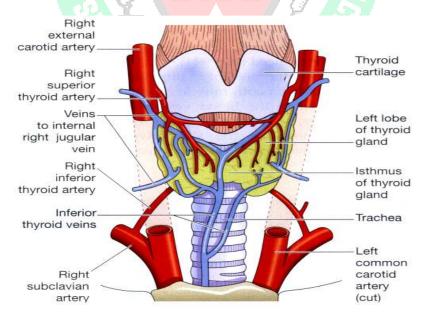


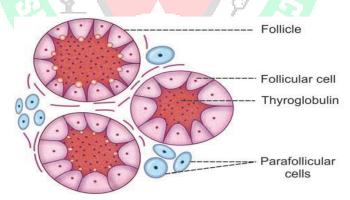
SNS COLLEGE OF PHARMACY AND HEALTH SCIENCES

Sathy Main Road, SNS Kalvi Nagar, Saravanampatti Post, Coimbatore - 641 035, Tamil Nadu.

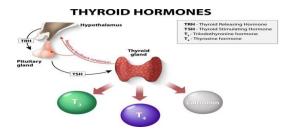

UNIT-4 THYROID GLAND

INTRODUCTION

- Thyroid is an endocrine gland situated at the root of the neck on either side of the trachea.
- Situated in the neck in front of the larynx and trachea at the level of the 5th, 6th and 7th cervical and 1st thoracic vertebrae.


6-8

- It weighs about 20 to 40 g in adults.
- > Thyroid is **larger in females** than in males.
- > It is surrounded by a fibrous capsule has **two lobes**, which are connected in the middle by an **isthmus**.
- > It resembles a **butterfly** in shape.

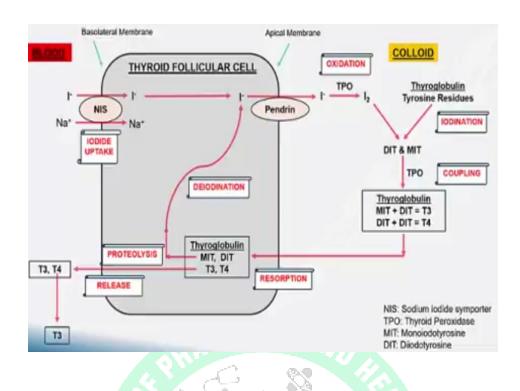


> The lobes are roughly **cone-shaped**, about 5 cm long and 3 cm wide.

- > The *arterial blood supply* to the gland is through the **superior and inferior thyroid arteries**.
- > The superior thyroid artery is a branch of the **external carotid artery** and the inferior thyroid artery is a branch of the **subclavian artery**.
- > The *venous return* is by the thyroid veins which drain into the **internal jugular veins**.
- Two parathyroid glands lie against the posterior surface of each lobe and are sometimes embedded in thyroid tissue.
- The recurrent laryngeal nerve passes upwards close to the lobes of the gland and on the right side it lies near the inferior thyroid artery.
 - HISTOLOGY
- > Thyroid gland is composed of large number of closed follicles.
- These follicles are lined with cuboidal epithelial cells, which are called the follicular cells.
- Follicular cavity is filled with a colloidal substance known as thyroglobulin, which is secreted by the follicular cells.
- Follicular cells also secrete tetraiodothyronine (T4 or thyroxine) and tri-iodothyronine (T3).
- > In between the follicles, the **parafollicular cells** are present which secrete calcitonin.

HORMONES OF THYROID GLAND:

Thyroid gland secretes three hormones:


- 1. Tetraiodothyronine or T4 (thyroxine)
- 2. Tri-iodothyronine or T3
- 3. Calcitonin.
- > Both T4 and T3 are iodine-containing derivatives of amino acid tyrosine.
- > The potency of T3 is four times more than that of T4.
- > T4 acts for longer period than T3. Duration of T4 action is **four times more** than T3 action.
- T3 has less affinity for plasma proteins and combines loosely with them, so that it is released quickly.
- > **T4 has more affinity** and strongly binds with plasma proteins, so that it is released slowly. Therefore, T3 acts on the target cells immediately and T4 acts slowly.
- Thyroid hormones have long half-life. T4 has a long half life of 7 days. Half-life of T3 is varying between 10 and 24 hours.

SYNTHESIS OF HORMONES:

Synthesis of thyroid hormones takes place in thyroglobulin.

Synthesis of it occurs in six stages:

- Thyroglobulin synthesis
- Iodide trapping
- Oxidation of iodide
- Transport of iodine into follicular cavity
- Iodination of tyrosine
- Coupling reactions.

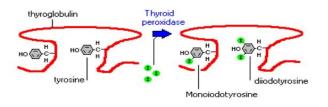
Thyroglobulin Synthesis

- > Endoplasmic reticulum and Golgi apparatus in the follicular cells of thyroid gland synthesize and secrete thyroglobulin continuously.
- Thyroglobulin molecule is a large glycoprotein containing 140 molecules of amino acid tyrosine.
- > After synthesis, thyroglobulin is stored in the follicle.

Iodide Trapping

COIMBATORE

- Iodide is actively transported from blood into follicular cell, against electrochemical gradient. This process is called **iodide trapping.**
- > Normally, iodide is **30 times more concentrated** in the thyroid gland than in the blood.
- During hyperactivity of the thyroid gland, the concentration of iodide increases 200 times more.

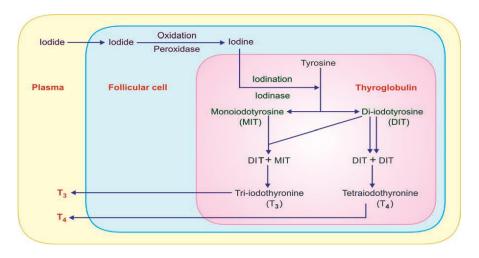

Oxidation of Iodide

- Iodide must be oxidized to elementary iodine and it occurs inside the follicular cells in the presence of thyroid peroxidase.
- > Absence or inactivity of this enzyme stops the synthesis of thyroid hormones.

Transport of Iodine into Follicular Cavity

From the follicular cells, iodine is transported into the follicular cavity by an iodidechloride pump called pendrin.

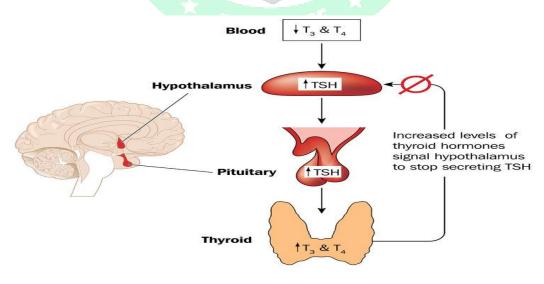
Iodination of Tyrosine



- Combination of iodine with tyrosine is known as iodination. It takes place in thyroglobulin.
- First, iodine is transported from follicular cells into the follicular cavity, where it binds with thyroglobulin. This process is called organification of thyroglobulin.
- Then, iodine (I) combines with tyrosine, which is already present in thyroglobulin and this process is accelerated by the enzyme iodinase, which is secreted by follicular cells.
- > Tyrosine is iodized first into **monoiodotyrosine** (MIT) and later into **di-iodotyrosine** (DIT). MIT and DIT are called the **iodotyrosine residues.**

Coupling Reactions

Iodotyrosine residues get coupled with one another. The coupling occurs in different configurations, to give rise to different thyroid hormones.


- \blacktriangleright Tyrosine + I = Monoiodotyrosine (MIT)
- $\blacktriangleright MIT + I = Di-iodotyrosine (DIT)$
- \blacktriangleright DIT + MIT = Tri-iodothyronine (T3)
- \blacktriangleright MIT + DIT = Reverse T3
- > DIT + DIT = Tetraiodothyronine or Thyroxine (T4)

STORAGE AND RELEASE:

- After synthesis, the thyroid hormones remain in the form of vesicles within thyroglobulin and are stored for long period.
- > Thyroglobulin itself is not released into the bloodstream.
- > On the other hand, the hormones are first cleaved from thyroglobulin and released into the blood.
- MIT and DIT are not released into blood. These Iodotyrosine residues are deiodinated by an enzyme called iodotyrosine deiodinase, resulting in the release of iodine.
- > The iodine is **reutilized** by the follicular cells for further synthesis of thyroid hormones.

REGULATION OF HORMONE

