



# SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

**Department of Information Technology** 

### **Computer Graphics**

#### **Unit 1 : INTRODUCTION TO COMPUTER GRAPHICS**

#### **Topic : Line Drawing Algorithm**

Prepared By R.Vaishnavi.,AP/IT SNSCE.

R.Vaishnavi, AP/IT, SNSCE



# **Line Drawing Algorithm**

 $\Box$  The Line drawing algorithm is a graphical algorithm which is used to represent the line segment on discrete graphical media, i.e., printer and pixel-based media.

□ A line contains two points. The point is an important element of a line.

### **Properties of a Line Drawing Algorithm**

An algorithm should be precise: Each step of the algorithm must be adequately defined.

**Finiteness**: An algorithm must contain finiteness. It means the algorithm stops after the execution of all steps.

**Easy to understand**: An algorithm must help learners to understand the solution in a more natural way.

**Correctness**: An algorithm must be in the correct manner.







- Effectiveness: The steps of an algorithm must be valid and efficient.
- Uniqueness: All steps of an algorithm should be clearly and uniquely defined, and the result should be based on the given input.
- Input: A good algorithm must accept at least one or more input.
- **Output:** An algorithm must generate at least one output The formula for a slope line interception is:

Y = mx + b

In this formula, m is the slope line and b is the line's intercept of y. Two endpoints for the line segment are supplied in coordinates (x1, y1) and









# **Types of Line Drawing Algorithm**



- DDA (Digital Differential Analyzer) Line Drawing Algorithm
- Bresenham's Line Drawing Algorithm

# **DDA (Digital Differential Analyzer)**

• Digital Differential Analyzer algorithm is also known as an incremental method of scan conversion.

### Algorithm of Digital Differential Analyzer (DDA) Line Drawing

Step 1: Start.

- Step 2: We consider Starting point as (x1, y1), and ending point (x2, y2).
- Step 3: Now, we have to calculate  $\blacktriangle x$  and  $\blacktriangle y$ .

$$\blacktriangle x = x2 - x1 \quad \blacktriangle y = y2 - y1$$

$$m = \blacktriangle y / \blacktriangle x$$





**Step 4:** Now, we calculate three cases.

**Case 1:** If m < 1

xk+1 = xk + 1yk+1 = yk + m

**Case 2:** If m>1

yk+1 = yk + 1xk+1 = xk + 1/m

**Case 3:** If m=1

xk+1 = xk + 1yk+1 = yk + 1

Step 5: We will repeat step 4 until we find the ending point of the line.Step 6: Stop





Example: A line has a starting point (1,7) and ending point (11,17). Apply the Digital Differential Analyzer algorithm to plot a line.

Step 1: Consider Starting Point = (x1, y1) = (1,7)Ending Point = (x2, y2) = (11,17)



Step 2: calculate m

▲ 
$$x = x2 - x1 = 11 - 1 = 10$$
  
▲  $y = y2 - y1 = 17 - 7 = 10$   
 $m = ▲ y/ ▲ x = 10/10 = 1$ 



#### Step 3: We get m = 1, Third case is satisfied

| Xk | yk | <b>X</b> <sub>k+1</sub> | y <sub>k+1</sub> | $(x_{k+1}, y_{k+1})$ |
|----|----|-------------------------|------------------|----------------------|
| 1  | 7  | 2                       | 8                | (2, 8)               |
|    |    | 3                       | 9                | (3, 9)               |
|    |    | 4                       | 10               | (4, 10)              |
|    |    | 5                       | 11               | (5, 11)              |
|    |    | 6                       | 12               | (6, 12)              |
|    |    | 7                       | 13               | (7, 13)              |
|    |    | 8                       | 14               | (8, 14)              |
|    |    | 9                       | 15               | (9, 15)              |
|    |    | 10                      | 16               | (10, 16)             |
|    |    | 11                      | 17               | (11, 17)             |





Step 4: We will repeat step 3 until we get the endpoints of the line.Step 5: Stop.



#### The coordinates of drawn line are

| P1 = | (2, | 8)  |
|------|-----|-----|
| P2 = | (3, | 9)  |
| P3 = | (4, | 10) |
| P4 = | (5, | 11) |
| P5 = | (6, | 12) |

P6 = 
$$(7, 13)$$
  
P7 =  $(8, 14)$   
P8 =  $(9, 15)$   
P9 =  $(10, 16)$   
P10 =  $(11, 17)$ 







### **Bresenham's Line Drawing Algorithm :**

- STIS INSTITUTIONS
- ☐ This algorithm was introduced by "Jack Elton Bresenham" in 1962.
- $\Box$  This algorithm helps us to perform scan conversion of a line.
- $\Box$  It is a powerful, useful, and accurate method.
- □ We use incremental integer calculations to draw a line. The integer calculations include addition, subtraction, and multiplication.

### Algorithm of Bresenham's Line Drawing Algorithm

Step 1: Start.

**Step 2:** Now, we consider Starting point as (x1, y1) and ending point (x2, y2).





### **Step 3:** Now, we have to calculate $\blacktriangle x$ and $\blacktriangle y$ .

- $\blacktriangle x = x2-x1$
- **▲** y = y2-y1
- $m=\blacktriangle y/\blacktriangle x$

**Step 4:** Now, we will calculate the decision parameter pk with following formula.

 $pk = 2 \blacktriangle y - \bigstar x$ 

**Step 5:** The initial coordinates of the line are (xk, yk), and the next coordinates are (xk+1, yk+1).

Now, we are going to calculate two cases for decision parameter pk Case 1: If pk < 0 Then  $pk+1 = pk + 2 \blacktriangle y xk+1 = xk + 1 yk+1 = yk$ Case 2: If  $pk \ge 0$  Then  $pk+1 = pk + 2 \blacktriangle y - 2 \blacktriangle x xk+1 = xk + 1 yk+1 = yk + 1$ 





Step 6: We will repeat step 5 until we found the ending point of the line and the total number of iterations =  $\blacktriangle$  x-1. Step 7: Stop

**Example**: A line has a starting point (9,18) and ending point (14,22). Apply the Bresenham's Line Drawing algorithm to plot a line. **Step 1**:Consider, Starting Point = (x1, y1) = (9,18)Ending Point = (x2, y2) = (14,22)

**Step 2**: First, we calculate  $\blacktriangle x$ ,  $\blacktriangle y$ .

▲ 
$$x = x2 - x1 = 14 - 9 = 5$$

▲ y = y2 - y1 = 22 - 18 = 4



Step 4: Calculate the decision parameter (pk)

$$pk = 2 \blacktriangle y - \blacktriangle x = 2 x 4 - 5 = 3$$

The value of pk = 3

Step 5: Now, we will check both the cases.

If  $pk \ge 0$  Then Case 2 is satisfied. Thus  $pk+1 = pk + 2 \blacktriangle y-2 \blacktriangle x = 3 + (2 x 4) - (2 x 5) = 1$ xk+1 = xk + 1 = 9 + 1 = 10yk+1 = yk + 1 = 18 + 1 = 19

Step 6: Now move to next step. We will calculate the coordinates until

we reach the end point of the line.

Step 7: Stop







| p <sub>k</sub> | p <sub>k+1</sub> | X <sub>k+1</sub> | y <sub>k+1</sub> |
|----------------|------------------|------------------|------------------|
|                |                  | 9                | 18               |
| 3              | 1                | 10               | 19               |
| 1              | -1               | 11               | 20               |
| -1             | 7                | 12               | 20               |
| 7              | 5                | 13               | 21               |
| 5              | 3                | 14               | 22               |

The Coordinates of drawn lines are

| P1 = (9, 18)  | P4 = (12, 20) |
|---------------|---------------|
| P2 = (10, 19) | P5 = (13, 21) |
| P3 = (11, 20) | P6 = (14, 22) |



