What is Epilepsy?

 Epilepsy is a collective term for a group of disorders characterised by paroxysmal cerebral dysrthmia, menifesting as brief episodes (seizures) of loss or disturbance of conciousness with or without characteristic body movements(convulsions)sensory or psychiatric phenomina Convulsion – Involuntary spasmodic contractions of any or all voluntary muscles throughout the body, including skeletal and facial muscles.

Seizures – Brief episode of abnormal electrical activity in the nerve cells of the brain -- detected on EEG

Epilepsy – Chronic, recurrent pattern of seizures

Generalised seizures

1.Generalised tonic clonic seizures (GTCS) Grand mal epilepsy

- Major epilepsy1-2 min
- Commonest
- Aura –cry –unconciousness –tonic spasm of all body muscles-tonic jerking
- Prolongrd sleep and depression of all CNS functions

2. Absence Seizures

Minor epilepsy, petit mal

- •1/2 minute
- Children
- Apparent freezing
- •EEG: 3 cycle per second spike and wave pattern

3. Atonic Seizures

Akinetic Epilepsy , Drop Attack

- Sudden loss of postural tone
- Unconciousness
- Excessive inhibitory discharges

4. Myoclonic seizures

Shock like momentary contraction of muscles of a limb or the whole body

5. Infantile Spasms

Hypsarrhythmias

Partial seizures

- 1. Simple partial seizures
- 2. Complex Partial seizures
- Simple Partial or complex partial seizures secondarily generalized

Clinical classification of antiepileptic drugs

- Tonic-clonic (grand mal) seizures:
 - Carbamazepine, Phenytoin, Valproate, Phenobarbitone
 - Newer agents: Lamotrigine, Gabapentin
- Partial (focal) seizures (Psychomotor epilepsy or temporal lobe epilepsy): Carbamazepine, Phenytoin, Primidone, Valproate
- Absence seizures (petit mal): Ethosuximide, Clonazepam
- Petitmal + Grandmal: Valproate
- Status epilepticus: Lorazepam, Diazepam, Phenytoin, Phenobarbitol, General anesthesia
- Febrile seizures: Diazepam, Phenobarbitone

MECHANISM OF ACTION OF ANTIEPILEPTIC DRUGS

Antiepileptics inhibit the neuronal discharge or its spread in one or more of the following ways:

- (1) Enhancing GABA synaptic transmission: barbiturates, benzodiazepines, gabapentin, levetiracetam, tiagabine, vigabatrin, topiramate, valproate; the result is increased permeability to chloride ion, which reduces neuronal excitability. Valproate and topiramate block GABA transaminase and tiagabine blocks reuptake of GABA.
- (2) Reducing cell membrane permeability to voltage-dependent sodium channels: carbamazepine, lamotrigine, oxcarbazepine, phenytoin, topiramate, valproate.
- (3) Reducing cell membrane permeability to calcium T-channels: valproate, ethosuximide; the result is diminishing of the generation of action potential.
- (4) Inhibiting excitory neurotransmitter glutamate: lamotrigine.

Source: A.J. Trevor, B.G. Katzung, M. Kruidering-Hall: Katzung & Trevor's Pharmacology: Examination & Board Review, 11th Ed. www.accesspharmacy.com

Copyright @ McGraw-Hill Education. All rights reserved.

CLASSIFICATION OF ANTIEPILEPTIC DRUGS

- Hydantoins: phenytoin, phosphenytoin
- Barbiturates: phenobarbitone
- Iminostilbenes: carbamazepine, oxcarbazepine
- Succinimides: ethosuximide
- Aliphatic carboxylic acid: Valproic acid, divalproex
- Benzodiazepines: clonazepam, diazepam, lorazepam
- New compounds: gabapentin, lamotrigine, tiagabine, topiramate, vigabatrin, zonisamide, felbamate

Structural activity relationship of: 1. Hydantoin

- 2. Barbiturates
- 3. Benzodiazepines
- 4. Valproic Acid
- 5. Succinimides

1. Hydantoins

- Phenylethylhydation
 R₁ = H R₂ = C₂H₅ R₃ = C₆H₅
- Phenytoin
 R₁ = H R₂ = R₃ = C₆H₅
- Mephenytoin
 R1 = CH3 R2 = C2H5 R3 = C6H5
- Ethotoin
 R₁ = C₂H₅
 R₅ = H
 R₅ = C₆H₅

- A phenyl or other aromatic substituents at C₅ is essential for the activity.
- Alkyl substituents at position 5 may contribute to sedation, a property absent in phenytoin. Hydantoin

Hydantoin

- Among other hydantoins, like spirohydantoins, thiohydantoins, dithiohydantoins, and 1, 3disubstituted hydantoins, some exhibit activity against chemically induced convulsions.
- While remaining are ineffective against electroshock induced convulsions.

Hydantoin

2. Barbiturates

- Phenobarbitone
 R1 = H R2 = C2H5 R3 = C6H5
- Mephobarbitone
 R1 = CH3 R2 = C2H5 R3 = C6H5
- Metharbital
 R1 = CH3 R2 = C2H5 R3 = C2H5

- Optimum activity is observed when one of the substituents at C₅ is phenyl.
- The 5, 5-diphenyl derivatives have less activity than phenobarbitone.
- N2 and N3 substituents, in some cases also results in an increased activity.
- 5, 5-dibenzyl barbituric acid causes convulsions.

Benzodiazepines

- Diazepam
 R1 = CH3 R2 = H R3 = Cl
- Nitrazepam
 R1 = H R2 = H R3 = NO2
- Clonazepam
 R₁ = H
 R₂ = Cl
 R₃ = NO₂

- The electron withdrawing atom or group at position 7 increases the anti-epileptic activity while electron donating substituents at 7, 8 or 9 positions decrease it.
- A phenyl group at position 5 is necessary for activity. But only halogen substituents are allowed in the ortho position.

- The electron withdrawing groups at ortho or diortho positions at 5-phenyl increase the activity while any substituents on meta or para position at 5-phenyl decreases the activity.
- Methyl substitution at position 1 confirms high activity.

4. Valproic Acid

- Among other relatives of valproic acid, 3, 3, 4-trimethylpentanoic acid is also as active as valproic acid.
- The anticonvulsant activity increases with increased chain length.
- Introduction of a double bond decreases the activity.

5. Succinimides

- Phensuximide
 R1 = C6H5 R2 = H R3 = CH3
- Methsuximide
 R1 = C6H5 R2 = R3 = CH3
- Ethosuximide
 R = C₂H₅ R₂ = CH₃ R₃=H

- Methsuximide and phensuximide have phenyl substituents which makes them active against electrically induced convulsion.
- N-Methylation decreases activity against electroshock seizures and impart more activity against chemically induced convulsion.

