Production of Citric Acid

Introduction

- Citric acid is a tricarboxylic acid (C₆H₈O₇), a weak organic acid.
- First isolated from lemon juice by Carl Wilhelm Scheele (1784).
- Used widely in food, beverage, pharmaceutical, and cosmetic industries.
- **Microbial fermentation** is the major method of industrial production (accounts for >90% of the world's citric acid supply).

Microorganism Used

- **Aspergillus niger** (filamentous fungus) most widely used due to high yield.
- Yeasts (e.g., Candida lipolytica, Yarrowia lipolytica) can use hydrocarbons as substrate.
- Mutant strains of A. niger are developed for increased yield.

Raw Materials

1. Carbon sources:

- o Molasses, starch hydrolysates, sucrose, glucose.
- o Cheap raw materials are preferred for economic production.

2. Nitrogen sources:

○ Corn steep liquor, ammonium salts, peptones (low concentration – as nitrogen limitation favors citric acid production).

3. Minerals:

o Trace elements required, but heavy metals like iron, zinc, and manganese must be avoided (they inhibit citric acid accumulation).

4. Other supplements:

o Methanol (low concentration) is sometimes added to increase yield.

Fermentation Process

Industrial production of citric acid is done by submerged fermentation and surface fermentation.

1. Inoculum Preparation

- A. niger spores are grown on agar slants.
- Spores transferred to seed flasks → seed tanks → production fermenter.

2. Production Fermentation

- Types:
 - Submerged fermentation (SmF) widely used, high productivity.
 - o **Surface fermentation** older method, used in some regions (using trays).
- Conditions:
 - o pH: 2.0–3.5 (acidic conditions favor citric acid accumulation).
 - o Temperature: 28–30°C.
 - o Aeration: High (citric acid production is aerobic).
 - o Duration: 5–10 days.

 Nitrogen limitation is essential (prevents biomass growth and channels metabolism toward citric acid).

3. Metabolic Pathway

- Citric acid is an intermediate of the TCA cycle (Krebs cycle).
- Normally, it is converted further into isocitrate $\rightarrow \alpha$ -ketoglutarate.
- But under specific conditions (excess sugar, nitrogen limitation, metal ion deficiency), A. niger accumulates large amounts of citric acid and secretes it into the medium.

Recovery and Purification of Citric Acid

- 1. **Filtration** fungal mycelium separated from broth.
- 2. **Precipitation** citric acid is precipitated as **calcium citrate** by adding lime (Ca(OH)₂).
- 3. **Filtration** calcium citrate separated.
- 4. **Acid treatment** calcium citrate treated with sulfuric acid → citric acid + calcium sulfate (gypsum).
- 5. **Purification** activated charcoal is used to remove color and impurities.
- 6. Crystallization citric acid crystals obtained.

Flowchart - Production of Citric Acid

You can draw this simple flowchart in exams:

```
A. niger spores → Inoculum preparation → Fermenter (submerged, aerobic)

| (Sugar solution + low nitrogen + aeration, pH 2-3)

↓
Citric acid accumulated in the broth

↓
Filtration → Precipitation with Ca(OH)<sub>2</sub> (Ca citrate formed)

↓
Treatment with H<sub>2</sub>SO<sub>4</sub> → Citric acid + CaSO<sub>4</sub> (byproduct)

↓
Purification → Crystallization → Citric Acid (final product)
```

Applications of Citric Acid

1. Food Industry

- o As flavoring agent (soft drinks, candies, jams, jellies).
- o As preservative (E330).
- Acidulant (adds sour taste, controls pH).

2. Pharmaceutical Industry

- o As an anticoagulant (prevents blood clotting by binding calcium).
- o In effervescent tablets and syrups.
- o Enhances absorption of minerals (iron, calcium).

3. Industrial Uses

- o In detergents (binds hardness ions like Ca²⁺, Mg²⁺).
- Used in cosmetics (skin-care creams, shampoos).
- As a plasticizer in biodegradable plastics.

4. Biotechnology

o Used in buffer preparation for molecular biology experiments.

Advantages of Microbial Production

- Uses cheap raw materials.
- Environmentally friendly.
- High yield and easy downstream processing.

Conclusion

- Citric acid is a **high-value product** of industrial microbiology.
- Aspergillus niger fermentation is the primary method for its production.
- With its wide applications in **food, medicine, and industry**, citric acid remains one of the most successful products of **industrial biotechnology**.