Study of the Production of Penicillin

Introduction

- **Penicillin** is the **first antibiotic** discovered by **Alexander Fleming in 1928** from the fungus *Penicillium notatum* (later *P. chrysogenum* was used for industry due to higher yield).
- It is a β -lactam antibiotic, active mainly against Gram-positive bacteria.
- It works by **inhibiting cell wall synthesis** (peptidoglycan cross-linking).
- It has been produced commercially since **World War II** and remains one of the most studied antibiotics in **industrial fermentation**.

Microorganism Used

- Early: *Penicillium notatum*.
- Now: **Penicillium chrysogenum** genetically improved strains for **high yield**.
- Improvement methods: mutation, selection, recombinant DNA technology.

Raw Materials

- Carbon source: lactose, glucose, sucrose, molasses.
- Nitrogen source: corn steep liquor, peptone, yeast extract, ammonium salts.
- **Precursors**: side-chain precursors such as **phenylacetic acid or phenoxyacetic acid** for production of specific penicillins (Penicillin G, Penicillin V).
- Minerals: magnesium, potassium, phosphates, sulphates.

Fermentation Process for Penicillin Production

Penicillin production is carried out using **submerged aerobic fed-batch fermentation**.

Stages

1. **Inoculum Preparation**

- o Pure culture of *P. chrysogenum* grown on agar slants.
- \circ Spores transferred to seed flasks \rightarrow seed tanks.
- o Stepwise increase in volume until production fermenter is inoculated.

2. Fermentation

o **Type:** Submerged aerobic fed-batch.

o **Duration:** 120–200 hours (5–7 days).

Conditions:

- Temperature: 25–27°C.
- pH: 6.0–6.5 (maintained by buffers and automatic control).
- Aeration: continuous sparging of sterile air.
- Agitation: impellers for mixing and oxygen distribution.
- **Fed-batch:** Carbon (lactose/glucose) added slowly to prevent catabolite repression.

3. Penicillin Biosynthesis

- o Biosynthetic pathway involves three amino acids:
 - L-cysteine + L-valine + L-α-aminoadipic acid → tripeptide precursor (ACV).
 - Cyclization \rightarrow Isopenicillin N.
 - Side-chain addition (precursors) → Penicillin G (benzylpenicillin) or Penicillin V (phenoxymethylpenicillin).

Harvesting and Recovery

- 1. **Broth Filtration** to remove fungal mycelium.
- 2. **Extraction** penicillin extracted into organic solvent (butyl acetate/amyl acetate) at acidic pH.
- 3. **Back extraction** into aqueous solution at neutral pH.
- 4. **Purification** crystallization of penicillin salts (e.g., sodium or potassium penicillin G).
- 5. **Formulation** converted into injectable, tablet, or capsule forms.

Downstream Processing (Summary Steps)

- 1. Cell removal (filtration).
- 2. Solvent extraction.
- 3. Back extraction.
- 4. Crystallization.
- 5. Drying and packaging.

Production of Penicillin

(You can draw this flowchart in exam)

P. chrysogenum strain

```
Inoculum preparation

|
Seed culture → Fermenter (fed-batch, aerobic)

| (pH 6-6.5, 25-27°C, aeration, agitation)

Penicillin produced in broth

|
Broth filtration → Extraction (organic solvent)

|
Back extraction → Purification → Crystallization

|
Penicillin G / V (final product)
```


Figure 6.9: Production of Penicillin

Types of Penicillins Produced

- Natural Penicillins: Penicillin G, Penicillin V.
- **Semi-synthetic Penicillins:** Ampicillin, Amoxicillin, Methicillin (produced by modifying natural penicillin nucleus).

Advantages of Fed-Batch Process

- Prevents repression by glucose.
- Enhances yield.
- Allows addition of precursors at correct stage for specific penicillins.

Applications of Penicillin

• First-line antibiotic against Gram-positive bacteria (*Streptococcus*, *Staphylococcus*).

- Used in treatment of pneumonia, syphilis, meningitis, and skin infections.
- Basis for development of semi-synthetic derivatives with broader spectrum and resistance to β -lactamase.

Conclusion

- Penicillin production is a classic example of industrial microbiology and biotechnology.
- Modern improvements using **strain engineering and recombinant DNA technology** have significantly increased yields.
- The process remains a **model system for secondary metabolite production** in submerged fermentation.