

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EE605 PROTECTION AND SWITCHGEAR

III YEAR /VI SEMESTER

Unit 3 APPARATUS PROTECTION

Topic: Protection of Alternator

- > The generating units, especially the larger ones, are relatively few in number and higher in individual cost than most other equipments.
- > Therefore, it is desirable and necessary to provide protection to cover the wide range of faults which may occur in the modern generating plant.
- > Some of the important faults which may occur on an alternator are :
 - (i) failure of prime-mover
 - (ii) failure of field
 - (iii) overcurrent
 - (iv) overspeed
 - (v) overvoltage
 - (vi) unbalanced loading
 - (vii) stator winding faults

(i) Failure of prime-mover.

- > When input to the prime-mover fails, the alternator runs as a synchronous motor and draws some current from the supply system.
- > This motoring conditions is known as "inverted running".

(ii) Failure of field.

- > The chances of field failure of alternators are undoubtedly very rare.
- > Even if it does occur, no immediate damage will be caused by permitting the alternator to run without a field for a short-period.
- > It is sufficient to rely on the control room attendant to disconnect the faulty alternator manually from the system bus-bars.
- > Therefore, it is a universal practice not to provide †automatic protection against this contingency.

(iii) Overcurrent.

- > It occurs mainly due to partial breakdown of winding insulation or due to overload on the supply system.
- > Overcurrent protection for alternators is considered unnecessary

(iv) Overspeed.

- > The chief cause of overspeed is the sudden loss of all or the major part of load on the alternator.
- > Modern alternators are usually provided with mechanical centrifugal devices mounted on their driving shafts to trip the main valve of the prime-mover when a dangerous overspeed occurs.

(v) Over-voltage.

- > The field excitation system of modern alternators is so designed that overvoltage conditions at normal running speeds cannot occur.
- > However, overvoltage in an alternator occurs when speed of the prime-mover increases due to sudden loss of the alternator load.
- > In case of steam-turbine driven alternators, the control governors are very sensitive to speed variations.
- > They exercise a continuous check on overspeed and thus prevent the occurrence of overvoltage on the generating unit.
- > Therefore, over-voltage protection is not provided on turbo-alternator sets.

(vi) Unbalanced loading.

- > Unbalanced loading means that there are different phase currents in the alternator.
- > Unbalanced loading arises from faults to earth or faults between phases on the circuit external to the alternator.
- > The unbalanced currents, if allowed to persist, may either severely burn the mechanical fixings of the rotor core or damage the field winding.

(vii) Stator winding faults.

- > These faults occur mainly due to the insulation failure of the stator windings.
- > The main types of stator winding faults, in order of importance are :
 - (a) fault between phase and ground
 - (b) fault between phases
 - (c) inter-turn fault involving turns of the same phase winding

Assessment

In an alternator the voltage of field system is usually

- A.More than 1000 V
- B.Between 400 V and 600 V
- C.Less than 200 V.
- D.None of the above

References

1. SuniS Rao, "Switchgear, Protection and Power System (Theory, Practice & Solved Problems)", Khanna Publishers, New Delhi, 2019.

2. Paithankar Y G, Bhide S R, "Fundamentals of Power System Protection", Prentice Hall of India Pvt Ltd., New Delhi, 2nd Edition, 2014.

3. Badriram, Vishwakarma B.H, "Power System Protection and Switchgear", New Age International Pvt Ltd Publishers, 2nd Edition 2017.

Thank You