Pre-formulation Studies

Chemical Properties of Drug Substances

a)Oxidation & Reduction

b)Hydrolysis

c)Photolysis

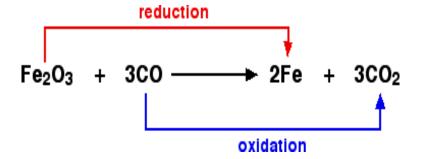
d)Racemisation

e)Polymerization

f)Isomerisation

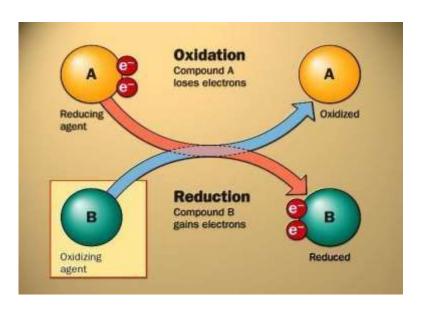
Oxidation:

It is very common pathway for drug degradation in both liquid and solid formulation.


Oxidation is the gain of oxygen, loss of hydrogen and/or loss of electrons.

When iron reacts with oxygen it forms a chemical called

rust. The iron is oxidized and the oxygen is reduced.


Oxidation occurs in two ways

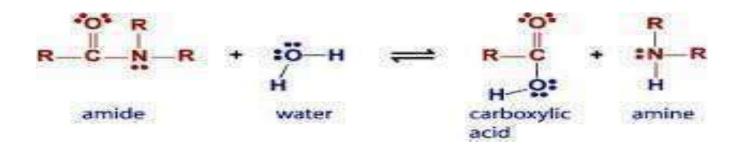
- > Auto oxidation
- > Free radical oxidation

Functional group having high susceptibility towards oxidation:-

- Substituted aromatic group (Toluene, Phenols, Anisole).
- Alkenes
- Ethers
- Thioethers
- Amines

Factors affecting oxidation process

- 1) Oxygen concentration
- 2) Light
- 3) Heavy metalsparticularly those having two or more valence state
- 4) Hydrogen & Hydroxyl Ion
- 5) Temperature


How to prevent oxidation?

- 1. Reducing oxygen content
- 2 Storage in a dark and cool condition
- 3. Addition of chelating agent (Eg. EDTA, Citric acid, Tartaric acid)
- 4. Adjustment of pH
- 5. Changing solvent (Eg. Aldehydes, ethers, Ketones, may influence free radical reaction)
- 6. Addition of an antioxidant or reducing agent (e.g. H2, CO, Zn etc)

Hydrolysis

$\circ~$ It is the cleavage of chemical bonds by the addition of water.

- The reaction of water with another chemical compound to form two or more products, involving ionization of the water molecule usually splitting the other compound.
- Examples include :
- $\circ~$ the catalytic conversion of starch to glucose,
- \circ saponification, and
- $\circ~$ the formation of acids or bases from dissolved ions.
- When this attack is by a solvent other than water then it is known as solvolysis.

Conditions that catalysis the breakdown are:

- 1. Presence of hydroxyl ion
- 2. Presence of hydride ion
- 3. Presence of divalent ion
- 4. Heat
- 5. Light
- 6. Ionic hydrolysis
- 7. Solution polarity and ionic strength
- 8. High drug concentration

Prevention of hydrolysis:

***pH Adjustment**

- Formulate the drug solution dose to its pH of optimum stability.
- Addition of water miscible solvent in formulation.
- Optimum buffer concentration.

*****Addition of surfactant

• Nonionic, cationic, and anionic surfactant stabilizes the drug against base catalysis.

* Salts and Esters Eg. Phosphate esters of clindamycine

- The solubility of pharmaceuticals undergoing ester hydrolysis can be reduced by forming less soluble salts
- \circ By use of complexing agent.

Photolysis:

- Photo dissociation, photolysis, or photodecomposition is a chemical reaction in which a chemical compound is broken down by photons.
- Since a photon's energy is inversely proportional to its wavelength, electromagnetic waves with the energy of visible light or higher, such as ultra violet, X-rays and gamma rays are usually involved in such reactions.

Photodecomposition pathway

N-Dealkylation

Di-phenylhydramine, Chloroquine, Methotrexate

Dehalogination

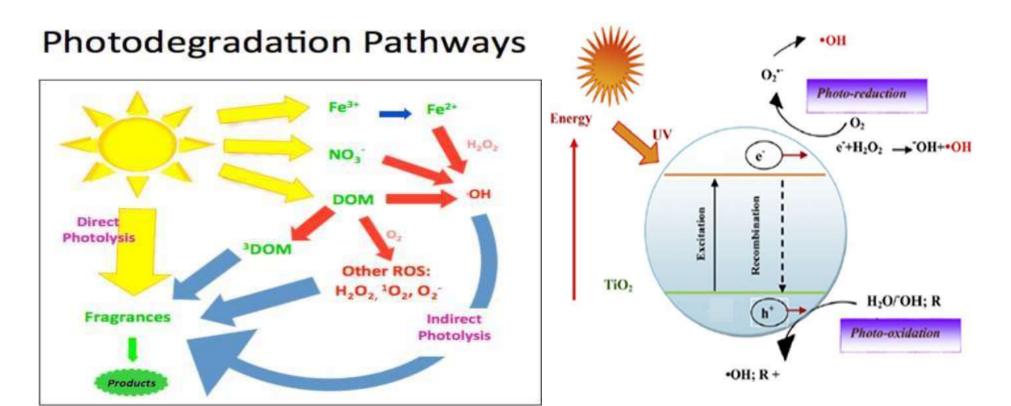
Chlorpropamide, Furosemide

Dehydrogenation of Ca++channel blocker
 Solution of Nifedipine

Oxidation

Chlorpromazine & other Phenothiazines give N- & Soxides in the presence of sunlight

Prevention of photodecomposition

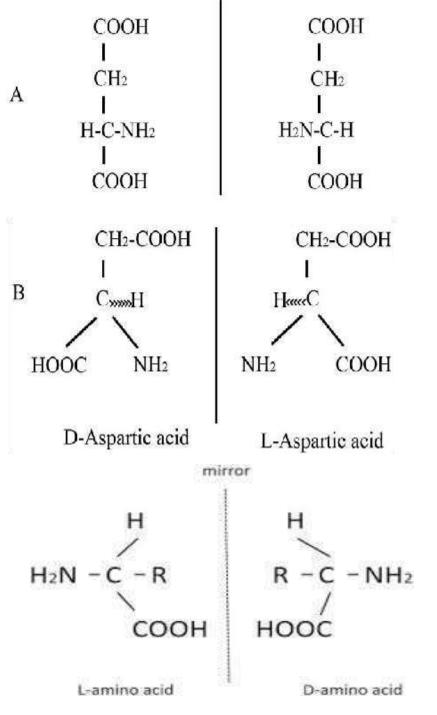

• Suitable packing.

Yellow-green glass gives the best protection in U.V. region while Amber gives considerable protection against U.V. radiation but little from I.R.

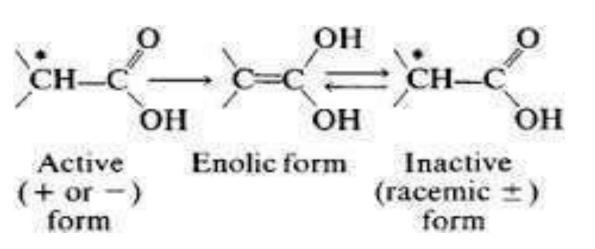
• Protection of drug from light

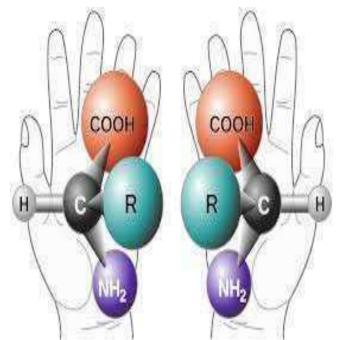
Nifedipine is manufactured under Na light.

• Avoiding sunbath



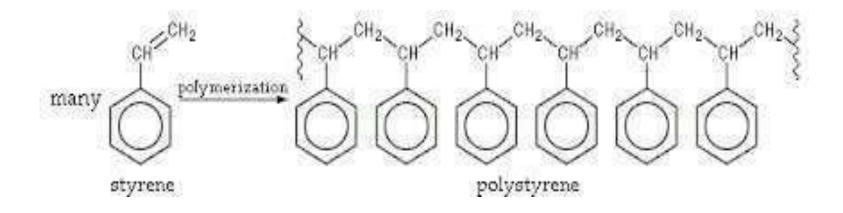
Racemization


 It is the process in which one enantiomer of a compound, such as an L-amino acid, converts to the other enantiomer.


 The compound then alternates between each form while the ratio between the (+) and (-) groups approaches 1:1, at which point it becomes optically inactive.

• If the racemization results in a mixture where the enantiomers are present in equal quantities, the resulting sample is described as racemeric or a racemate.

- The inter-conversion from one isomer to another can lead to different pharmacokinetic properties (ADME) as well as different pharmacological & toxicological effect.
- Example: L-epinephrine is 15to 20 times more active than D-form, while activity of racemic mixture isjust one half of the L-form.
- ➢ It depends on
 - Temperature,
 - Solvent,
 - Catalyst &
 - Presence or absence of light

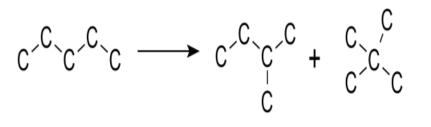


Biological significance:

- Many psychotropic drugs show differing activity or efficacy between isomers, e.g. Amphetamine is often dispensed as racemic salts while the more active dextroamphetamine is reserved for severe indications;
- Another example is Methadone, of which one isomer has activity as an opioid agonist and the other as an NMDA antagonist.

Polymerization

- Polymerization is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks.
- It is a continuous reaction between molecules
- More than one monomer reacts to form a polymer.
- Darkening of glucose solution is due to polymerization of breakdown product [5- (hydroxyl methyl) furfural. (a colorless liquid used in synthetic resin manufacture).
- Eg. Shellac on aging undergoes polymerization & hence prolongs disintegration time & dissolution time.

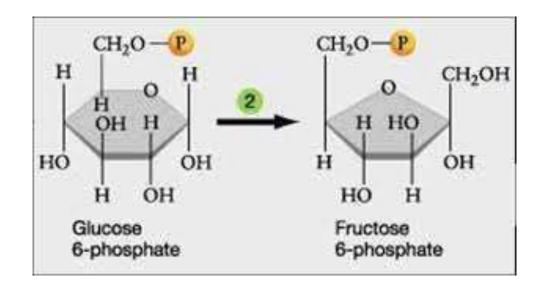


Isomerizaton

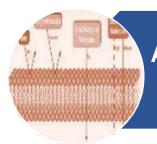
✓ Is the process by which one molecule is transformed into another molecule which has exactly the same atoms, but the atoms have a different arrangement. e.g. A-B-C → B-A-C (these related molecules are known as isomers).

Examples:-

- Tetracycline & its derivatives can undergo reversible Isomerization at pH range 2-6.
- Trans-cis Isomerization of Amphotericin B.



pentane 2-methylbutane 2,2-dimethylpropane



Isomerism finds its importance in the field of clinical pharmacology and pharmacotherapeutics, as isomers differ in their pharmacokinetic and pharmacodyanmic properties.

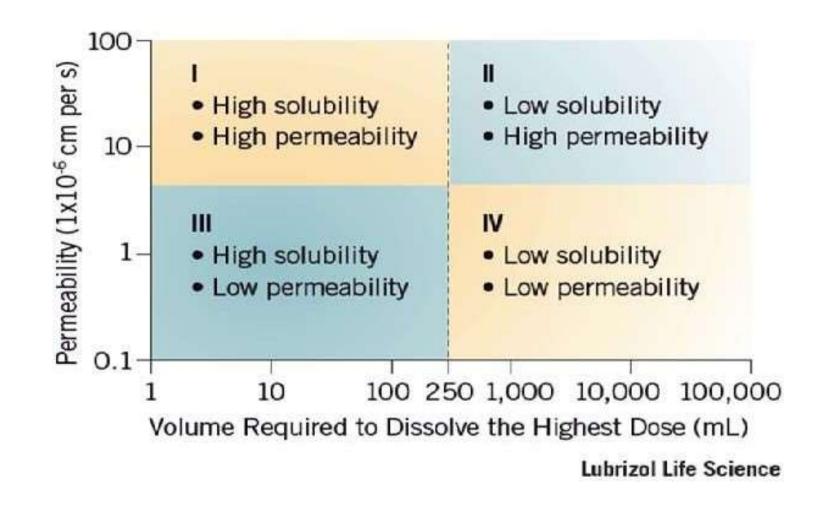
- Cetrizine to levocetrizine is one of such examples, where effective and safer drug has been made available.
- Levocetrizine has smaller volume of distribution than its dextroisomer.
- Esomeprazole is more bioavailable than racemic omeprazole;

Biopharmaceutical Classification System

A scientific framework for classifying drug substances based on their aqueous solubility and intestinal permeability


Established by Gordon Amidon et al.

BCS has gained importance worldwide as a drug product regulation tool for scale-up and postapproval changes

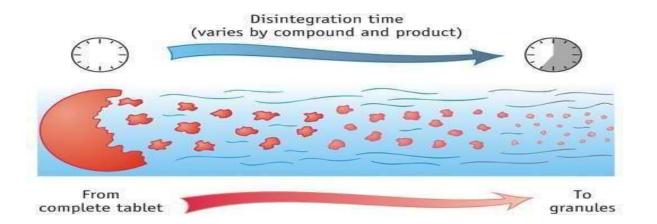

The aim of the BCS is to provide a regulatory tool for the replacement of certain BE studies by conducting accurate in *vitro* dissolution tests

Biopharmaceutical Classification System (BCS) of drug substances

Class I High Permeability High Solubility	 Example: metoprolol, paracetamol Those compounds are well absorbed and their absorption rate is usually higher than excretion.
Class II High permeability Low solubility	 Example: glibenclamide, bicalutamide, ezetimibe, aceclofenac The bioavailability of those products is limited by their solvation rate. A correlation between the <i>in vivo</i> bioavailability and the <i>in vitro</i> solvation can be found.
Class III Low permeability High solubility	 Example: cimetidine The absorption is limited by the permeation rate but the drug is solvated very fast. If the formulation does not change the permeability or gastro-intestinal duration time, then class I criteria can be applied.
ClassIV Low permeability, Low solubility	 Example: Bifonazole Those compounds have a poor bioavailability. Usually they are not well absorbed over the intestinal mucosa and a high variability is expected.

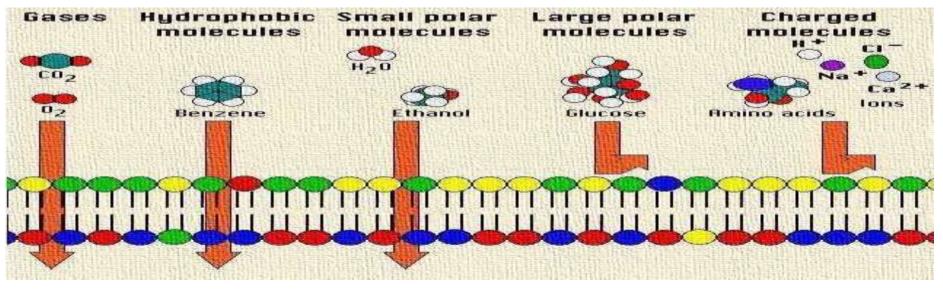
Biopharmaceutical Classification System (BCS) (as defined by the FDA after Amidon et al.)

	High Solubility	Low Solubility	
Aba Ace Acy Ami Ami Ami Ami Ami Ami Ami Ami Ami Ami	ass 1Imipramine ^T acavir etaminophen oclovirb iloride ^{S,1} Imipramine ^T itryptyline ^{S,1} tipyrine opineEvodopa ^S bioroquine ^{S,1} Levoflo xacin ^S loropheniramine otoprilMeperidine Metoprolollorophes phamide sipramine tazepam tiazem ^{S,1} Minocycline Misoprostolopyramide xepin wycycline ambutol inyl Estradiol oxetine ¹ coseFinite Nifedipine ^S Phenobarbital Phenylalanine Promazine PromazinePromazine Propranolol ¹ Quinidine ^{S,1} Rosiglitazone Salicylic acid Theophylline Valproic acid	Class 2 Amiodarone ^I Atorvastatin ^{S, I} Azithromycin ^{S, I} Carbamazepine ^{S,I} Carvedilol Chlorpromazine ^I Cisapride ^S Ciprofloxacin ^S Cyclosporine ^{S, I} Danazol Dapsone Diclofenac Diflunisal Digoxin ^S Erythromycin ^{S,I} Flurbiprofen Glipizide Glyburide ^{S,I} Griseofulvin Ibuprofen Indinavir ^S Indomethacin	Itraconazole ^{S,I} Ketoconazole ^I Lansoprazole ^I Lovastatin ^{S,I} <i>Mebendazole</i> Naproxen Nelfinavir ^{S,I} Ofloxacin Oxaprozin Phenazopyridine Phenytoin ^S Piroxicam Raloxifene ^S Ritonavir ^{S,I} Saquinavir ^{S,I} Sirolimus ^S Spironolactone ^I Tacrolimus ^{S,I} Talinolol ^S Tamoxifen ^I Terfenadine ^I Warfarin


High S	blubility	Low Solubility
Class 3AcyclovirAmilorideAmoxicillinAtenololAtropineBisphosphonates BidisomideCaptoprilCefazolinCetirizineCimetidineCiprofloxacinCloxacillinDicloxacillinFamotidine	Fexofenadine Folinic acid Furosemide Ganciclovir Hydrochlorothiazide Lisinopril Metformin Methotrexate Nadolol Pravastatin S Penicillins Ranitidine Tetracycline Trimethoprim Valsartan Zalcitabine	Class 4 Amphotericin B Chlorthalidone Chlorothiazide Colistin Ciprofloxacin Furosemide Hydrochlorothiazi de Mebendazole Methotrexate Neomycin

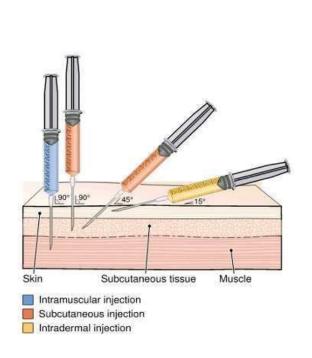
Class–I High Solubility High Permeability

- Drugs dissolved rapidly
- Drugs absorbed rapidly
- Rapid therapeutic action
- Excellent property
- Ideal for oral route
- e.g. Metoprolol, Diltiazem, Verapamil, Propranolol,


Class – II Low Solubility High Permeability

- Drugs dissolve slowly
- Drugs absorbed rapidly
- Controlled released drugs
- Oral / IV route for administration
- E.g. Glibenclamide, Ezetimibe, Phenytoin, Nifedipine

Class – III High Solubility Low Permeability


- Dissolved rapidly
- Absorbance is limited
- Incomplete bioavailability
- Oral / IV route for administration
- Ex. Cimetidine, Acyclovir, Captopril

Class – IV-Low Solubility Low Permeability

Low dissolution rate

- Low permeability property
- Sow or low therapeutic action
- IV or other routes are required
- Ex. Hydrochlorothiazide

BCS can be used as a key component to guide drug delivery system design for any route of administration

BCS Class	Solubility	Permeability	Oral Dosage Form Approach	Chances of Non-oral Dosage Form being Required
1	High	High	Simple solid oral dosage form	
2	Low	High	 Techniques to increase surface area like particle size reduction, solid solution, solid dispersion Solutions using solvents and/ or surfactants 	Increasing
3	High	Low	Incorporate permeability enhancers, maximize local lumenal concentration	
4	Low	Low	Combine 2 and 3	

Sgnificance of BCS

- Regulatory tool for replacement of certain BE studies.
- It can save both time and money—if the immediate -release, orally administered drug meets specific criteria, the FDA will grant a waiver for expensive and time-consuming bioequivalence studies.
- Valuable tool for formulation scientist for selection of design of formulated drug substance.
- When integrated with other information provide a tremendous tool for efficient drug development.
- Reduces cost and time of approving Scale- up and post approval challenges.
- Applicable in both pre-clinical and clinical drug development process.
- Works as a guiding tool in development of various oral drug delivery systems.

THANK YOU