UNIT -I

REVIEW OF MICROELECTRONICS AND INTRODUCTION TO MOS TECHNOLOGIES

1.	a)Explain different steps involved in preparation CMOS using twin tub process.[7M]		
	b) Define Figure of merit and $g_{ds.}$ [3M]		
2.	Derive the relation between drain to source current $I_{ds}\ VS$ drain to source voltage	rent I_{ds} VS drain to source voltage V_{ds} in non-	
	saturated and saturated region.	[10M]	
3.	a)Compare CMOS and Bi-CMOS.	[6M]	
	b)Write short notes on latch-up in CMOS circuits	[4M]	
4.	Determine the Pull-up and Pull-down ratio of for NMOS inverter through one (or) more pass		
	transistors.	[10M]	
5.	(a) What is meant by body effect?	[5M]	
	(b) Explain a Bi-CMOS inverter with a neat sketch.	[5M]	
6.	a)Define the term Threshold voltage of MOSFET and explain its significance.	[5M]	
	b)Briefly discuss about the pass transistor	[5M]	
7.	a)Compare NMOS and CMOS technology.	[5M]	
	b)Derive the expression for ZPU/ZPD.	[5M]	
8.	a)Illustrate the main steps in a typical N-WELL process.	[7M]	
	b)Explain the NMOS depletion mode transistor.	[3M]	
9.	a)Explain about the Structure of NMOS transistor.	[7M]	
	b)Explain the operation of CMOS inverter with a logic diagram	[3M]	
10.	a)Explain about PASS transistor with neat sketch	[5M]	
	b)Define electrical properties of MOS circuits.	[5M]	

Prepared by: A.VENU

<u>UNIT -II</u>

LAYOUT DESIGN AND TOOLS\LOGIC GATES & LAYOUTS

1.	a)Explain how stick diagrams can be used for layout diagrams.	[7M]
	b)Discuss the wiring capacitances	[5M]
2.	(a) Explain about static complementary gates.	[5M]
	(b) What are the different strategies for building low power gates? Explain.	[5M]
3.	(a) Differentiate switch logic and gate logic.	[5M]
	(b) List the salient features of subsystem lay out.	[5M]
4.	(a) Explain clearly the Scalable design rules.	[5M]
	(b) Explain clearly Wires and Vias in VLSI design.	[5M]
5.	Design the static complementary pull-up and pull-down networks for the logic	
	expression: $f(A,B,C,D)=(A+B)(C+D)$	[10M]
6.	a)Explain switch Logic and Alternative Logic.	[6M]
	b)Briefly discuss about the combinational logic functions	[4M]
7.	a)Explain briefly about Resistive Inter-Connect delay and RC Trees delay.	[5M]
	b)Explain about driving large loads with diagram.	[5M]
8.	What are layout design rules? Explain the layer representations and based design	gn rules for
	CMOS process.	[10M]
9.	(a) Implement NAND gate in NMOS technology and hence draw its stick diagram	and design a
	layout for the stick diagram.	[5M]
	(b) Discuss about the effects of scaling down the dimensions of MOS circuits and	
	Systems.	[5M]
10. Define the following terms		
	(a) Speed power product. [5M]	
(b) Delay through RC transition time [5M]	
Prepared by: Mr.A.VENU		

<u>UNIT -III</u>

COMBINATIONAL LOGIC NETWORKS\SEQUENTIAL SYSTEMS

1.	a)Explain in detail about the requirements in designing logic networks us	ing realistic	
	interconnect models.	[7M]	
	b)Draw the single row layout design.	[3M]	
2.	a)Explain briefly about power optimization.	[5M]	
	b)Draw the switch implementation of a multiplier.	[5M]	
3.	(a) What are the various simulators used for combinational logic?	[5M]	
	(b) Write short notes on power optimization of combinational logic networks.	[5M]	
4.	a)Briefly discuss about Fanout with diagram	[5M]	
	b)Explainpath delay with respect to combination networks delay.	[5M]	
5.	a)Explain the clocking disciplines and power optimization in sequential systems.	[5M]	
	b)Briefly discuss about crosstalk minimization.	[5M]	
6.	(a) Explain clearly about switch simulation.	[5M]	
	(b) Explain about the combinational network testing.	[5M]	
7.	Draw the layout diagram of three input NAND gate in CMOS.	[10M]	
8.	. What is simulation? Explain about various types of simulation applied at different levels of		
	fabrication.	[10M]	
9.	a) With suitable examples explain about network delays combinational logic circuits.	[5M]	
	(b) Implement an 'n-bit' shift register and explain its operation over one clock cycle.	[5M]	
10	a)Discuss briefly about standard cell layout design.	[5M]	
	b)Briefly explain the block diagram of phase locked loop for clock generation.	[5M]	

Prepared by: Mr.A.VENU

UNIT-IV

FLOOR PLANNING AND ARCHITECTURE DESIGN

1	a)Briefly discuss about floor planning methods.	[5M]
	b)Draw and explain the block placement and channel definition.	[5M]
2	a)Write a short notes on global routing	[5M]
b)Explain the concept of switch box routing		[5M]
3	a)Discuss about different floor planning tips.	[5M]
	b)Write a short notes on design validation.	[5M]
4	a)Explain about placement and routing at chip level design.	[5M]
	b)Explain about architecture testing.	[5M]
5	a)Discuss about off-chip connections and packages	[7M]
	b)Draw and explain the power line inductance	[3M]
6	a)Draw and explain the I/O architecture with a neat sketch.	[5M]
	b)Explain the concept of pad design with a diagram.	[5M]
7	Explain the concept of register transfer design with data path control architecture.	[10M]
8	With a flow chart explain the concept of ASM chart design.	[10M]
9	a)Discuss high level synthesis.	[5M]
	b)Write a short notes on power down modes.	[5M]
10	a)Explain the architecture for low power with a diagram.	[5M]
	b)Write a notes on linear feedback shift register.	[5M]

Prepared by: Mr.A.VENU

<u>UNIT-V</u>

INTRODUCTION TO CAD SYSTEM AND CHIP DESIGN

1	Write about the following		
	a)Hardware-software co-design		[5M]
	b)Floor planning methods	[5M]	
2	a)Write a short notes on layout synthesis		[5M]
	b)Discuss about global routing		[5M]
3	a)With an example give the method involved in the chip design.		[7M]
	b)Briefly discuss about CAD system.		[3M]
4	a)Explain about system on chips and embedded CPUs.		[5M]
	b)Write a notes on logic synthesis.		[5M]
5	With a diagram explain about detailed routing method.		[10M]
6	a)Explain the timing analysis and optimization process		[5M]
	b)Write about test generation pattern.		[5M]
7	a)Explain the technology independent logic optimization.	[7M]	
	b)Draw the diagram of irredundant-reduced cycle.		[3M]
8	a)Write a short notes on sequential machine optimizations.		[5M]
	b)Explain about scheduling ad binding.		[5M]
9	a)Write about switch level simulation		[7M]
	b)Write a short notes on chip level placement.		[3M]
10	Explain about technology dependent logic optimization.		[10M]

Prepared by: Mr.A.VENU