

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EE605 PROTECTION AND SWITCHGEAR

III YEAR /VI SEMESTER

Unit 4- STATIC RELAYS AND NUMERICAL PROTECTION

Topic: Numerical Relay

Principles of Numerical Relay

Digital Processing

Utilizes digital signal processing for advanced functionality

Automated Diagnostics

Built-in self-monitoring and fault detection capabilities

Programmable Logic

Allows for custom programming and adaptability

Communication Capabilities

Integrated protocols for remote monitoring and control

Key Components of a Numerical Relay

Analog Inputs

Measure voltage, current, and other analog signals

Digital Processor

Performs complex calculations and decision-making algorithms

Input/Output Modules

Interface with circuit breakers and other devices

Protective Functions of Numerical Relays

Monitor for low voltage and initiate load

shedding

Advantages of Numerical Relays

1 Enhanced Accuracy

Digital processing provides precise measurement and tripping

3 Improved Reliability

Reduced moving parts and self-monitoring diagnostics

2 Flexibility

Easily programmable to adapt to changing system conditions

4 Remote Access

Enable remote monitoring, control, and data logging

Numerical Relay Applications

Generator Protection Transmissi

Safeguard generators from faults and abnormal conditions

Transmission Line Protection

Detect and isolate faults on electrical transmission lines

Differential Protection Scheme

Transformer Protection

Provide differential, overcurrent, and thermal protection for transformers

Numerical Relay Programming

Characterize System

Analyze network topology and protection requirements

Configure Settings

Customize relay parameters for optimal performance

Test and Validate

Verify relay operation under various fault scenarios

Communication and Integration

Network Connectivity

Enable real-time data exchange and remote access

Data Logging

Record events, faults, and operational data for analysis

Substation Automation

Integrate with SCADA systems for centralized control

Maintenance and Lifecycle Management

Firmware Updates

Leverage latest algorithms and security enhancements

Asset Management

Track relay health, age, and replacement planning

Periodic Testing

Validate relay performance and protection settings

Cybersecurity

Implement access controls and network security measures

The Future of Numerical Relays

Expanded Functionality	Integrated machine learning for enhanced analytics
Grid Modernization	Support for distributed energy resources and microgrids
Predictive Maintenance	Anticipate issues through advanced condition monitoring
Cybersecurity Advancements	Advanced authentication and resilience against cyber threats

Assessment

What is the primary function of a numerical relay in power systems?

- a) To regulate voltage levels
- b) b) To control power flow direction
- c) c) To protect electrical equipment from faults.
- d) d) To monitor frequency variations

References

1. Sunil S Rao, "Switchgear, Protection and Power System (Theory, Practice & Solved Problems)", Khanna Publishers, New Delhi, 2019.

2. Paithankar Y G, Bhide S R, "Fundamentals of Power System Protection", Prentice Hall of India Pvt Ltd., New Delhi, 2nd Edition, 2014.

3. Badriram, Vishwakarma B.H, "Power System Protection and Switchgear", New Age International Pvt Ltd Publishers, 2nd Edition 2017.

Thank You