

Gluconeogenesis: The Body's Glucose Backup

Plan Glucone ogenesis is the process of making glucose from non-carbohydrate sources.

It maintains blood sugar during fasting and prevents dangerous hypoglycemia.

by SRI VIKRAM S

The Gluconeogenic Pathway: An Overview

Main sites

Liver performs 90% and kidneys 10% of gluconeogenesis.

Pathway specifics

Bypasses irreversible glycolysis steps for glucose synthesis.

Energy use

Consumes six ATP/GTP molecules per glucose made.

Key Precursors: Fueling the Pathway

Pyruvate

Derived from muscle lactate and alanine.

Lactate

Produced by anaerobic glycolysis in muscles and red blood cells.

Glycerol & Amino Acids

- Glycerol from fat breakdown in adipose tissue
- Amino acids from protein catabolism

The Bypasses: Overcoming Glycolysis' Hurdles

Pyruvate to PEP

Two-step conversion via pyruvate carboxylase and PEP carboxykinase.

Fructose-1,6bis phos phate to Fructose-6-phos phate

Facilitated by fructose-1,6-bisphosphatase (FBPase-1).

Glucose-6-phosphate to Glucose

Occurs in liver and kidneys using glucose-6-phosphatase (G6Pase).

pyruviateagilucose PLIOLO FG104 20.0H DOWOR

Stylle

Energy Requirements: The Cost of New Glucose

High energy consumption

Gluconeogenesis uses 6
ATP/GTP, reflecting anabolic demands.

Energy source priority

Body prioritizes glucose synthesis in energy deficits.

Chemical equation

2 Pyruvate + energy → 1 Glucose + byproducts

Hormonal Regulation: Balancing Act

1 ____ Insulin

Inhibits gluconeogenesis to reduce glucose output.

2 — Glucagon & Cortisol

Stimulate gluconeogenesis during energy need.

Enzyme modulation

Key enzymes like FBPase-1 are activated or inhibited hormonally.

4 — Glycogen metabolism

Liver phosphorylase modulates glycogen breakdown and synthesis.

Clinical Significance: Health Implications

Type 2 diabetes
Uncontrolled gluconeogenesis
contributes to high blood sugar.

Metabolic syndrome

Elevated hepatic glucose production worsens health risks.

Therapeutic targets

Gluconeogenic enzymes are potential drug targets.

Summary: Gluconeogenesis' Crucial R QLeose homeostasis

Gluconeogenesis keeps blood sugar stable during fasting.

Tight regulation

Hormones finely control pathway to meet energy needs.

Health impact

Dysfunction links to diabetes and metabolic disorders.

