Microbial Biotransformation and Applications

Introduction

- Microorganisms are not only used for fermentation but also for biotransformation, which refers to the chemical modification of compounds by microbial cells or enzymes.
- It is a valuable method for producing pharmaceuticals, agrochemicals, flavors, fragrances, and fine chemicals.
- Unlike traditional chemical synthesis, microbial biotransformation occurs under mild conditions (normal temperature, pH, pressure) and often shows high specificity.

Definition

Microbial biotransformation is the process in which microorganisms (bacteria, fungi, actinomycetes, or yeast) or their enzymes modify a chemical compound into a structurally related product with added value.

Basic Principles

- 1. Specificity
 - Microbes carry out stereospecific and regioselective transformations (produce desired isomers).
- 2. Mild Conditions
 - Reactions occur at normal temperature and pressure, unlike harsh chemical methods.
- 3. Eco-friendly
 - o Produces fewer toxic byproducts.
- 4. Diverse Reactions Possible
 - o Oxidation, reduction, hydroxylation, deamination, decarboxylation, isomerization, hydrolysis.
- 5. Whole Cells or Enzymes
 - o Transformation can be carried out using **whole microbial cells** (living/non-living) or **purified enzymes**.

Microorganisms Involved in Biotransformation

- Bacteria: Pseudomonas, Bacillus, Escherichia coli.
- **Fungi:** Aspergillus, Penicillium, Rhizopus.
- Yeast: Saccharomyces cerevisiae, Candida.
- Actinomycetes: Streptomyces (important for antibiotics).

Types of Biotransformation

- 1. **Oxidation** Conversion of alcohols to acids or ketones.
- 2. **Reduction** Conversion of ketones/aldehydes to alcohols.
- 3. **Hydroxylation** Introduction of the OH group (steroids).

- 4. **Decarboxylation** Removal of the CO₂ group.
- 5. **Deamination** Removal of the amino group.
- 6. **Isomerization** Conversion of glucose to fructose.
- 7. **Hydrolysis** Breaking ester bonds (lipases, proteases).

Steps in the Biotransformation Process

- 1. **Selection of Microorganism** based on desired transformation.
- 2. **Substrate Feeding** supplying precursor chemical.
- 3. **Microbial Growth / Enzyme Reaction** incubation under optimal conditions.
- 4. **Biotransformation Reaction** substrate modified to a new product.
- 5. **Product Recovery** extraction and purification.

Examples of Microbial Biotransformation

1. Steroid Transformation

- o Rhizopus species hydroxylate steroids.
- \circ Example: Cortisone \rightarrow Prednisone (anti-inflammatory drug).

2. Antibiotic Modification

o Streptomyces species modify β -lactam antibiotics.

3. Vitamin Production

o Biotransformation of precursors into Vitamin C (Ascorbic acid) using *Acetobacter*.

4. Flavors and Fragrances

o Yeasts transform precursors into esters (used in perfumes, food flavoring).

5. Amino Acid Production

- o Corynebacterium glutamicum \rightarrow Glutamic acid.
- \circ Brevibacterium \rightarrow L-lysine.

6. Bioconversion of Waste

o Pseudomonas degrades hydrocarbons into useful intermediates.

Applications of Microbial Biotransformation

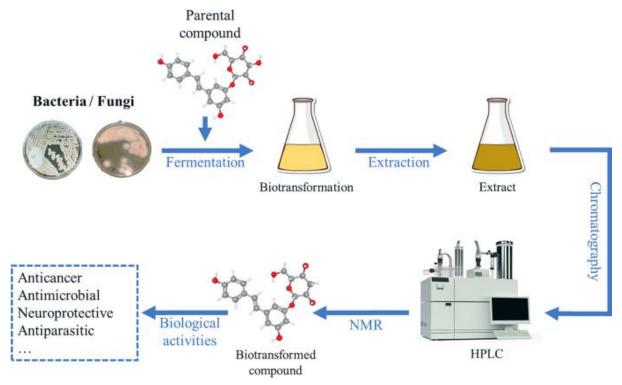
1. Pharmaceutical Industry

- Production of steroids (cortisone, prednisone).
- Manufacture of **antibiotics** and their derivatives.
- Production of alkaloids (morphine derivatives).
- Synthesis of **chiral intermediates** for drug manufacture.

2. Food Industry

- Conversion of **glucose** \rightarrow **fructose** (high fructose corn syrup).
- Production of **flavors** (vanillin, esters, alcohols).
- Manufacture of fermented foods (cheese, soy sauce).

3. Agriculture


- Bioconversion of pesticides into less toxic forms.
- Production of biopesticides and biofertilizers.

4. Environmental Biotechnology

- Bioremediation of pollutants.
- Conversion of toxic compounds into biodegradable products.

5. Industrial Chemicals

- Synthesis of organic acids (citric acid, lactic acid).
- Biopolymers (PHA, PHB) from microbial action.

Advantages over Chemical Synthesis

- High **specificity** (no unwanted isomers).
- Less energy consumption.
- Eco-friendly process.
- Economical for complex molecules.

Limitations

- Some reactions are **slow**.
- Product yield may be low.
- Requires specific growth conditions.
- Purification can be **costly**.

Conclusion

Microbial biotransformation is a **powerful natural process** harnessed for **industrial, pharmaceutical, food, agricultural, and environmental applications**. It provides an **eco-friendly, cost-effective, and highly specific alternative** to chemical synthesis, making it one of the pillars of modern biotechnology.