

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE605 PROTECTION AND SWITCHGEAR

III YEAR /VI SEMESTER

Unit 2- ELECTROMAGNETIC RELAY

Topic: Induction Type Directional Overcurrent Relay

Induction Type Directional Overcurrent Relay

- > The directional power relay discussed above is unsuitable for use as a directional protective relay under short-circuit conditions.
- > When a short-circuit occurs, the system voltage falls to a low value and there may be insufficient torque developed in the relay to cause its operation.
- > This difficulty is overcome in the directional overcurrent relay which is designed to be almost independent of system voltage and power factor.

7/24/2024

ELECTROMAGNETIC RELAY/19EE605-PROTECTION AND SWITCHGEAR/MANI V/ EEE / SNSCE

Constructional details.

- It consists of two relay elements mounted on a common case *viz*. (*i*) directional element and (*ii*) non-directional element.
 (*i*) *Directional element*.
- > It is essentially a directional power relay which operates when power flows in a specific direction.
- > The potential coil of this element is connected through a potential transformer (P.T.) to the system voltage.
- > The current coil of the element is energised through a C.T. by the circuit current.
- > This winding is carried over the upper magnet of the non-directional element.
- The trip contacts (1 and 2) of the directional element are connected in series with the secondary circuit of the overcurrent element.
- > Therefore, the latter element cannot start to operate until its secondary circuit is completed.
- In other words, the directional element must operate first (*i.e.* contacts 1 and 2 should close) in order to operate the overcurrent element.

7/24/2024

(ii) Non-directional element.

- (trip circuit contacts) after the operation of directional element.
- > It is an overcurrent element similar in all respects to a non-directional overcurrent relay. > The spindle of the disc of this element carries a moving contact which closes the fixed contacts
- > It may be noted that plug-setting bridge is also provided in the relay for current setting but has been omitted in the figure for clarity and simplicity.
- > The tappings are provided on the upper magnet of overcurrent element and are connected to the bridge.

Operation.

- Under normal operating conditions, power flows in the normal direction in the circuit protected by the relay.
- Therefore, directional power relay (upper element) does not operate, thereby keeping the overcurrent element (lower element) unenergised.
- > However, when a short-circuit occurs, there is a tendency for the current or power to flow in the reverse direction.
- Should this happen, the disc of the upper element rotates to bridge the fixed contacts 1 and 2.
- This completes the circuit for overcurrent element.
- The disc of this element rotates and the moving contact attached to it closes the trip circuit.
- This operates the circuit breaker which isolates the faulty section.
- > The two relay elements are so arranged that final tripping of the current controlled by them is not made till the following conditions are satisfied :
 - (*i*) current flows in a direction such as to operate the directional element.
 - (*ii*) current in the reverse direction exceeds the pre-set value.
 - (*iii*) excessive current persists for a period corresponding to the time setting of overcurrent element.

7/24/2024

ELECTROMAGNETIC RELAY/19EE605-PROTECTION AND SWITCHGEAR/MANI V/ EEE / SNSCE

Directional relays distinguish between:

- A. Fault current and load current
- B. AC and DC currents
- C. Single-phase and three-phase faults
- D. Forward and reverse power flow.

References

1. SuniS Rao, "Switchgear, Protection and Power System (Theory, Practice & Solved Problems)", Khanna Publishers, New Delhi, 2019.

2. Paithankar Y G, Bhide S R, "Fundamentals of Power System Protection", Prentice Hall of India Pvt Ltd., New Delhi, 2nd Edition, 2014.

3.Badriram, Vishwakarma B.H, "Power System Protection and Switchgear", New Age International Pvt Ltd Publishers, 2nd Edition 2017. **Thank You**

