Principles of Toxicology

1. Introduction to Toxicology

- **Definition**: Toxicology is the study of the adverse effects of chemical, physical, or biological agents on living organisms and the environment, including their prevention and treatment.
- **Scope**: Includes identification, mechanism, dose-response relationships, and management of toxic effects.

• Types of Toxicants:

- o Chemical: Drugs, pesticides, heavy metals.
- o Physical: Radiation, heat.
- o Biological: Toxins from plants, animals, or microbes.

• Key Terminologies:

- o **Toxin**: Naturally occurring poisonous substance (e.g., snake venom).
- o **Toxicant**: Synthetic or man-made poisonous substance (e.g., pesticides).
- o LD50: Dose lethal to 50% of the test population (measure of acute toxicity).
- o **ED50**: Dose effective in 50% of the population (therapeutic effect).
- o Therapeutic Index: Ratio of LD50 to ED50 (indicates drug safety).
- Xenobiotic: Foreign chemical substance not naturally produced in the body.

2. Classification of Toxicants

• Based on Source:

- Natural: Snake venom, botulinum toxin.
- Synthetic: Drugs, industrial chemicals (e.g., benzene).
- o Environmental: Air pollutants, heavy metals (e.g., lead, mercury).

Based on Target Organ:

- o Hepatotoxins: Affect liver (e.g., paracetamol overdose).
- o Nephrotoxins: Affect kidneys (e.g., aminoglycosides).
- o Neurotoxins: Affect nervous system (e.g., organophosphates).
- o Cardiotoxins: Affect heart (e.g., digitalis).

Based on Effect:

- o Acute: Immediate effects after single exposure (e.g., cyanide poisoning).
- o Chronic: Effects after prolonged exposure (e.g., lead toxicity).
- o Subacute/Subchronic: Intermediate effects.

Based on Chemical Nature:

- Heavy metals: Lead, mercury, arsenic.
- Organic compounds: Alcohols, hydrocarbons.
- o Gases: Carbon monoxide, hydrogen sulfide.

3. Principles of Toxicity

• Dose-Response Relationship:

- o Toxicity depends on dose, frequency, and duration of exposure.
- o **Threshold Dose**: Minimum dose required to produce a toxic effect.

 Linear vs. Non-linear: Some toxins show a linear dose-response, others have a threshold.

• Routes of Exposure:

- o Oral (e.g., drug overdose).
- o Inhalation (e.g., carbon monoxide).
- Dermal (e.g., pesticide absorption).
- Parenteral (e.g., intravenous toxins).

Factors Affecting Toxicity:

- o **Host Factors**: Age, sex, genetic makeup, health status.
- Chemical Factors: Solubility, stability, chemical structure.
- o **Environmental Factors**: Temperature, co-exposure to other substances.

Mechanisms of Toxicity:

- o **Direct Tissue Damage**: Corrosives (e.g., acids, alkalis).
- o **Enzyme Inhibition**: Organophosphates inhibit acetylcholinesterase.
- o **Receptor Interaction**: Toxins mimic or block endogenous ligands.
- o **Oxidative Stress**: Free radical generation (e.g., paracetamol overdose).
- Metabolic Activation: Conversion of non-toxic to toxic metabolites (e.g., cytochrome P450 activation of carbon tetrachloride).

4. Types of Toxicities

Acute Toxicity:

- Occurs within hours or days of exposure.
- o Examples: Cyanide poisoning, organophosphate poisoning.
- Symptoms: Rapid onset (e.g., convulsions, respiratory failure).

• Chronic Toxicity:

- o Results from repeated or prolonged exposure.
- o Examples: Lead poisoning, arsenic-induced cancers.
- o Symptoms: Delayed onset, cumulative damage (e.g., neuropathy, organ failure).

• Subacute/Subchronic Toxicity:

- Intermediate duration (weeks to months).
- Example: Repeated low-dose exposure to heavy metals.

Developmental Toxicity:

Affects fetus (e.g., thalidomide causing phocomelia).

Carcinogenic Toxicity:

Leads to cancer (e.g., benzene causing leukemia).

Mutagenic Toxicity:

Causes genetic mutations (e.g., radiation exposure).

• Teratogenic Toxicity:

Causes congenital malformations (e.g., alcohol causing fetal alcohol syndrome).

5. Management of Poisoning

• General Principles:

- Stabilization: Ensure airway, breathing, circulation (ABCs).
- Assessment: Identify toxin, route, dose, and time of exposure.
- o **Decontamination**: Reduce further absorption.

- Skin/Eye: Wash with water or saline.
- Gastrointestinal:
 - Gastric Lavage: Rarely used; within 1-2 hours of ingestion.
 - Activated Charcoal: Adsorbs toxins (effective within 1 hour).
 - Whole Bowel Irrigation: For sustained-release drugs or heavy metals.
- Elimination Enhancement:
 - Forced diuresis (e.g., for barbiturates).
 - Hemodialysis (e.g., for methanol, ethylene glycol).
 - Alkalinization of urine (e.g., for salicylates).
- Antidote Administration: Specific antidotes (see below).
- o **Supportive Care**: Manage symptoms (e.g., anticonvulsants for seizures).
- Prevention of Absorption:
 - o Activated charcoal: 1 g/kg body weight, most effective within 1 hour.
 - o Cathartics: Magnesium sulfate to hasten elimination (used cautiously).
- Monitoring: Vital signs, ECG, renal/liver function tests.

6. Specific Antidotes

- Antidote: A substance that counteracts a specific poison by neutralizing it or reversing its
 effects.
- Common Antidotes:
 - 1. N-acetylcysteine (NAC):
 - **Poison**: Paracetamol (acetaminophen) overdose.
 - Mechanism: Replenishes glutathione, detoxifies NAPQI (toxic metabolite).
 - **Dose**: Oral (140 mg/kg loading, then 70 mg/kg every 4 hours for 17 doses) or IV.
 - 2. Atropine and Pralidoxime (2-PAM):
 - Poison: Organophosphate poisoning.
 - Mechanism: Atropine blocks muscarinic effects; 2-PAM regenerates acetylcholinesterase.
 - Dose: Atropine 1-2 mg IV every 5-10 min; 2-PAM 1-2 g IV.
 - 3. Flumazenil:
 - Poison: Benzodiazepine overdose.
 - Mechanism: Competitive antagonist at GABA receptor.
 - Dose: 0.2 mg IV over 30 seconds, repeated as needed.
 - 4. Naloxone:
 - Poison: Opioid overdose.
 - Mechanism: Opioid receptor antagonist.
 - Dose: 0.4-2 mg IV, repeat every 2-3 minutes.
 - 5. **Deferoxamine**:
 - Poison: Iron overdose.
 - Mechanism: Chelates free iron.
 - **Dose**: 15 mg/kg/hr IV infusion.
 - Dimercaprol (BAL):
 - **Poison**: Heavy metals (arsenic, mercury, lead).
 - Mechanism: Chelates metals to form excretable complexes.
 - Dose: 3-5 mg/kg IM every 4-6 hours.
 - 7. Sodium Bicarbonate:
 - Poison: Salicylates, tricyclic antidepressants.

- Mechanism: Alkalinizes urine, enhances excretion, stabilizes cardiac membranes.
- **Dose**: 1-2 mEq/kg IV bolus.

8. Ethanol or Fomepizole:

- Poison: Methanol or ethylene glycol.
- Mechanism: Inhibits alcohol dehydrogenase, prevents toxic metabolite formation.
- Dose: Fomepizole 15 mg/kg IV loading dose; ethanol 10 mL/kg IV.

9. Vitamin K:

- Poison: Warfarin or rodenticide poisoning.
- Mechanism: Restores clotting factor synthesis.
- Dose: 5-10 mg IV or oral.

10. Glucagon:

- Poison: Beta-blocker overdose.
- Mechanism: Increases cardiac contractility via cAMP.
- **Dose**: 3-10 mg IV bolus.

7. Specific Toxicities and Management

• Paracetamol Overdose:

- Mechanism: Excess NAPQI depletes glutathione, causes hepatotoxicity.
- Symptoms: Nausea, vomiting, jaundice, liver failure (after 24-48 hours).
- Management: N-acetylcysteine, monitor liver function tests, use Rumack-Matthew nomogram.

Organophosphate Poisoning:

- o **Mechanism**: Inhibits acetylcholinesterase, causing cholinergic crisis.
- Symptoms: SLUDGE (Salivation, Lacrimation, Urination, Defecation, GI distress, Emesis), miosis, bradycardia.
- Management: Atropine, pralidoxime, decontamination, supportive care.

Heavy Metal Poisoning:

- o **Lead**: Neurotoxicity, anemia, colic. **Antidote**: Dimercaprol, EDTA.
- Mercury: Nephrotoxicity, tremors. Antidote: Dimercaprol.
- o Arsenic: GI distress, neuropathy. Antidote: Dimercaprol or succimer.

Carbon Monoxide Poisoning:

- o **Mechanism**: Binds hemoglobin, reduces oxygen delivery.
- o **Symptoms**: Headache, confusion, cherry-red skin, coma.
- o Management: 100% oxygen, hyperbaric oxygen therapy.

Opioid Overdose:

- o **Symptoms**: Respiratory depression, pinpoint pupils, coma.
- Management: Naloxone, ventilatory support.

8. Toxicokinetics and Toxicodynamics

- Toxicokinetics: How the body handles toxins (absorption, distribution, metabolism, excretion).
 - o **Absorption**: Depends on route (e.g., oral slower than inhalation).
 - Metabolism: Phase I (oxidation, reduction) and Phase II (conjugation) reactions.
 - o **Excretion**: Kidneys (primary), bile, lungs.

- **Toxicodynamics**: Biochemical and physiological effects of toxins.
 - o Example: Cyanide inhibits cytochrome oxidase, halting cellular respiration.

9. Toxicological Testing

- Acute Toxicity Testing: Determines LD50, single-dose effects.
- Chronic Toxicity Testing: Assesses long-term exposure effects (e.g., carcinogenicity).
- In Vitro Tests: Cell-based assays for cytotoxicity.
- In Vivo Tests: Animal studies for systemic effects.

10. Prevention of Poisoning

- Safe storage of chemicals and drugs.
- Child-proof packaging.
- Public education on poison control.
- Proper labeling of toxic substances.
- Emergency contact: Poison control centers (e.g., in India: AIIMS Poison Information Centre).