SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai
Department of Information Technology

Computer Graphics

Unit 1 : INTRODUCTION TO COMPUTER GRAPHICS
Topic : Line Drawing Algorithm

Prepared By
R.Vaishnavi.,AP/IT

SNSCE.

Line Drawing Algorithm

\square The Line drawing algorithm is a graphical algorithm which is used to represent the line segment on discrete graphical media, i.e., printer and pixel-based media.
\square A line contains two points. The point is an important element of a line.

Properties of a Line Drawing Algorithm

An algorithm should be precise: Each step of the algorithm must be adequately defined.

Finiteness: An algorithm must contain finiteness. It means the algorithm stops after the execution of all steps.

Easy to understand: An algorithm must help learners to understand the solution in a more natural way.

Correctness: An algorithm must be in the correct manner.

- Effectiveness: The steps of an algorithm must be valid and efficient.
- Uniqueness: All steps of an algorithm should be clearly and uniquely defined, and the result should be based on the given input.
- Input: A good algorithm must accept at least one or more input.
- Output: An algorithm must generate at least one output The formula for a slope line interception is:
$\mathrm{Y}=\mathrm{mx}+\mathrm{b}$
In this formula, m is the slope line and b is the line's intercept of y. Two endpoints for the line segment are supplied in coordinates (x1, y1) and ($\mathrm{x} 2, \mathrm{y} 2$).

Types of Line Drawing Algorithm

\square DDA (Digital Differential Analyzer) Line Drawing Algorithm
\square Bresenham's Line Drawing Algorithm

DDA (Digital Differential Analyzer)

- Digital Differential Analyzer algorithm is also known as an incremental method of scan conversion.

Algorithm of Digital Differential Analyzer (DDA) Line Drawing

Step 1: Start.
Step 2: We consider Starting point as ($\mathrm{x} 1, \mathrm{y} 1$), and ending point ($\mathrm{x} 2, \mathrm{y} 2$).
Step 3: Now, we have to calculate $\boldsymbol{\Delta x}$ and $\boldsymbol{\Delta} \mathrm{y}$.

$$
\begin{aligned}
& \boldsymbol{\Delta} \mathrm{x}=\mathrm{x} 2-\mathrm{x} 1 \quad \boldsymbol{\Delta} \mathrm{y}=\mathrm{y} 2-\mathrm{y} 1 \\
& \mathrm{~m}=\boldsymbol{\Delta} \mathrm{y} / \boldsymbol{\Delta} \mathrm{x}
\end{aligned}
$$

Step 4: Now, we calculate three cases.
Case 1: If $m<1$

$$
\begin{aligned}
& x k+1=x k+1 \\
& y k+1=y k+m
\end{aligned}
$$

Case 2: If $\mathrm{m}>1$

$$
\begin{aligned}
& \mathrm{yk}+1=\mathrm{yk}+1 \\
& \mathrm{xk}+1=\mathrm{xk}+1 / \mathrm{m}
\end{aligned}
$$

Case 3: If $m=1$

$$
\begin{aligned}
& x k+1=x k+1 \\
& y k+1=y k+1
\end{aligned}
$$

Step 5: We will repeat step 4 until we find the ending point of the line. Step 6: Stop

Example: A line has a starting point $(1,7)$ and ending point
(11,17). Apply the Digital Differential Analyzer algorithm to plot a line.

Step 1: Consider Starting Point $=(\mathrm{x} 1, \mathrm{y} 1)=(1,7)$

$$
\text { Ending Point }=(\mathrm{x} 2, \mathrm{y} 2)=(11,17)
$$

Step 2: calculate m

$$
\begin{aligned}
& \boldsymbol{\Delta} x=x 2-x 1=11-1=10 \\
& \boldsymbol{\Delta} y=y 2-y 1=17-7=10 \\
& m=\boldsymbol{\Delta} y / \boldsymbol{\Delta} x=10 / 10=1
\end{aligned}
$$

Step 3: We get $\mathrm{m}=1$, Third case is satisfied

x_{k}	y_{k}	$\mathbf{x}_{\text {k }}{ }^{1}$	$\mathrm{y}_{\mathrm{k}+1}$	($\mathrm{x}_{\mathrm{k}+1}, \mathrm{y}_{\mathrm{k}+1}$)
1	7	2	8	$(2,8)$
		3	9	$(3,9)$
		4	10	$(4,10)$
		5	11	$(5,11)$
		6	12	$(6,12)$
		7	13	$(7,13)$
		8	14	$(8,14)$
		9	15	$(9,15)$
		10	16	$(10,16)$
		11	17	$(11,17)$

Step 4: We will repeat step 3 until we get the endpoints of the line.
Step 5: Stop.

The coordinates of drawn line are

$$
\begin{array}{ll}
\mathrm{P} 1=(2,8) & \mathrm{P} 6=(7,13) \\
\mathrm{P} 2=(3,9) & \mathrm{P} 7=(8,14) \\
\mathrm{P} 3=(4,10) & \mathrm{P} 8=(9,15) \\
\mathrm{P} 4=(5,11) & \mathrm{P} 9=(10,16) \\
\mathrm{P} 5=(6,12) & \mathrm{P} 10=(11,17)
\end{array}
$$

Bresenham's Line Drawing Algorithm :

\square This algorithm was introduced by "Jack Elton Bresenham" in 1962.
\square This algorithm helps us to perform scan conversion of a line.
$\square \mathrm{It}$ is a powerful, useful, and accurate method.
\square We use incremental integer calculations to draw a line. The integer calculations include addition, subtraction, and multiplication.

Algorithm of Bresenham's Line Drawing Algorithm

Step 1: Start.
Step 2: Now, we consider Starting point as (x1, y1) and ending point (x2, y2).

Step 3: Now, we have to calculate $\boldsymbol{\Delta} \mathrm{x}$ and $\boldsymbol{\Delta} \mathrm{y}$.
$\boldsymbol{\Delta x}=\mathrm{x} 2-\mathrm{x} 1$
$\boldsymbol{\Delta y}=\mathrm{y} 2-\mathrm{y} 1$
$\mathrm{m}=\boldsymbol{\Delta} \mathrm{y} / \boldsymbol{\Delta} \mathrm{x}$
Step 4: Now, we will calculate the decision parameter pk with following formula.
$\mathrm{pk}=2 \boldsymbol{\Delta} \mathrm{y}-\boldsymbol{\Delta} \mathrm{x}$
Step 5: The initial coordinates of the line are (xk, yk), and the next coordinates are ($\mathrm{xk}+1, \mathrm{yk}+1$).
Now, we are going to calculate two cases for decision parameter pk
Case 1: If $\mathrm{pk}<0$ Then $\mathrm{pk}+1=\mathrm{pk}+2 \boldsymbol{\Delta} \mathrm{y} \mathrm{xk}+1=\mathrm{xk}+1 \mathrm{yk}+1=\mathrm{yk}$
Case 2: If $\mathrm{pk}>=0$ Then $\mathrm{pk}+1=\mathrm{pk}+2 \mathbf{\Delta} \mathrm{y}-2 \mathbf{\Delta} \mathrm{x} x \mathrm{x}+1=\mathrm{xk}+1 \mathrm{yk}+1=\mathrm{yk}+1$

Step 6: We will repeat step 5 until we found the ending point of the line and the total number of iterations $=\boldsymbol{\Delta} \mathrm{x}-1$.

Step 7: Stop

Example: A line has a starting point $(9,18)$ and ending point $(14,22)$.
Apply the Bresenham's Line Drawing algorithm to plot a line.
Step 1:Consider, Starting Point $=(x 1, y 1)=(9,18)$

$$
\text { Ending Point }=(x 2, y 2)=(14,22)
$$

Step 2: First, we calculate $\boldsymbol{\Delta x} \boldsymbol{\Delta} \mathrm{y}$.
$\boldsymbol{\Delta}=\mathrm{x} 2-\mathrm{x} 1=14-9=5$
$\boldsymbol{\Delta} y=y 2-y 1=22-18=4$

Step 4: Calculate the decision parameter (pk)

$$
\mathrm{pk}=2 \boldsymbol{\Delta} \mathrm{y}-\boldsymbol{\Delta} \mathrm{x}=2 \mathrm{x} 4-5=3
$$

The value of $\mathrm{pk}=3$
Step 5: Now, we will check both the cases.
If $\mathrm{pk}>=0$ Then Case 2 is satisfied.
Thus $\mathrm{pk}+1=\mathrm{pk}+2 \boldsymbol{\Delta} \mathrm{y}-2 \boldsymbol{\Delta} \mathrm{x}=3+(2 \mathrm{x} 4)-(2 \mathrm{x} 5)=1$

$$
\begin{aligned}
& \mathrm{xk}+1=\mathrm{xk}+1=9+1=10 \\
& \mathrm{yk}+1=\mathrm{yk}+1=18+1=19
\end{aligned}
$$

Step 6: Now move to next step. We will calculate the coordinates until we reach the end point of the line.

Step 7: Stop

$\mathbf{p}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}+1}$		$\mathbf{x}_{\mathbf{k}+1}$
		9	$\mathbf{y}_{\mathbf{k}+1}$
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

The Coordinates of drawn lines are

$$
\begin{array}{ll}
\mathrm{P} 1=(9,18) & \mathrm{P} 4=(12,20) \\
\mathrm{P} 2=(10,19) & \mathrm{P} 5=(13,21) \\
\mathrm{P} 3=(11,20) & \mathrm{P} 6=(14,22)
\end{array}
$$

