

Biochemistry Unit III Question Bank

Multiple Choice Questions (MCQs)

(10 MCQs, each carrying 1 mark)

- 1. How many ATP molecules are produced from the complete β -oxidation of palmitic acid (16 carbons)?
 - a) 106
 - b) 108
 - c) 129
 - d) 131

Answer: a) 106

Explanation: Palmitic acid undergoes 7 β -oxidation cycles, producing 8 acetyl-CoA (8 × 10 ATP = 80 ATP via TCA cycle), 7 NADH (7 × 2.5 ATP = 17.5 ATP), and 7 FADH₂ (7 × 1.5 ATP = 10.5 ATP). Total = 108 ATP, but 2 ATP are used for activation, yielding a net of 106 ATP.

2. Ketone bodies are primarily formed in which organ?

- a) Brain
- b) Liver
- c) Kidney
- d) Muscle

Answer: b) Liver

Explanation: The liver produces ketone bodies (acetoacetate, β -hydroxybutyrate, acetone) during fasting or starvation via ketogenesis.

3. Which enzyme catalyzes the rate-limiting step in de novo fatty acid synthesis?

- a) Fatty acid synthase
- b) Acetyl-CoA carboxylase
- c) Citrate lyase
- d) HMG-CoA reductase

Answer: b) Acetyl-CoA carboxylase

Explanation: Acetyl-CoA carboxylase converts acetyl-CoA to malonyl-CoA, the committed step in fatty acid synthesis.

4. Cholesterol is a precursor for which of the following?

- a) Bile acids
- b) Steroid hormones
- c) Vitamin D
- d) All of the above

Answer: d) All of the above

Explanation: Cholesterol is converted into bile acids (e.g., cholic acid), steroid hormones (e.g., cortisol), and vitamin D (cholecalciferol).

5. Which disorder is characterized by high blood cholesterol levels?

- a) Hypercholesterolemia
- b) Fatty liver
- c) Obesity
- d) Ketoacidosis

Answer: a) Hypercholesterolemia

Explanation: Hypercholesterolemia involves elevated blood cholesterol, increasing the risk of atherosclerosis.

6. The urea cycle primarily occurs in which organ?

- a) Kidney
- b) Liver
- c) Brain
- d) Pancreas

Answer: b) Liver

Explanation: The urea cycle, detoxifying ammonia into urea, occurs in the liver's mitochondria and cytosol.

7. Phenylketonuria (PKU) is caused by a deficiency of which enzyme?

- a) Tyrosinase
- b) Phenylalanine hydroxylase
- c) Homogentisate oxidase
- d) Branched-chain ketoacid dehydrogenase

Answer: b) Phenylalanine hydroxylase

Explanation: PKU results from a deficiency in phenylalanine hydroxylase, leading to phenylalanine accumulation and neurological damage.

8. Which neurotransmitter is synthesized from tyrosine?

- a) Serotonin
- b) Dopamine
- c) Melatonin
- d) Histamine

Answer: b) Dopamine

Explanation: Dopamine is synthesized from tyrosine via L-DOPA in the catecholamine synthesis pathway.

9. Hyperbilirubinemia is associated with which condition?

- a) Jaundice
- b) Atherosclerosis
- c) Phenylketonuria
- d) Alkaptonuria

Answer: a) Jaundice

Explanation: Hyperbilirubinemia, elevated bilirubin levels, causes yellowing of skin and eyes in jaundice.

10. Which reaction removes an amino group as ammonia from amino acids?

- a) Transamination
- b) Deamination
- b) Decarboxylation

c) Deamination

Answer: b) Deamination

Explanation: Deamination removes an amino group as ammonia, often catalyzed by enzymes like glutamate dehydrogenase.

Long Answer Questions

(Answer 1 out of 3, 10 marks)

1. Describe the β -oxidation pathway of palmitic acid, its energetics, and its significance.

Answer:

β-Oxidation Pathway: β-Oxidation is the mitochondrial process of breaking down fatty acids into acetyl-CoA for energy production. For palmitic acid (16-carbon saturated fatty acid):

- o Steps (per cycle):
 - 1. **Activation**: Palmitic acid is activated to palmitoyl-CoA (uses 2 ATP equivalents via acyl-CoA-CoA synthetase).
 - 2. **Oxidation**: Palmitoyl-CoA \rightarrow trans- Δ^2 -trans- Δ^2 -enoyl-CoA (by acyl-CoA-CoA dehydrogenase, produces 1 FADH₂).
 - 3. **Hydration**: Trans- Δ^2 -trans- Δ^2 -enoyl-CoA \to L- β -L- β -hydroxyacyl \to CoA (by enoyl-CoA hydratase).
 - 4. **Oxidation**: L-β-L-β-hydroxyacyl \rightarrow CoA \rightarrow β-ketoacyl-CoA (by β-hydroxyacyl-CoA dehydrogenase, produces produces **1 NADH**).
 - 5. Cleavage: β -ketoacyl-CoA \rightarrow acetyl-CoA + shortened acyl-CoA (by thiolase).
- Palmitic acid (16C) undergoes 7 cycles, producing 8 acetyl-CoA, 7 FADH₂, and 7 NADH.

Energetics:

- 8 acetyl-CoA: Each enters the TCA cycle, yielding $8 \times 10 = 80$ ATP (via oxidative phosphorylation).
- o 7 NADH: Each yields ~2.5 ATP → 17.5 ATP.
- o 7 FADH₂: Each yields ~1.5 ATP \rightarrow 10.5 ATP.
- \circ Total: 80 + 17.5 + 10.5 = 108 ATP.
- Net: Subtract 2 ATP for activation \rightarrow 106 ATP. Significance:
- **Energy Source**: Major energy source during fasting, yielding more ATP per gram than carbohydrates or proteins.
- o Metabolic Flexibility: Acetyl-CoA feeds into the TCA cycle or ketogenesis.

o **Regulation**: Activated by glucagon and inhibited by insulin, ensuring fatty acid oxidation during low glucose conditions.

2. Explain the formation and utilization of ketone bodies, including the causes and consequences of ketoacidosis.

Answer:

Formation (Ketogenesis): Ketone bodies are formed in the liver mitochondria during prolonged fasting, starvation, or uncontrolled diabetes.

o Steps:

- 1. Two acetyl-CoA molecules condense to form **acetoacetyl-CoA** (by thiolase).
- 2. Acetoacetyl-CoA + acetyl-CoA → **HMG-CoA** (by HMG-CoA synthase, rate-limiting).
- 3. $HMG-CoA \rightarrow$ acetoacetate (by HMG-CoA lyase).
- 4. Acetoacetate is reduced to β -hydroxybutyrate (by β -hydroxybutyrate dehydrogenase) or spontaneously decarboxylated to **acetone**.
- Primary ketone bodies: acetoacetate, β-hydroxybutyrate (most abundant), and acetone (volatile, exhaled).
 Utilization (Ketolysis):
- Extrahepatic tissues (e.g., brain, muscle, heart) use ketone bodies during glucose scarcity.

Steps:

- 1. β -Hydroxybutyrate \rightarrow acetoacetate (by β -hydroxybutyrate dehydrogenase).
- 2. Acetoacetate + succinyl-CoA → acetoacetyl-CoA (by succinyl-CoA:acetoacetate CoA transferase).
- 3. Acetoacetyl-CoA \rightarrow 2 acetyl-CoA (by thiolase), entering the TCA cycle for ATP production.
- The brain adapts to use ketone bodies during prolonged fasting, sparing glucose.

Ketoacidosis:

- o **Causes**: Excessive ketogenesis in uncontrolled diabetes mellitus (type 1) or prolonged starvation, due to high fatty acid oxidation and low insulin.
- Consequences: Accumulation of acidic ketone bodies (acetoacetate, β-hydroxybutyrate) lowers blood pH (<7.35), causing metabolic acidosis.
 Symptoms include nausea, confusion, fruity breath (acetone), and, if untreated, coma or death.

- Management: Insulin administration and fluid/electrolyte correction to restore glucose metabolism and reduce ketogenesis.
- 3. Discuss the urea cycle, its disorders, and the general reactions of amino acid metabolism.

Answer:

General Reactions of Amino Acid Metabolism:

- Transamination: Transfer of an amino group from an amino acid to a keto acid (usually α-ketoglutarate), forming a new amino acid and keto acid.
 Catalyzed by transaminases (e.g., ALT, AST) using pyridoxal phosphate.
 Example: Alanine + α-ketoglutarate → pyruvate + glutamate.
- o **Deamination**: Removal of an amino group as ammonia, often from glutamate, by glutamate dehydrogenase, producing α-ketoglutarate and NH₃. Ammonia enters the urea cycle.
- Decarboxylation: Removal of a carboxyl group as CO₂, forming biogenic amines. Example: Histidine → histamine (by histidine decarboxylase).
 Urea Cycle: Converts toxic ammonia into urea in the liver (mitochondria and cytosol).
- o Steps:
 - 1. $NH_3 + CO_2 + 2$ ATP \rightarrow carbamoyl phosphate (by carbamoyl phosphate synthetase I, in mitochondria).
 - 2. Carbamoyl phosphate + ornithine → citrulline (by ornithine transcarbamoylase).
 - 3. Citrulline + aspartate + ATP → argininosuccinate (by argininosuccinate synthetase, in cytosol).
 - 4. Argininosuccinate \rightarrow arginine + fumarate (by argininosuccinate lyase).
 - 5. Arginine \rightarrow urea + ornithine (by arginase), recycling ornithine.
- Energetics: Requires 4 ATP equivalents per urea molecule (2 ATP in step 1, 2 high-energy bonds in step 3).

Disorders:

- Hyperammonemia: Deficiency in urea cycle enzymes (e.g., ornithine transcarbamoylase deficiency) leads to ammonia accumulation, causing neurological symptoms, coma, or death.
- o **Citrullinemia**: Deficiency in argininosuccinate synthetase, causing citrulline buildup and ammonia toxicity.
- Symptoms: Lethargy, seizures, developmental delays; treated with low-protein diets and ammonia scavengers (e.g., sodium benzoate).

Significance: The urea cycle detoxifies ammonia, preventing toxicity, and integrates with amino acid catabolism to manage nitrogen waste.

Short Answer Questions

(Answer 2 out of 3, 5 marks each)

1. Explain the de novo synthesis of palmitic acid and its regulation.

producing palmitic acid (16:0) from acetyl-CoA.

Answer:

De Novo Synthesis of Palmitic Acid: Fatty acid synthesis occurs in the cytoplasm,

- o Steps:
 - 1. Acetyl-CoA \rightarrow malonyl-CoA (by acetyl-CoA carboxylase, ratelimiting, uses biotin and CO₂).
 - 2. Acetyl-CoA and malonyl-CoA are loaded onto fatty acid synthase (FAS), a multi-enzyme complex.
 - 3. FAS catalyzes four reactions per cycle: condensation, reduction, dehydration, and reduction, adding 2 carbons from malonyl-CoA.
 - 4. After 7 cycles, palmitic acid (16C) is released from FAS.
- **Requirements**: NADPH (from HMP shunt), ATP, and acetyl-CoA (from citrate shuttle).

Regulation:

- Activated by: Insulin (promotes acetyl-CoA carboxylase activity), citrate (allosteric activator).
- o **Inhibited by**: Glucagon/epinephrine (via phosphorylation of acetyl-CoA carboxylase), palmitoyl-CoA (feedback inhibition), and low NADPH.
- Occurs in fed states when glucose and energy are abundant, storing excess energy as fat.
- 2. Describe the biological significance of cholesterol and its conversion into bile acids, steroid hormones, and vitamin D.

Answer:

Biological Significance of Cholesterol:

- **Membrane Component**: Cholesterol maintains membrane fluidity and forms lipid rafts for signaling.
- Precursor: Serves as a precursor for bile acids, steroid hormones, and vitamin
 D.
- Signaling: Modulates cellular processes via lipid-protein interactions.
 Conversions:

- o **Bile Acids**: In the liver, cholesterol is hydroxylated to form primary bile acids (e.g., cholic acid, chenodeoxycholic acid) via 7α-hydroxylase. Bile acids emulsify dietary fats for absorption and are stored in the gallbladder.
- Steroid Hormones: In endocrine glands, cholesterol is converted to pregnenolone by cytochrome P450scc, then to hormones like cortisol (adrenal cortex), testosterone (testes), and estradiol (ovaries).
- Vitamin D: In skin, 7-dehydrocholesterol (cholesterol derivative) is converted to cholecalciferol (vitamin D3) upon UV exposure, regulating calcium and phosphate homeostasis.
 - **Significance**: These derivatives are critical for digestion, endocrine function, and bone health.
- 3. Discuss the catabolism of phenylalanine and tyrosine, including two associated metabolic disorders.

Answer:

Catabolism of Phenylalanine and Tyrosine:

- o **Phenylalanine Catabolism**: Phenylalanine is hydroxylated to tyrosine by phenylalanine hydroxylase (uses tetrahydrobiopterin).
- Tyrosine Catabolism:
 - 1. Tyrosine \rightarrow p-hydroxyphenylpyruvate (by tyrosine aminotransferase).
 - 2. p-Hydroxyphenylpyruvate → homogentisate (by phydroxyphenylpyruvate dioxygenase).
 - 3. Homogentisate \rightarrow maleylacetoacetate (by homogentisate oxidase).
 - 4. Maleylacetoacetate → fumarylacetoacetate (by maleylacetoacetate isomerase).
 - Fumarylacetoacetate → fumarate + acetoacetate (by fumarylacetoacetate hydrolase), entering the TCA cycle or ketogenesis.
 Metabolic Disorders:
- Phenylketonuria (PKU): Deficiency in phenylalanine hydroxylase, causing phenylalanine accumulation, leading to intellectual disability, seizures, and hypopigmentation. Treated with a low-phenylalanine diet.
- o **Alkaptonuria**: Deficiency in homogentisate oxidase, causing homogentisate buildup, which oxidizes to alkapton, leading to dark urine, joint pain, and connective tissue pigmentation.
 - **Significance**: Proper catabolism prevents toxic metabolite accumulation and supports energy production and biosynthesis.