

CASE STUDY BASED PUZZLE

BP701T: INSTRUMENTAL METHODS OF ANALYSIS TOPIC: UV VISIBLE SPECTROPHOTOMETER

Puzzle 1: Quality Control in Tablet Formulation

In a pharmaceutical manufacturing unit, a quality control analyst is testing aspirin tablets for potency using UV-Vis spectroscopy at 280 nm. The standard curve shows linearity up to 20 μ g/mL, but the sample extract gives an absorbance of 1.2 at a concentration of 25 μ g/mL, leading to non-linear results.

- 1. Explain the likely deviation from Beer's-Lambert law and suggest a correction method.
- 2. How would you verify if the issue is due to chemical interactions or instrumental limitations?

Puzzle 2: Herbal Extract Analysis

A researcher analyzing a quercetin-rich herbal extract observes absorption maxima at 370 nm in ethanol but a bathochromic shift to 375 nm when switching to methanol. The extract is used for antioxidant quantification.

- 1. Identify the type of spectral shift and its cause related to solvent polarity.
- 2. Recommend an optimal solvent based on solubility and minimal interference for accurate quantification.

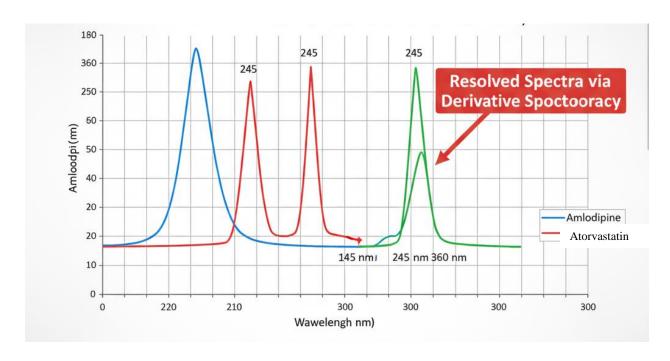
Puzzle 3: Instrumentation Troubleshooting

During routine calibration of a double-beam UV-Vis spectrophotometer in a hospital pharmacy, the analyst notices erratic baseline noise when scanning from 200-800 nm, especially below 250 nm, affecting paracetamol assay results.

- 1. Pinpoint the probable faulty component (e.g., source or detector) and explain why it impacts the UV region.
- 2. Outline steps for performance qualification to resolve this.

Puzzle 4: Chromophore Identification in Dye Impurity

A batch of colored gelatin capsules shows unexpected absorbance at 450 nm due to a dye impurity. The dye contains a benzene ring conjugated with a nitro group, suspected to cause toxicity issues.



- 1. Classify the electronic transition responsible and identify the chromophore/auxochrome involved.
- 2. Propose a UV-Vis method to quantify the impurity level against pharmacopoeial limits.

Puzzle 5: Multicomponent Formulation Challenge

In developing a fixed-dose combination tablet of amlodipine and atorvastatin, overlapping spectra at 360 nm and 245 nm complicate simultaneous estimation. The lab uses derivative spectroscopy to resolve this.

- 1. Describe how first-derivative UV-Vis helps in multicomponent analysis here.
- 2. Calculate the expected resolution if amlodipine's λ _max is 360 nm and atorvastatin's is 245 nm (assume zero-crossing points).

Puzzle 6: Stability Study Deviation

During accelerated stability testing of a salicylic acid suspension, absorbance at 296 nm increases unexpectedly after 3 months, despite no microbial growth, raising concerns about degradation products.

- 1. Hypothesize the cause of hyperchromic shift and link it to molecular changes (e.g., auxochrome effects).
- 2. Design a spectrophotometric titration to confirm if it's due to ionization or solvent interaction.