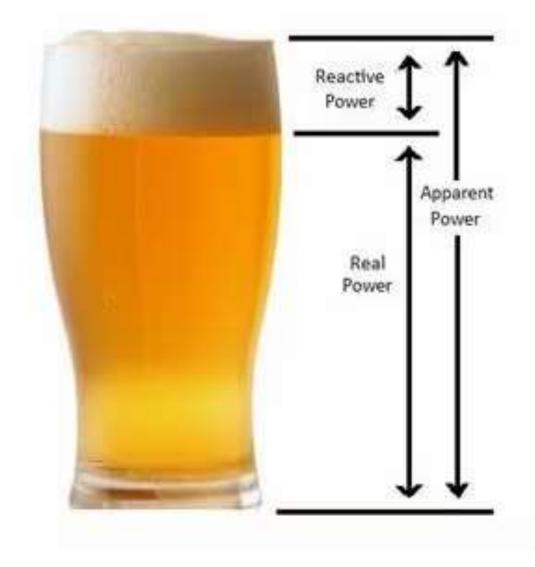
UNIT - V**Stability Studies and Reactive Power Compensation Overview of Reactive Power Control**

CONTENTS

- Introduction to power
- > Type of power
- > Analogy of power
- Need for reactive power compensation
- Compensation Techniques

POWER

- > Electrical power is the rate which electrical energy is transferred by an electrical circuit.
- > Generally electrical energy is produced at 11kV with the help of synchronous generators.
- > Then in step up level 132kV,220kV,440kV and 765kV transmitted to grid.


Types of POWER

- > Active Power (kW) is working power also called as Actual power or active power. It is the power which actually powers the equipment and performs useful work.
- > **Reactive Power (kVAR)** is the power that magnetic equipment needs to produce magnetic flux.
- > Apparent Power (kVA) is the vectorical summation of kVAR and kW.

Types of POWER

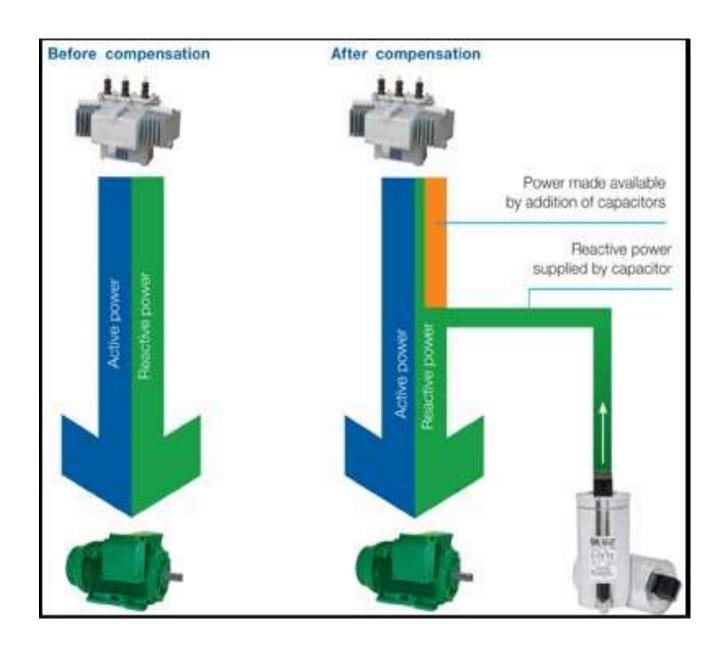
NEED FOR REACTIVE POWER COMPENSATION

- > Improves system power factor
- > Reduces network losses
- > Reduces cost and generates higher revenue to customers.
- Increase system capacity and saves cost for new installations.
- > Improves voltage regulation in the network
- > Increases power availability

e to customers. r new installations. k

REACTIVE POWER COMPENSATION

- Reactive power compensation is defined as the management of reactive power to improve the performance of AC Systems.
- > There are two aspects:
 - Load compensation
 - > Line compensation


REACTIVE POWER COMPENSATION

- Load Compensation : Objective is to increase the power factor of the system to balance real power drawn from the system
 - Compensate voltage regulation to eliminate current harmonics
- Line Compensation : Main purpose is to decrease the voltage fluctuation at a given terminal of transmission line.
 - Improves the stability of AC System by increasing the maximum active power that can be transmited.

REACTIVE POWER COMPENSATION

ASSESSMENT

1. The instantaneous voltage wave in the long transmission line is a function of _____

- time and distance •
- time •
- distance •
- time, distance and reactive inductance •

ASSESSMENT

2. At any point along the line, the instantaneous voltage is _____

- sum of incident and reflected voltage
- incident voltage
 sum of incident and refracted voltage
 twice the incident voltage

