

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EE605 PROTECTION AND SWITCHGEAR

III YEAR /VI SEMESTER

Unit 5- CIRCUIT BREAKER

Topic: Current Chopping

What is Current Chopping?

1 Rapid Interruption

Sudden and unintended interruption of current flow in a circuit

Voltage Spikes

Generation of highmagnitude transient overvoltages 3 Mechanical Switching

Occurs during mechanical operation of circuit breakers

Causes of Current Chopping

Capacitive Loads

Abrupt current interruption in capacitive circuits

Inductive Loads

High di/dt at current zerocrossings

Arcing Phenomena

Instability and irregular arc extinction

Impacts of Current Chopping

Transient Overvoltages

Can damage insulation and equipment

Power Quality Issues

Disruption of sensitive electronic loads

Mechanical Stresses

Cause fatigue and weakening of components

System Reliability

Increased risk of outages and failures

Mitigating Current Chopping

1 Surge Arresters

Provide overvoltage protection for equipment

2 Damping Circuits

Absorb and dissipate transient energy

Controlled Switching

Synchronize breaker operation with load conditions

Impact on Power System Design

Equipment Ratings

Increased insulation and surge withstand requirements

Transformer Design

Adequate winding protection against transients

Circuit Breaker Selection

Choosing models with better current chopping performance

Simulation and Analysis

Evaluate magnitude and duration of spikes

Current Profiles

Assess di/dt and chopping characteristics

EMTP Modeling

Detailed simulation of system behavior

| 0g 7/24/202

Testing and Validation

Laboratory Tests

Controlled evaluation of breakers and components

Field Measurements

Monitoring real-world system performance

Model Validation

Correlate simulation results with test data

19EE605-PROTECTION AND SWITCHGEAR/MANI V/ EEE / SNSCE

Future Trends

Wide Bandgap Devices

Improved current interruption capabilities

Adaptive Protection

Dynamic adjustment to changing conditions

Renewable Integration

Mitigating current chopping in inverter-based systems

Assessment

What phenomenon occurs when a circuit breaker interrupts a high-current circuit abruptly?

- a) Voltage surging
- b) Current chopping.
- c) Power loss
- d) Capacitive coupling

References

1. Sunil S Rao, "Switchgear, Protection and Power System (Theory, Practice & Solved Problems)", Khanna Publishers, New Delhi, 2019.

2. Paithankar Y G, Bhide S R, "Fundamentals of Power System Protection", Prentice Hall of India Pvt Ltd., New Delhi, 2nd Edition, 2014.

3. Badriram, Vishwakarma B.H, "Power System Protection and Switchgear", New Age International Pvt Ltd Publishers, 2nd Edition 2017.

Thank You