SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai
Department of Information Technology

Computer Graphics

Unit 1 : INTRODUCTION TO COMPUTER GRAPHICS

Topic :OPENGL Basics Primitives

Prepared By
R.Vaishnavi.,AP/IT

SNSCE.

OPENGL

$>$ A low-level graphics library specification.
$>$ OpenGL (Open Graphics Library) is a widely used graphics API (Application Programming Interface) that allows developers to create 2D and 3D graphics in various applications, including video games, simulations, and graphical user interfaces.
> A small set of geometric primitives
\square Points
\square Lines
P Polygons
\square Images
\square Bitmaps

Geometric primitives

Image primitives

Abstractions

Windowing toolkit (key, mouse GLUT handler, window events)

- Primitives - points, line, polygons
- Shading and Colour
- Translation, rotation, scaling
- Viewing, Clipping, Texture
- Hidden surface removal

OpenGL Architecture

TYPES OF OPENGL FUNCTIONS

- Setting Functions
- Enable/disable functionality
- Control OpenGL state
- Example: alpha, transforms
- glEnable(capability);
- glDisable(capability);
- glLightfv(light, pName, pValue);
- glTranslate($\mathrm{x}, \mathrm{y}, \mathrm{z}$);
- glVertexPointer(...);
- glGenTextures(size, names);
- glDeleteTextures(size, names);
- glTexImage2D(target, level,...);
- glBegin()/glEnd()
- glVertex3f(x,y,z);
- glDrawElements(...);

OpenGL Primitives

1. GL_POINTS:

$>$ Treats each vertex as a single point.
$>$ Vertex n defines a point n .
$>\mathrm{N}$ points are drawn.

$$
\begin{gathered}
\text { glBegin }\left(G L_{P} O I N T S\right) ; \\
\text { glVertex } 2 f(x 1, y 1) ; \\
\text { glEnd }()
\end{gathered}
$$

2. GL_LINES:

$>$ Treats each pair of vertices as an independent line segment.
$>$ Vertices $2 \mathrm{n}-1$ and 2 n define a line n .
$>\mathrm{N} / 2$ lines are drawn.

```
glBegin(GL_L INES);
    glVertex 2f(x1,y1);
    glVertex 2f(x2,y2);
    glEnd();
```


3. GL_LINE_STRIP:

> Draws a connected group of line segments from the first vertex to the last.
$>$ Vertices n and $\mathrm{n}+1$ define line n .
> N -1 lines are drawn.

```
glBegin(GLLLINEESTRIP);
    glVertex 2f(x1,y1);
    glVertex 2f(x2,y2);
    glVertex 2f(x3,y3);
        glEnd();
```


4. GL_LINE_LOOP:

$>$ Draws a connected group of line segments from the first vertex to the last, then back to the first.
$>$ Vertices n and $\mathrm{n}+1$ define line n .
$>\mathrm{N}$ lines are drawn.

```
glBegin(GILINNELOOP);
    glVertex 2f(x1,y1);
    glVertex2f(x2, y2);
    glVertex 2f(x3, y3);
    glEnd();
```


5.GL_TRIANGLES:

> Treats each triplet of vertices as an independent triangle.
$>$ Vertices $3 n-2,3 n-1$, and $3 n$ define triangle n.
$>\mathrm{N} / 3$ triangles are drawn.

```
glBegin(GITRIANGLES);
glVertex2f(x1,y1);
glVertex 2f(x2, y2);
glVertex2f(x3,y3);
    glEnd();
```


6.GL_QUADS:

$>$ Treats each group of four vertices as an independent quadrilateral.
$>$ Vertices $4 n-3,4 n-2,4 n-1$, and $4 n$ define quadrilateral n.
$>$ N/4 quadrilaterals are drawn.

```
glBegin(GIQUADS);
    g\Vertex2f(x1,y1);
    glVertex2f(x2,y2);
    g\Vertex2f(x3,y3);
    g}\mp@subsup{|}{\mathrm{ Vertex 2f(x4,y4);}}{3
        glEnd();
```


7. GL_TRIANGLE_STRIP:

$>$ Draws a connected group of triangles.
$>$ One triangle is defined for each vertex presented after the first two vertices.
$>$ For odd n, vertices $n, n+1$, and $n+2$ define triangle n.
$>$ For even n, vertices $n+1, n$, and $n+2$ define triangle n.
$>\mathrm{N}-2$ triangles are drawn.

$$
\begin{gathered}
\text { glBegin }\left(G L_{L} I N E S T R I P\right) ; \\
\text { glVertex } 2 f(x 1, y 1) ; \\
\text { glVertex } 2 f(x 2, y 2) ; \\
\text { glVertex } 2 f(x 3, y 3) ; \\
\text { glEnd })
\end{gathered}
$$

8.GL_TRIANGLE_FAN:

$>$ Draws a connected group of triangles that fan around a central point.
$>$ One triangle is defined for each vertex presented after the first two vertices.
$>$ Vertices $1, \mathrm{n}+1$, and $\mathrm{n}+2$ define triangle n .
$>\mathrm{N}-2$ triangles are drawn.

```
glBegin(GLTRIANGLEEFAN);
    glVertex 2f(x1,y1);
    glVertex2f(x2,y2);
    glVertex 2f(x3,y3);
    glVertex 2f(x4,y4);
        glEnd();
```


9.GL_QUAD_STRIP:

$>$ Draws a connected group of quadrilaterals.
$>$ One quadrilateral is defined for each pair of vertices presented after the first pair.
$>$ Vertices $2 \mathrm{n}-1,2 \mathrm{n}, 2 \mathrm{n}+2$, and $2 \mathrm{n}+1$ define quadrilateral n .
$>\mathrm{N} / 2-1$ quadrilaterals are drawn.

```
glBegin(GLQUADsTRIP);
    glVertex2f(x1,y1);
    glVertex2f(x2,y2);
    glVertex2f(x3,y3);
    glVertex2f(x4,y4);
    glVertex 2f(x5, y5);
    glVertex2f(x6,y6);
        glEnd();
```


10.GL_POLYGON:

$>$ Draws a single and convex polygon.
$>$ Vertices 1 through N define this polygon.
$>$ A polygon is convex if all points on the line segment between any two points in the polygon or at the boundary of the polygon lie inside the polygon.

$$
\begin{gathered}
\text { glBegin }\left(G L_{P} O L Y G O N\right) ; \\
\text { glVertex } 2 f(x 1, y 1) ; \\
\text { glVertex } 2 f(x 2, y 2) ; \\
\text { glVertex } 2 f(x 3, y 3) ; \\
\text { glVertex } 2 f(x 4, y 4) ; \\
\text { glVertex } 2 f(x 5, y 5) ; \\
\operatorname{glEnd}()
\end{gathered}
$$

