Chapter 2 Drugs Acting On Peripheral Nervous System

- → **CNS**: Includes the brain and spinal cord.
- → **PNS**: It consists of the nerves branched out from the brain and spinal cord . These nerves form the communication network between the CNS and body parts.
 - **Somatic Nervous System :** It is a part of PNS and associated with the voluntary control of body movement via skeletal muscles . sensory and motor neurons found in it.
 - **Autonomic Nervous System :** It is a part of PNS also, and associated with Involuntary Physiological Process e.i. Heart rate , blood pressure , digestion etc.

Neurotransmitters

- → Neurotransmitters are chemical compounds present in the brain.
- → They are made up of amino acids and some of them are hormones.
- → They transmit information from one neuron to the other.
- → Major body functions like movement, emotional response, and the physical ability to experience pleasure and pain are controlled by neurotransmitters.
- → Neurotransmitters are specific chemical signals allowing communication between nerve cell and effector cells/organs.

Substances acting as neurotransmitters can mainly be categorised into the following three classes:

- Amino acids (primarily glutamic acid, Gamma-Aminobutyric Acid (GABA). aspartic acid, and glycine).
- Peptides (vasopressin, somatostatin, neurotensin, etc.)
- Monoamines (NE, dopamine and serotonin) plus Ach

Classification of Neurotransmitters

The neurotransmitters can be classified:

On the Basis of Secretion Site: These are of two types:

- 1. Neurotransmitters of Sympathetic Nervous System: In this, two neurotransmitters are present:
 - Acetylcholine (ACh) (liberated at the ganglion) acts as a neurotransmitter for the preganglionic sympathetic nerves.
 - Nor-adrenaline (NA) acts a neurotransmitter for the postganglionic sympathetic nerves.

2. **Neurotransmitters of Parasympathetic Nervous System :** In parasympathetic nervous system, only Ach is released at the ganglion and it acts as a neurotransmitter for the preganglionic parasympathetic nerves. Acetylcholine (ACh) also acts as a neurotransmitter for the postganglionic parasympathetic nerves.

Steps Involved In Neurohumoral Transmission

- ⇒ Initiation Of an Action Potential and Axonal Conduction.
- ⇒ Arrival of an AP at nerve terminal, resulting in the release of the transmitter.
- ⇒ Events at the synaptic cleft and post junctional sites.
- ⇒ Termination of effect of released Transmitter.

Cholinergic Drugs (Parasympathomimetic Agents)

- → Cholinergic Drugs are those drugs which give action similar to acetylcholine.
- → They give their action by directly binding to the cholinergic receptors or by indirect process.

Classification

1. Direct Acting Cholinergic Agonist

- These drugs produced actions similar to ACh by directly interacting with cholinergic receptors . Acetylcholine , Methacholine , Carbachol , Bethanechol. Pilocarpine.
 - 2. Indirect Acting Agents (Anticholinestrase)
- These drugs inhibit the enzyme cholinestrase, this enzyme inactivates the Acetylcholine. Physostigmine (this can cross blood brain barrier) Neostigmine (this can't cross blood brain barrier).

Pharmacological Actions

1. Muscarinic Action

- Heart : bradycardia (slow down heart rate)
- Blood Vessels: dilates blood vessels, lowers blood pressure
- Respiratory System : bronchoconstriction
- smooth muscles : contracts smooth muscles
- Exocrine Gland : Increase secretion (saliva, HCL, Pancreatic Juice)
- GI Tract : Increase peristalsis Movement .
- Urinary Bladder: Contraction
- Eye: Contraction of Pupils

2. Nicotinic Action

- Skeletal Muscle : Contraction
- CNS: ACh does not cross BBB, but if injected directly into brain and stimulates initially and then depresses.

Indication

- Acetylcholine is mainly used in experimental studies, and has limited clinical value because of following reasons.
 - It is rapidly hydrolysed by the Pseudocholinesterases.
 - It spread widely and diffuses in easily and thus does not produce a selective pharmacological action.
 - It can not be administered orally as it immediately hydrolysed and degraded by gastric enzymes.
- 2. Methacoline is not used nowadays.
- 3. Carbachol shows action on M and N receptors non selectively, so no longer in use.
- 4. Bethanechol Is in use as
 - In case of gastroparesis, postoperative abdominal distension.
 - In case of urinary bladder retention.

Dose

♣ Bethanechol: 5 or 10 mg tablets, 10-30 mg 3-4 times in a day.

Contraindications

- Hyperthyroidism: Choline ester may precipitate cardiac arrhythmias.
- Bronchial Asthma : Choline ester may precipitate bronchospasm.
- Peptic ulcer: Choline ester may increase gastric acid secretion.
- Myocardial Infarction: Choline ester may cause hypotension and form conduction block.

Pilocarpine

→ It is a alkaloid cholinergic drug, and it is a selective muscarinic agonist, therefore most of muscarinic effects can be predicted.

Pharmacological action

• Eye : miosis

• CVS: when administered intravenously a brief fall in blood pressure is seen.

• Sweat Glands: Excessive amount of sweat secret. (termed as diaphoresis)

Indication

▲ Pilocrpine is commonly used in glaucoma as eye drops.

Dose

↓ It is used 1-4 % pilocarpine nitrate in eye drops.

Contraindications

- O During pregnancy and lactation
- O In children because its safety and efficacy is not clear.
- O In older people may cause diarrhoea, urinary frequency and dizziness.

Anticholinergic Drugs

- → These are the drugs which occupy the ACh receptors and do not allow ACh to bind to the receptors .
- → Anticolinergic Drugs are also called " Parasympatholytic "
 - AntiParasympathetic Agents "
 - Cholinergic blocking Agents "
 - Cholinergic antagonist

Classification

Example : Atropine, Ipratropium, Tropicamide.

Example: Trimethaphan, Pentolinium.

Anti Muscarinic Agents :

- ➤ These act by inhibiting the action of Ach by blocking the muscarinic acetylcholine receptors.
- Example : Atropine , Ipratropium , Tropicamide.

2. Anti Nicotinic Agents:

- ➤ These act by inhibiting the action of Ach at nicotinic acetylcholine receptors.
- Example: Trimethaphan, Pentolinium.

Atropine

→ It is most common anti muscarinic agent . It is an alkaloid and blocks the all types of muscarinic receptors.

Pharmacological Action

- CNS: Mild stimulation
- Eye : Mydriasis
- CVS: It cause bradycardia initially and then tachycardia.
- Respiratory System : Bronchodilation
- Secretion : Secretions of sweat , saliva , and gastric are reduced.
- GIT: Relaxation, decrease peristaltic movement so it used as antispasmodic and anti diarrhoeal drug.

Indication

- ▲ For dilation of pupil.
- ♣ Pre Anaesthetic
- ▲ In bronchial Asthma and COPD.
- ▲ In hypersalivation.
- ▲ To treat diarrhoea
- ▲ As antidote for organophosphorus poisoning.
- ▲ To treat parkinsonism

Dose:

- It is given IV , IM and SC, routes.
- o.4-o.6mg for preoperative and pre anaesthetic,
- ❖ 1% solution in eye drop for mydriasis

Contraindication

- In glaucoma condition
- In infants suffering from Down' syndrome (delay in development of body and brain)
- $\ @$ In patients are hypertensive with atropine .

Adrenergic Drugs

- → Adrenergic drugs or adrenergic agonists or sympathomimetic agents are drugs causing stimulation of the adrenergic receptors in the sympathetic nervous system.
- → They are named so as they mimic the actions of major neurotransmitters of the sympathetic nervous system, i.e., epinephrine and norepinephrine.

Classification

⇒ On the basis of effects they produce on the organ cells, the sympathomimetic drugs can be categorised into three classes ;

Adrenergic Drugs Direct-Acting Sympathomimetic Agents Example: Epinephrine or Norepinephrine. Indirect-Acting Sympathomimetic Agents Example: Amphetamine.

Example: Ephedrine.

1. **Direct-Acting Sympathomimetic Agents :** They stimulate the adrenergic receptors directly, e.g., Epinephrine or Norepinephrine.

Mixed-Acting Sympathomimetic Agents

- 2. **Indirect-Acting Sympathomimetic Agents :** They act by stimulating the release of nor-epinephrine from the terminal nerve endings, e.g., Amphetamine.
- 3. **Mixed-Acting Sympathomimetic Agents**: They act both directly (stimulating adrenergic receptor sites) and indirectly (stimulating release of nor-epinephrine from the terminal nerve endings), e.g., Ephedrine.

Location of adrenergic receptors

- 1. α_1 : Smooth muscles = Heart,, Bladder, spleen, Ureters, (contraction) eye (mydriasis)
- 2. α2 : Pancreas (decrease insulin)
- 3. ß1: Heart (Increase heart rate)
- 4. ß2: Smooth muscles = heart, bronchi, uterus, GIT, (relaxation)

Pharmacological Action

- \triangleright **Cardiovascular system :** Stimulate the α 1 receptor and increase the contraction force of heart and then output of blood.
- ➤ **Respiratory system**: Stimulate ß₂ receptor and dilate the bronchi smooth muscles.
- \triangleright **Pancreas :** Bind to α2 receptor of pancreas and decrease the release of insulin ,so give hyperglycemic effect.

Indication

- ▲ To control bleeding
- ▲ To slow the absorption of local anaesthetics.
- ▲ To increase blood pressure

Contraindication

- αι receptor agonist is contraindicated in hypertension.
- $\ensuremath{\text{@}}$ α_2 receptor agonist is contraindicated in low blood pressure .

Dose

- Amphetamine 5-10mg tablet in the morning and midday
- Fpinephrine in acute asthma o.oiml/ml, in cardiac arrest o.oiml/ml

Anti- Adrenergic Drugs

- → The drugs block the effect or actions that occur by release of adrenaline are called antiAdrenergic Drugs.
- → These drugs are also called "Adrenergic Blocking Agents" "Adrenoceptor antagonist".

Classification

Anti-Adrenergic Drugs

 α - Adrenoceptor Blocking Drugs β - Adrenoceptor Blocking Drugs

Example: Prazosin, Yohimbine, Phenoxybenzamine

Example: Atenolol, Butoxamine, propranonol

- α **Adrenoceptor Blocking Drugs**: The effects of catecholamine facilitated via α receptors are blocked by these agents. Furthermore, depending on the ability of these drugs to dissociate from the receptors, they may either be reversible or irreversible.
 - **Example:** Prazosin, Yohimbine, Phenoxybenzamine
- 2. β Adrenoceptor Blocking Drugs: The effects of catecholomine facilitated via the β adrenoceptors are blocked by β - adrenoceptor blocking drugs. They can further be categorised as selective or non-selective β - adrenoceptor blocking agents.
 - Example : Atenolol , Butoxamine , propranonol

Pharmacological Actions

- ▲ On Eye: miosis
- ▲ Decrease the heart rate
- ▲ Bronchodilation
- ▲ Vasodilation.
- ▲ Lower blood pressure
- ▲ Increase intestinal motility .

Indication

- To treat hypertension
- In congestive heart failure
- In migraine
- Angina pectoris

- Parkinson's disease

Contraindication

- O Hepatic and renal disease
- O Peptic ulcer
- O Any drug allergy
- O Coronary artery disease

Doses

- ♣ Atenolol : 25 100mg daily
- Propanolol: 80 240 mg 12 hourly
- ♣ labetalol : 200 -600 mg 12 hourly

Neuromuscular Blocking Agents (Skeletal Muscle Relaxant)

- → The drugs are used to block the transmission of nerve impulses at the skeletal neuromuscular junction and cause skeletal muscle relaxation are called Neuromuscular Blocking Agent.
- → They are used to reduce spasm and pain in skeletal muscles.

Classification

Drugs Acting Peripherally at the Neuromuscular Junction

1) Non Depolarising Agents

- a) long acting (60 120 minutes) e.g. tubocuratine ,Dexacurium
- b) Intermediate acting (20 -50 minutes) e.g. Atracurium
- c) Short Acting (10-20) e.g. Mivacurium
- 2) Depolarising Agents: Succinyl Choline

Pharmacological Action

- ▲ Skeletal muscle: parental Administration of Tubocurarine results in weakness of Motor Impulses.
- ▲ CVS : These agents produce Hypotention and cardiac arrhythmia (increase or decrease in heart rate)

Indications

- ❖ Adjuvant (helping) to general Anaesthesia: Neuromuscular Blocking Agents are use with general anaesthesia to achieve adequate (as need) muscle relaxation.
- ❖ In Convulsant : These drugs are used for muscle relaxation in epileptic condition.
- ❖ In sever tetanus: Tetanus cause a painful muscle contraction, these drug are used only in severe case of tetanus.

Contraindications

- ▲ Heart patients: These are contraindicated in heart patients.
- ▲ Asthma patients; These are contraindicated in asthma patients.

Dose

- d -tubocurarine o.5 o.6 mg/kg
- Dexacurium 0.03 -0.05 mg / kg
- Atracurium o.4 -o.5 mg / kg
- mivacurium 0.15 -0.2 mg/kg
- Succinyl Choline 1.0 -1.5

Drugs Used in Myasthenia Gravis

Myasthenia Gravis

- → It is an autoimmune disorder in which antibodies are produced that blocks od destroy Muscles receptors
- → Patients with Myasthenia show severe muscular weakness.
- → Breakdown in communication between nerves and muscles.

Drugs used In Myasthenia Gravis

- 1) Anticolinesterases: Pridostigmine
- 2) Immunosuppression: Cyclosporine, Azthioprine
- 3) Intravenous Immune Globulin (IVIG)
- 4) Immunoabsorption : this procedure helps to remove anti AChR ABs (Acetycholine Receptor Antibodies)
- 5) Plasma Exchange: It helps to remove the abnormal antibodies.

Local Anaesthetic

 \rightarrow The drugs are used to block the sensation in a limited area are call Local anaesthetics .

Or

→ we say The drugs are used to abolish the sensory perception over a local area are called local anesthetics.

Classification Of Local anaesthetics

- 1. Injectable Anaesthetics
 - Short duration : procaine
 - Intermediate duration : Lignocaine (lidocaine)
 - Long duration : Tetracaine
- 2. Surface Anaesthetics: Cocaine, Lignocaine

Pharmacological Action Of Local Anaesthetics

The local anaesthetic have the following two types of actions:

- Local Action
- systemic action

1) Local Action

- They block the nerve ending
- They block the neuromuscular junction
- They delay the release of acetylcholine from motor neuron.

2) Systemic Action

- a) CNS
- They stimulate the CNS in starting and then depress
- They produce restlessness , mental confusion.
 - B) CVS
- Heart : Cardiac depression
- Blood Vessels: Vasodilation
- Lower Blood pressure

Indications

- These are used for infiltration anaesthetics (anaesthetic of an operative site by local injection)
- These are used as antiarrhythmic agents.
- These are used to treat status epilepsy.

Contraindications

- ▲ These are contraindicated in coronary disease.
- ▲ These are contraindicated in heart failure.
- ▲ These are contraindicated in heart block.
- ▲ These are contraindicated in liver disease.

Dose

- Lignocaine: 4mg/ kg and should not exceed 300 mg or 500mg
- Procaine: 12mg/kg and should exceed 1000mg

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

→ The drugs are used to treat Inflammation , and mild to moderate Pain and fever are called Non steroidal anti Inflammatory drugs .

Analgesic

- ➤ Analgesic are those drugs which used in the treatment of pain.
- ➤ NSAIDs reduce only slow pain
- > These drugs can not used in severe pain.
- Eg: Aspirin etc,

Anti-Pyretics

- Antipyretics are those drugs which to reduce the high blood temperature.
- > These drugs reduce only high body temperature not normal body temperature.
- > Mainly antipyretics drugs used in the treatment of fever
- Eg: Paracetamol etc.

Anti-Inflammation Agent

- Anti-inflammatory are those drugs which used to reduce the inflammation in the body.
- ➤ Eg :Ibuprofen

Classification of (NSIADs)

1) Non -Selective COX inhibitors

- Salicylates : Aspirin
- pyrazolone Derivatives : Phenylbutazone
- Indole Derivatives : Indomethacin
- Propionic Acid Derivatives : Ibuprofen
- Aril Acetic Acid Derivatives : Diclofenac
- Oxycame Derivatives : Piroxicam
- 2) **Preferential COX 2 inhibitors :** Nimesulide , meloxicam
- 3) **Selective COX 2 inhibitors :** Selecoxib , Rofecoxib
- 4) Analgesic Antipyretics with poor Anti inflammatory Action :
 - Paraaminophenol Derivatives : Paracetamol (acetaaminophen)
 - Pyrazolone Derivatives : Metamizol .

Indications

- Analgesia: NSIADs are used to eliminate or treat mild to moderate pain like:
 - Headache
 - Toothaches
 - Muscle aches
 - Arthritis
 - Migraine
 - Dysmenorrhea
- Antipyresis: NSIADs are used to treat fever / to normalize body temperature.
- Anti Inflammation : NSIADs are used to stop inflammation and pain like :
 - ▲ Rheumatoids
 - ▲ Osteoarthritis
 - ▲ Ankylosing spondylitis
 - ▲ Bursitis

Contraindication

- With NSIADs hypersensitivity (an exaggerated response by immune to a drug).
- In peptic Ulcer,
- ❖ In children suffering from chicken pox or influenza.
- In chronic liver disease
- In during pregnancy.
- In breastfeeding mother.

Dose

1) Aspirin:

- Adults: 325-650mg orally 4-6 Hours as need and should not exceed 3.9 g/day
- Children under 12 years : 10-15mg/kg

2) Paracetamol

- Adults: 500-650 mg, duration 4-6 hours, and should not exceed 4000mg/day
- Children under 18 years : 15mg/kg duration 6 hours.