ACID BASE TITRATION

Titrant: solution of a known concentration, which is added to another solution whose concentration has to be determined.

Titrand or analyte: the solution whose concentration has to be determined.
Equivalence point: point in titration at which the amount of titrant added is just enough to completely neutralize the analyte solution. At the equivalence point in an acid-base titration, moles of base $=$ moles of acid and the solution only contains salt and water .

$\mathrm{HCl}+\mathrm{NaOH} \xrightarrow{\text { at equivalence point }} \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ acid base salt

Acid-base titrations are monitored by the change of pH as titration progresses

Indicator: It is a weak acid or base that is added to the analyte solution, and it changes color when the equivalence point is reached i.e. the point at which the amount of titrant added is just enough to completely neutralize the analyte solution. The point at which the indicator changes color is called the endpoint. So the addition of an indicator to the analyte solution helps us to visually spot the equivalence point in an acid-base titration.

Endpoint: refers to the point at which the indicator changes color in an acid-base titration.

What is a titration curve?

A titration curve is the plot of the pH of the analyte solution versus the volume of the titrant added as the titration progresses.

1) Titration of a strong acid with a strong base

Suppose our analyte is hydrochloric acid HCl (strong acid) and the titrant is sodium hydroxide NaOH (strong base). If we start plotting the pH of the analyte against the volume of NaOH that we are adding from the burette.

Point 1: No NaOH added yet, so the pH of the analyte is low (it predominantly contains $\mathrm{H}_{3} \mathrm{O}^{+}$ from dissociation of HCl).

$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

Point 2: This is the pH recorded at a time point just before complete neutralization takes place.

Point 3: This is the equivalence point (halfway up the steep curve). At this point, moles of NaOH added $=$ moles of HCl in the analyte. At this point, $\mathrm{H}_{3} \mathrm{O}^{+}$ions are completely neutralized by OH^{-}ions. The solution only has salt (NaCl) and water and therefore the pH is neutral i.e. $\mathrm{pH}=7$.

$\mathrm{HCl}+\mathrm{NaOH} \xrightarrow{\text { at equivalence point }} \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ acid base salt

Point 4: Addition of NaOH continues, pH starts becoming basic because HCl has been completely neutralized and now excess of OH^{-}ions are present in the solution (from dissociation of NaOH$)$.

$\mathrm{NaOH} \xrightarrow{\text { after equivalence point }} \mathrm{Na}^{+}+\mathrm{OH}^{-}$

2) Titration of a weak acid with a strong base

Let's assume our analyte is acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid) and the titrant is sodium hydroxide NaOH (strong base). If we start plotting the pH of the analyte against the volume of NaOH that we are adding from the burette, we will get a titration curve as shown below.

Point 1: No NaOH added yet, so the pH of the analyte is low (it predominantly contains $\mathrm{H}_{3} \mathrm{O}^{+}$ from dissociation of $\left.\mathrm{CH}_{3} \mathrm{COOH}\right)$. But acetic acid is a weak acid, so the starting pH is higher than what we noticed in case 1 where we had a strong acid (HCl).

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

As NaOH is added dropwise, $\mathrm{H}_{3} \mathrm{O}^{+}$slowly starts getting consumed by OH^{-} (produced by dissociation of NaOH). But analyte is still acidic due to predominance of $\mathrm{H}_{3} \mathrm{O}^{+}$

Point 2: This is the pH recorded at a time point just before complete neutralization takes place.

Point 3: This is the equivalence point (halfway up the steep curve). At this point, moles of NaOH added $=$ moles of $\mathrm{CH}_{3} \mathrm{COOH}$ in the analyte. The $\mathrm{H}_{3} \mathrm{O}^{+}$are completely neutralized by OH^{-}ions. The solution contains only $\mathrm{CH}_{3} \mathrm{COONa}$ salt and $\mathrm{H}_{2} \mathrm{O}$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \stackrel{\text { at equivalence point }}{\rightleftharpoons} \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ acid base salt

As you can see from the above equation, at the equivalence point the solution contains $\mathrm{CH}_{3} \mathrm{COONa}$ salt. This dissociates into acetate ions $\mathrm{CH}_{3} \mathrm{COO}^{-}$and sodium ions Na^{-}. As you will recall from the discussion of strong/ weak acids in the beginning of this tutorial, $\mathrm{CH}_{3} \mathrm{COO}^{-}$is the conjugate base of the weak acid $\mathrm{CH}_{3} \mathrm{COOH}$. So $\mathrm{CH}_{3} \mathrm{COO}^{-}$is relatively a strong base (weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ has a strong conjugate base), and will thus react with H 2 O to produce hydroxide ions $\left(\mathrm{OH}^{-}\right)$thus increasing the pH to ~ 9 at the equivalence point.

$\mathrm{CH}_{3} \mathrm{COONa}=\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$

Point 4: Beyond the equivalence point (when sodium hydroxide is in excess) the curve is identical to $\mathrm{HCl}-\mathrm{NaOH}$ titration curve.

3) Titration of a strong acid with a weak base

Suppose our analyte is hydrochloric acid HCl (strong acid) and the titrant is ammonia NH_{3} (weak base). If we start plotting the pH of the analyte against the volume of NH_{3} that we are adding from the burette

Point 1: No NH_{3} added yet, so the pH of the analyte is low (it predominantly contains $\mathrm{H}_{3} \mathrm{O}^{+}$from dissociation of HCl).

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

As NH_{3} is added dropwise, $\mathrm{H}_{3} \mathrm{O}^{+}$slowly starts getting consumed by NH_{3}. Analyte is still acidic due to predominance of $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

$$
\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Point 2: This is the pH recorded at a time point just before complete neutralization takes place.

Point 3: This is the equivalence point (halfway up the steep curve). At this point, moles of NH_{3} added $=$ moles of HCl in the analyte. The $\mathrm{H}_{3} \mathrm{O}^{+}$are completely neutralized by NH_{3}. In the case of a weak base versus a strong acid, the pH is not neutral at the equivalence point. The solution is in fact acidic ($\mathrm{pH} \sim 5.5$) at the equivalence point. Let's rationalize this.

At the equivalence point, the solution only has ammonium ions $\mathrm{NH}_{4}{ }^{+}$and chloride ions Cl^{-}. But again if you recall, the ammonium ion $\mathrm{NH}_{4}{ }^{+}$is the conjugate acid of the weak base NH_{3}. So $\mathrm{NH}_{4}{ }^{+}$is a relatively strong acid (weak base NH_{3} has a strong conjugate acid), and thus $\mathrm{NH}_{4}{ }^{+}$will react with $\mathrm{H}_{2} \mathrm{O}$ to produce hydronium ions making the solution acidic.

Point 4: After the equivalence point, NH_{3} addition continues and is in excess, so the pH increases. NH_{3} is a weak base so the pH is above 7, but is lower than what we saw with a strong base NaOH (case 1).

4) Titration of a weak base with a weak acid

Suppose our analyte is NH_{3} (weak base) and the titrant is acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid). If we start plotting the pH of the analyte against the volume of acetic acid that we are adding from the burette, we will get a titration curve.

If you notice there isn't any steep bit in this plot. There is just what we call a 'point of inflexion' at the equivalence point. Lack of any steep change in pH throughout the titration renders titration of a weak base versus a weak acid difficult, and not much information can be extracted from such a curve.

To summarize

In an acid-base titration, a known volume of either the acid or the base (of unknown concentration) is placed in a conical flask.

The second reagent (of known concentration) is placed in a burette.
The reagent from the burette is slowly added to the reagent in the conical flask.
A titration curve is a plot showing the change in pH of the solution in the conical flask as the reagent is added from the burette.

A titration curve can be used to determine:

1) The equivalence point of an acid-base reaction (the point at which the amounts of acid and of base are just sufficient to cause complete neutralization).
2) The pH of the solution at equivalence point is dependent on the strength of the acid and strength of the base used in the titration.
-- For strong acid-strong base titration, $\mathrm{pH}=7$ at equivalence point
-- For weak acid-strong base titration, $\mathrm{pH}>7$ at equivalence point
-- For strong acid-weak base titration, $\mathrm{pH}<7$ at equivalence point
