

SNS COLLEGE OF PHARMACY AND HEALTH SCIENCES

Affiliated To The Tamil Nadu Dr. MGR Medical University, Chennai

Approved by Pharmacy Council of India, New Delhi.

Coimbatore -641035

**COURSE NAME : PHARMACEUTICAL MICROBIOLOGY - BP303 T
B.PHARM II YEAR / III SEM
UNIT 3**

SUB TOPIC :STERILITY TESTING OF PHARMACEUTICALS

Sterility Testing Overview

Sterility testing is performed to detect viable contaminating microorganisms in sterile pharmaceutical products.

Membrane Filtration

For Filterable Products

IP / BP / USP Standards

Direct Inoculation

For Non-Filterable Products

Culture Media

Fluid Thioglycollate Medium

For Bacteria
(Aerobic & Anaerobic)

Soybean-Casein Digest Medium

For Fungi &
Aerobic Bacteria

30–35°C

14 Days

For Bacteria

20–25°C

14 Days

For Fungi

Method Suitability Testing

+ Positive & Negative Controls

No Growth: Product Passes

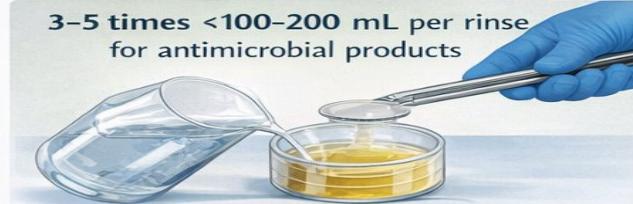
Growth Present: Test Fails

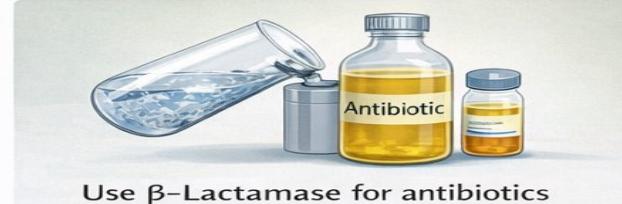
Invalid Test: Environmental Contamination

Key Differences in Sterility Testing

IP, BP, and USP are largely harmonized, but minor differences exist in alignment, fungal incubation temperatures, diluting fluids, washing membranes, and neutralizing agents used in sterility testing.

Harmonized Alignment with EP


Fungal Incubation Temperature


Specific Diluting Fluids (IP)

Wash Membranes

Neutralizing Agents

Membrane Filtration

Direct Inoculation

Transfer Sample Directly into Culture Media

Sample \leq 10% of Medium Volume

Neutralize Antimicrobials

Dilution, Inactivating Agents, or Concentrated Media

Add Emulsifiers for Greasy Products

e.g., Polysorbate 80

Shake During Incubation

Incubate for \geq 14 Days

Observe for Growth

Product-Specific Procedures and Quantities

Quantities are minimums per medium and are similar across IP, BP, and USP (based on container content or batch size). **Use whole contents where possible**; pool from multiple containers if needed.

Batch Sample Sizes

2–10% of Batch or Minimum 2–20 Items

Depending on Batch Size & Product Type

Example Sampling Quantities:

10 Petri Dishes

2 Broth Tubes

1 Fluid Thioglycollate Bottle

For Antimicrobials:

Add Inactivators like β -Lactamase.

Minimum Quantities per Medium

Harmonized Across **IP, BP, USP**

Product Type	Minimum Quantity per Medium
Liquids < 1 mL	Whole contents
Liquids 1–40 mL	Half contents (≥ 1 mL)
Liquids >40 mL but <100 mL	20 mL
Liquids >100 mL	10% of contents (≥ 20 mL)
Antibiotic liquids	1 mL
Solids < 50 mg	Whole contents
Solids 50–300 mg	Half contents (≥ 50 mg)
Solids 300 mg–5 g	150 mg
Solids > 5 g	500 mg
Ointments/Creams (non-emulsifiable)	≥ 200 mg

Liquids (Including Ophthalmic Solutions)

Preferred: Membrane filtration

Dilute with sterile diluent (e.g., Fluid A) to ~100 mL if needed; filter directly.

For Immiscible Liquids or Suspensions

Add emulsifiers or enzymes (e.g., lecithin, penicillinase).

Ophthalmic: Treat as liquids

Use whole container or pooled amounts for non-injectables.

For Aerosols (USP/IP)

Freeze & Transfer Contents

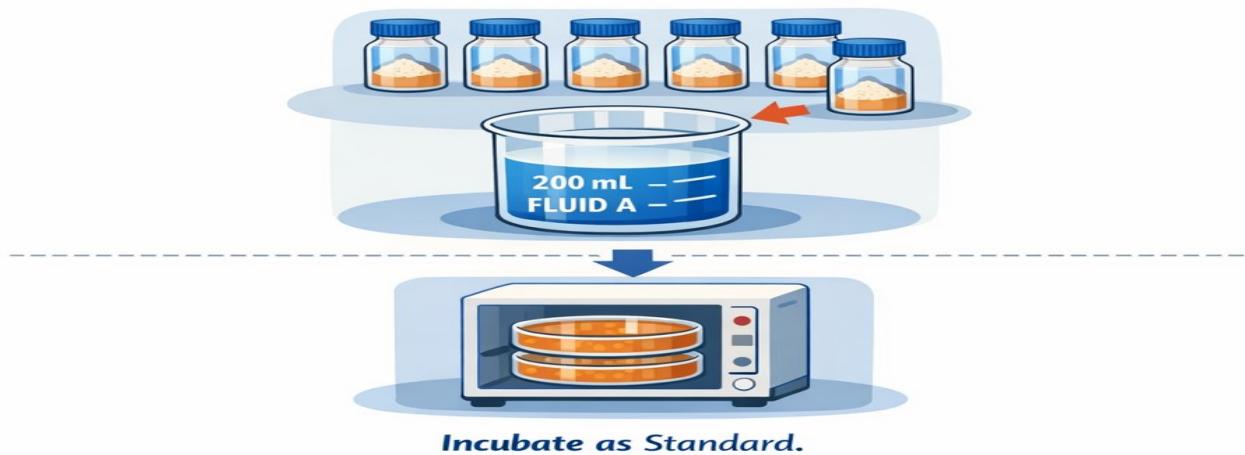
For Vacuum Packs (IP)

Admit Sterile Air

SOLIDS (Soluble and Insoluble)

SOLUBLE

Preferred: Membrane Filtration
after dissolving in sterile solvent
(e.g. Water for Injection or Fluid A).


INSOLUBLE

Suspend and Filter
or Use Direct Inoculation

ANTIBIOTICS/BULKS (USP/IP)

Composite samples (e.g. 6 g from multiple containers in 200 mL Fluid A).

Ophthalmic and Other Non-Injectable Preparations

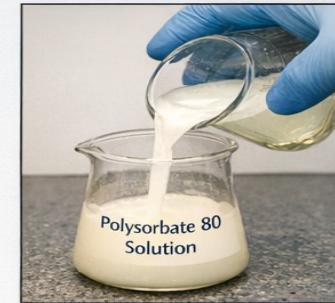
Treat as liquids or ointments/creams;
membrane filtration or direct inoculation.

Dilute to ~100 mL

For Ophthalmic Ointments:
Dilute 1:10 with emulsifier

Batch: 5% or minimum 2 items for ≤ 200 containers (BP/USP)

Other Sterile Products (e.g., Oils, Ointments, Creams, Devices, Sutures)


Oils / Oily Solutions

Filter Low-Viscosity

Dilute High-Viscosity
with Isopropyl Myristate

Wash with
Emulsifier Solution

Fluid B or Polysorbate 80 (10 g/L)

Use Gradual Pressure

Ointments / Creams

Dilute to 1% in
Isopropyl Myristate
(≤40°C)

Filter Rapidly

Or Emulsify 1:10
for Inoculation

Devices (Syringes, Catheters)

Flush with ≥ 100 mL diluent (e.g, Fluid D/B with polysorbate); filter flushate.

For lumens, fill and immerse.

Sutures / Catgut

Direct inoculation of 3×30 cm strands (beginning, middle, end) in 20–150 mL medium.

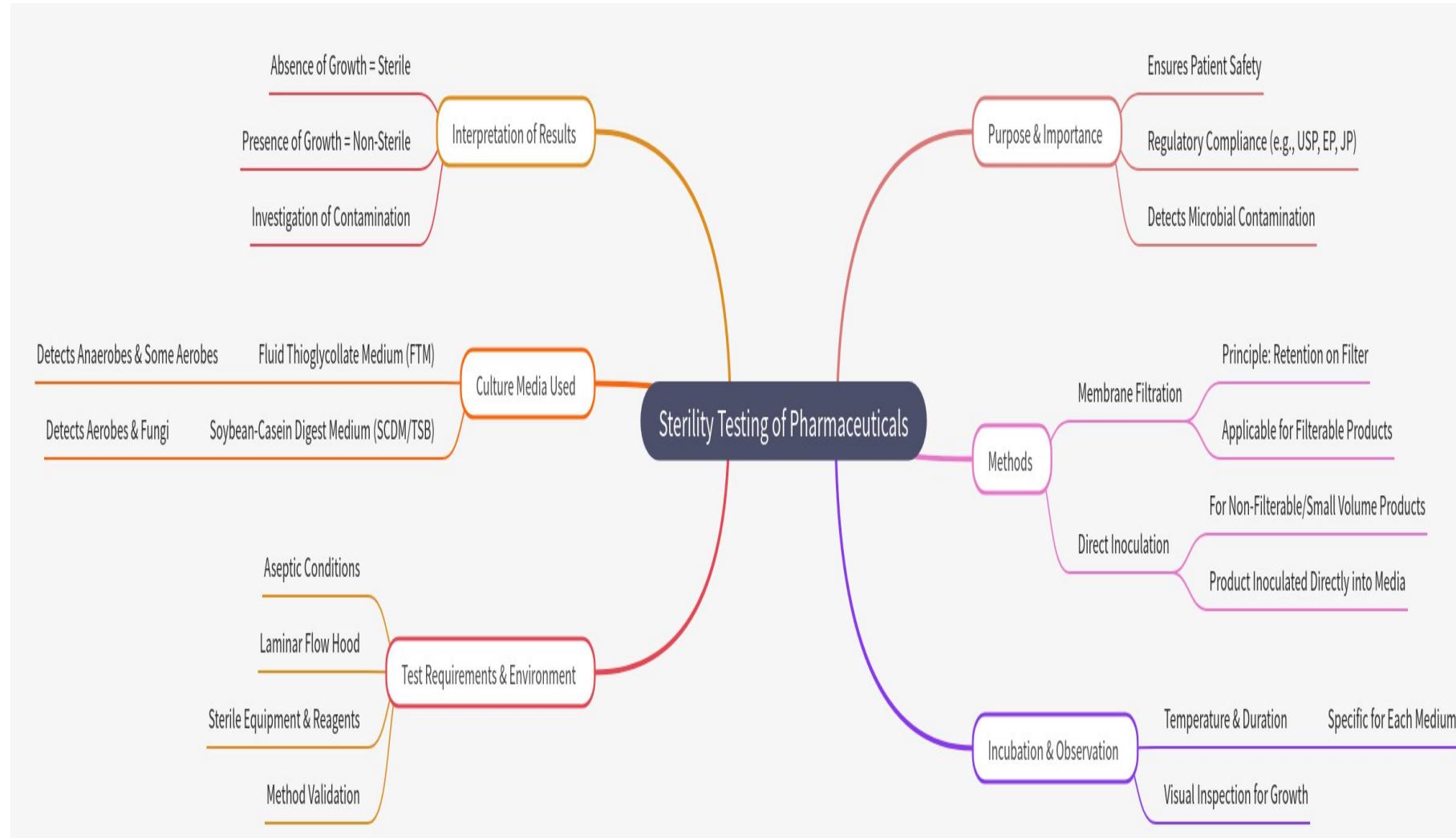
Dressings / Gauze

Immerse 100–500 mg from innermost part or whole item.

If insoluble in isopropyl myristate, use direct inoculation (IP).

3 Media Identity Crisis

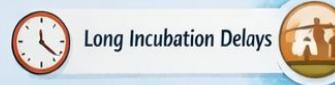
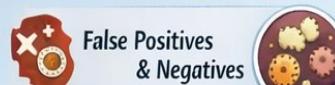
Two culture media are sitting
 In the incubator.
 One likes warm weather,
 the other prefers cool.



Who is who?

- A. Both like same temperature
- B. FTM = 30-35°C, SCDM = 20-25°C
- C. SCDM loves heat waves
- D. Media don't care about temperature

Sterility Testing for Pharmaceuticals



Design Thinking for Reliable & Rapid Solutions

1. Empathize

Understand User & System Needs

Pain Points Observed:

"We need a sterility test that is reliable, realistic, faster, and regulator-acceptable."

2. Define

How Might We...?

Accurately Detect Contamination with Minimal Bias & Delays

3. Ideate

Innovative Solutions

4. Prototype

Build & Test Concepts

Workflow Decision Trees

5. Test Validate & Improve

Sensitivity & Accuracy

Time to Result

Regulatory Compliance

Batch Release Confidence

Iterate & Refine

REFERENCES :

1. W.B. Hugo and A.D. Russel: Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London.
2. Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi.
3. Ananthanarayan : Text Book of Microbiology, Orient-Longman, Chennai

