1. Collection of Whole Human Blood (5 Marks – 2 pages)

- **Definition:** Collection of human blood refers to the systematic withdrawal of blood from a healthy donor under sterile conditions for therapeutic use. It is the first and most critical step in blood banking.
- **Donor Selection:** Donors are screened for eligibility. Age group is usually 18–60 years, body weight above 50 kg, hemoglobin level above 12.5 g/dl. Donor should be free from infectious diseases.
- **Site & Method:** Blood is withdrawn from the **median cubital vein** in the arm. The puncture site is disinfected with **70% alcohol or povidone-iodine** to maintain asepsis.
- Collection System: Plastic bags containing anticoagulant-preservative solutions such as:
 - ACD (Acid Citrate Dextrose): Citrate prevents clotting, dextrose provides energy.
 - CPDA-1 (Citrate Phosphate Dextrose Adenine): Adenine helps in ATP production → longer RBC survival.
- **Volume Collected:** Usually **420–450 ml** at a time (about 8–10% of total blood volume).
- Precautions During Collection:
 - 1. Gentle mixing of blood with anticoagulant to prevent clot formation.
 - 2. Sterile and disposable equipment is used.
 - 3. Samples are simultaneously taken for **blood grouping**, **Rh typing**, **and screening for infections** (HIV, HBV, HCV, syphilis, malaria).
- **Post-Collection:** The donor is advised to rest for 15–20 minutes, given fluids to prevent fainting.
- **Importance:** Proper collection ensures safety for both donor and recipient, reduces risk of contamination, and maintains the viability of blood components.

Storage during collection: Initially at room temperature (22–25°C) but must be shifted to refrigeration (4–6°C) within a few hours.

Donor Selection → Venipuncture → Collection in Bag with Anticoagulant → Labeling & Testing → Storage."

2. Processing of Whole Human Blood (5 Marks – 2 pages)

- **Definition:** Processing refers to the steps by which collected whole blood is separated into different components and prepared for safe storage and use.
- **Purpose:** Since whole blood is rarely transfused, separation allows one unit to treat multiple patients (RBCs for anemia, plasma for clotting disorders, platelets for thrombocytopenia).

- Methods of Processing:
 - o **Centrifugation:** Blood is centrifuged at controlled speeds.
 - Low speed (soft spin): separates plasma and red cells.
 - **High speed (hard spin):** further separates platelets from plasma.
 - Filtration: Removes leukocytes to prevent febrile reactions.
- Blood Components Obtained:
 - 1. Packed Red Cells for anemia, trauma.
 - 2. Fresh Frozen Plasma (FFP) contains clotting factors.
 - 3. Platelet Concentrate for bleeding disorders.
 - 4. **Cryoprecipitate** rich in factor VIII and fibrinogen.
- **Preservation Solutions:** Same as collection, ACD (21 days) or CPDA-1 (35 days).
- Quality Control:
 - o Regular testing for sterility, hemoglobin content, hematocrit.
 - o Proper labeling with blood group, Rh factor, collection date, and expiry.
- Advantages of Processing:
 - o Reduces wastage.
 - o Specific component therapy.
 - Safer and more effective transfusion.
- Storage Area: Refrigerators (1–6°C), plasma freezers (–20°C or below), platelet incubators (22–24°C with constant agitation).

Whole Blood → Centrifugation → RBC, Plasma, Platelets, Cryoprecipitate."

3. Storage of Whole Human Blood (5 Marks – 2 pages)

- **Principle:** Proper storage ensures blood remains viable, sterile, and safe for transfusion until its expiry date.
- Temperature Requirements: Blood must be stored between 2–6°C. Higher temperatures may promote bacterial growth; freezing damages red cells.
- Shelf Life:
 - \circ ACD solution → 21 days.
 - CPDA-1 solution \rightarrow 35 days.
- Blood Bank Refrigerators:
 - Specially designed with temperature monitoring, alarms, and backup power supply.
 - Shelves for proper arrangement of bags.
- Storage Lesions (Biochemical Changes):
 - \circ ↓ ATP, ↓ 2,3-DPG (affects oxygen release).
 - ↑ Potassium leakage.
 - o Hemolysis risk with prolonged storage.
- Labeling: Each bag labeled with:
 - o Donor number, blood group, Rh type.
 - o Collection date, expiry date.
 - Type of anticoagulant.

- Safety Checks: Sterility testing, cross-matching, and visual inspection (clots, hemolysis) before transfusion.
- **Importance:** Prevents deterioration, ensures safe transfusion, reduces transfusion-transmitted infections.

Diagram: Blood bank refrigerator schematic.

4. Dried Human Plasma (5 Marks – 2 pages)

- **Definition:** Plasma that has been separated from whole blood and then preserved by **freeze-drying (lyophilization)** to extend shelf life.
- Preparation Process:
 - 1. Whole blood collected.
 - 2. Plasma separated by centrifugation.
 - 3. Plasma frozen and subjected to vacuum drying (lyophilization).
 - 4. Packaged in sterile, sealed containers.

Properties:

- o Retains clotting factors, proteins, antibodies.
- Lightweight, portable, easy to store.
- **Reconstitution:** Before transfusion, sterile water is added to restore plasma to liquid form.

• Uses:

- o Emergency treatment of burns, hemorrhage, and shock.
- o During wars or disasters when fresh plasma is unavailable.
- o Maintains blood volume and provides clotting factors.

Advantages:

- o Long shelf life (months—years).
- Easily transported to remote areas.

• Limitations:

- Lacks red cells and platelets.
- o Risk of allergic reactions.

• Storage Condition:

Dry sealed vials.

o Temperature: below 50°C.

Diagram: Flowchart: "Whole Blood → Plasma Separation → Freeze-drying → Stored Dried Plasma → Reconstitution → Use."

5. Plasma Substitutes (5 Marks – 2 pages)

• **Definition:** Plasma substitutes are artificial solutions that temporarily replace plasma volume in emergencies, especially during **hypovolemic shock**.

• Characteristics:

- o Should be sterile, pyrogen-free, and isotonic.
- o Should not disturb acid-base or electrolyte balance.

• Common Plasma Substitutes:

- 1. **Dextran:** Polysaccharide solution; effective plasma expander; used in shock and surgery.
- 2. Gelatin (e.g., Haemaccel, Gelofusine): Provides rapid volume expansion.
- 3. **Polyvinyl Pyrrolidone (PVP):** Synthetic polymer; less commonly used now.

Advantages:

- Easily available.
- o Long shelf life.
- No infection risk.

• Disadvantages:

- No oxygen-carrying capacity.
- o May cause allergic reactions.
- Limited duration of action.

• Uses:

- o Temporary replacement until blood/plasma is arranged.
- o Burns, trauma, surgical operations.

• Storage Conditions:

- o Store at 15–25°C in a dry, cool area.
- o Long shelf life (months—years).

Diagram: Chart comparing "Natural Plasma vs Plasma Substitutes."

	PLASMA	SERUM	
	anti-coagulants are needed for purification	anti-coagulants are not needed	
	it can be prepared as soon as it has been mixed thoroughly	30 minutes delay for a clo formation	t
plasma	fibrinogen is present	fibrinogen is absent serum	
WBCs and platelets	platelets and cells (WBCs) can contaminate the liquid fraction	cleaner sample, depleted cells and cell remnants, by latent clotting can lead to fibrin formation	
RBCs	composition of ions is representative of the circulating blood	clot retraction elevates potassium level relative to plasma value	its
	 considered less stable (especially during longer storage) 	 considered more stable – gold standard for biobanki 	77.7