

CASE STUDY BASED PUZZLE

BP 807 ET:COMPUER AIDED DRUG DESIGN

UNIT 2: COMFA AND COMSIA

Case Study Puzzle: 3D-QSAR in Drug Design**Topic: CoMFA and CoMSIA Approaches****Case Scenario:**

A pharmaceutical research team is working on a new series of benzimidazole derivatives as potential anti-inflammatory agents.

Ten compounds (A–J) were synthesized with different substitutions at R_1 , R_2 , and R_3 positions. Biological activity was measured as IC_{50} (μM) against a target enzyme.

The researchers decided to apply 3D-QSAR techniques to understand the structure–activity relationship (SAR) and guide further optimization.

They used:

- CoMFA to analyze steric and electrostatic fields
- CoMSIA to analyze steric, electrostatic, hydrophobic, H-bond donor, and H-bond acceptor fields

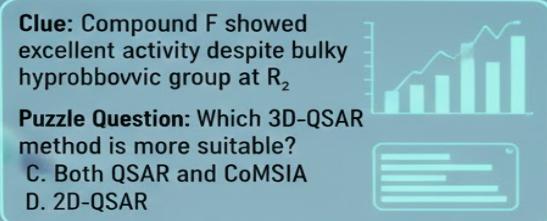
Puzzle 1: Method Selection Challenge**Clue:**

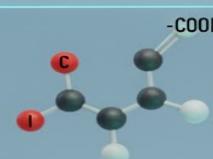
One compound (Compound F) showed excellent activity despite having a bulky hydrophobic group at R_2 .

Puzzle Question:

Which 3D-QSAR method is more suitable to explain the contribution of hydrophobic interactions in this case?

Options:


- A. CoMFA only
- B. CoMSIA only
- C. Both CoMFA and CoMSIA
- D. 2D-QSAR


☞ Hint: Think about which method includes hydrophobic field descriptors.

Puzzle 1: Method Selection Challenge

Clue: Compound F showed excellent activity despite bulky hydrophobic group at R_2

Puzzle Question: Which 3D-QSAR method is more suitable?
 C. Both QSAR and CoMSIA
 D. 2D-QSAR

LEAD COMPOUND

Compound F

Puzzle Questions

1. Drug Design Approach?
2. Type of the Bioisosterism?
3. CoMSIA only
4. One Advantage?

Solutions

1. 3D-QSAR Method?
2. CoMSIA only
- C. CoMSIA only
3. Includes Hydrophobic Field

Puzzle 2: Grid & Alignment Mystery

Q Clue:

During model development, the prediction accuracy dropped significantly when compound alignment was changed.

Puzzle Question:

Which factor is most critical in CoMFA and CoMSIA for obtaining a reliable model?

Options:

- A. Molecular weight
- B. Grid spacing
- C. Molecular alignment
- D. Number of compounds

☞ Hint: 3D-QSAR models depend heavily on spatial consistency.

Grid & Alignment Mystery

Bad Alignment **Good Alignment**

Which factor is most critical in CoMFA and CoMSIA?

A. Molecular weight B. Grid spacing C. Molecular Alignment D. Number of compounds

C. Molecular Alignment

Puzzle 3: Contour Map Decoder

🔍 Clue:

The CoMFA steric contour map shows:

- Green contours near R_1
- Yellow contours near R_3

Puzzle Question:

What modification is most likely to increase activity?

Options:

- A. Add bulky group at R_3
- B. Remove substituent at R_1
- C. Add bulky group at R_1
- D. Add electronegative group at R_3

💡 Hint: Green = favorable steric bulk, Yellow = unfavorable steric bulk.

Puzzle 3: Contour Map Decoder

 Puzzle Quedification is most likely to increase activity?

- A. Add bulky group at R_3
- B. Remove substituent at R_1
- C. Add bulky group at R_1
- D. Add electronegative group at R_3

Hint

Green = favorable steric bulk,
Yellow, unfavorable steric bulk