

UNIT 1

COURSE NAME: QCSH

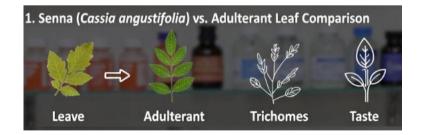
TOPIC: EVALUTION OF CRUDE DRUG INTENDED

FOR INTERNAL USE

CASE STUDY PUZZLE 1: The Bitter Senna Scandal

Topic: Macroscopic & Organoleptic Evaluation

Scenario: A herbal laxative labeled "Senna Leaf Powder" is recalled after patients report **no effect**


- Label claim: Cassia angustifolia
- Organoleptic: Sweet taste, no bitterness
- Macroscopy: Broken pods mixed with leaves

Puzzle Questions:

- 1. What **adulterant** is likely present?
- 2. How to **confirm macroscopically**?
- 3. Why **no laxative effect**?

Answer Key:

- 1. Cassia auriculata (Tanner's Cassia) pods + sweet taste.
- 2. **Senna**: Lanceolate leaflets, mucilage hairs; **Adulterant**: Obovate leaflets, no hairs.
- 3. **Sennosides absent** \rightarrow no anthraquinone laxation.

CASE STUDY PUZZLE 2: The Moldy Ginger Tea

Topic: Microbial Limit Test & Aflatoxin

Scenario: A ginger tea bag causes **liver enzyme elevation** in 12 consumers.

- Total fungal count: 1.2×10^6 CFU/g (IP limit: $\le 10^4$)
- **Aflatoxin B1:** 35 ppb (WHO limit: ≤5 ppb)
- **Storage:** Damp warehouse

OCSH|EVALUTION OF CRUDE DRUGS|MS. D. PRADEEPA|AP|SNSCPHS

Puzzle Ouestions:

- 1. Which test failed?
- 2. Calculate % over limit for aflatoxin.
- 3. Preventive measure?

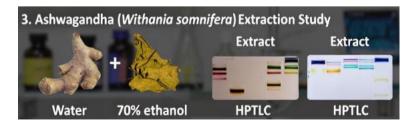
Answer Key:

- 1. Microbial Limit (fungi) + Aflatoxin assay (TLC/HPTLC).
- 2. % over limit = $\frac{35-5}{5} \times 100 = 600\%$
- 3. Dry at <60°C, store <60% RH, use silica gel sachets.

CASE STUDY PUZZLE 3: The Weak Ashwagandha Capsules

Topic: Assay of Marker Compound (Withanolides)

Scenario: Ashwagandha capsules (500 mg) claim "5% withanolides".


- **HPTLC assay:** 0.8% w/w
- Extraction solvent used: Water (instead of 70% ethanol)
- Patient feedback: No stress relief

Puzzle Questions:

- 1. Why low withanolides?
- 2. Calculate actual vs claimed.
- 3. Correct extraction method?

Answer Key:

- 1. Water insoluble with an olides \rightarrow poor extraction.
- 2. Actual = $0.8\% \times 500 = 4 \text{ mg/capvs} 25 \text{ mg claimed}$
- 3. 70% ethanol, 60° C, 2 hr reflux.

CASE STUDY PUZZLE 4: The Heavy Metal Turmeric

OCSH|EVALUTION OF CRUDE DRUGS|MS. D. PRADEEPA|AP|SNSCPHS

Topic: Heavy Metal Limit Test (AAS/ICP-MS)

Scenario: Turmeric powder causes abdominal pain, anemia.

- **Lead (Pb):** 18 ppm (IP limit: ≤10 ppm)
- Source: Grown near battery recycling plant
- Color: Unusually bright yellow

Puzzle Ouestions:

- 1. Likely cause of bright color?
- 2. Calculate **safe daily intake** if 1 g/day consumed.
- 3. Remediation?

Answer Key:

- 1. Lead chromate (PbCrO₄) illegal yellow pigment.
- 2. Daily Pb = $18 \mu g/g \times 1 g = 18 \mu g > WHO PTDI 3.57 \mu g/kg \times 60 kg = 214 \mu g \rightarrow Toxic.$
- 3. Soil testing, chelation (EDTA), switch source.

CASE STUDY PUZZLE 5: The Fluorescent Licorice Root

Topic: Foreign Matter & Fluorescence Analysis

Scenario: Licorice root powder (for peptic ulcer) shows **blue fluorescence** under UV 365 nm.

- Foreign matter: 8% w/w (IP limit: ≤2%)
- **Microscopy:** Sand particles + synthetic fiber
- **Fluorescence:** Bright blue (not characteristic dull brown)

Puzzle Questions:

- 1. What causes blue fluorescence?
- 2. How to quantify foreign matter?
- 3. Biological risk?

Answer Key:

- 1. **Optical brightener** from synthetic packaging fiber.
- 2. % foreign matter = $\frac{\text{weight after sieving}}{\text{initial weight}} \times 100$
- 3. GI irritation, perforation risk from sand.

