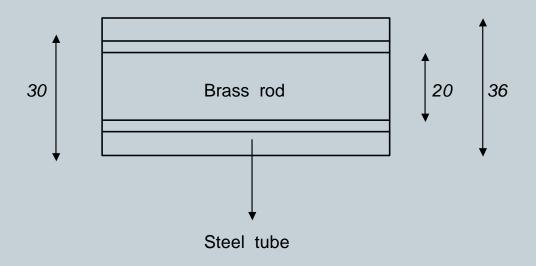


Example

42

• A steel tube having an external diameter of 36 mm and an internal diameter of 30 mm has a brass rod of 20 mm diameter inside it, the two materials being joined rigidly at their ends when the ambient temperature is 18 °C. Determine the stresses in the two materials: (a) when the temperature is raised to 68 °C (b) when a compressive load of 20 kN is applied at the increased temperature.

Example Contd.


- 43
- For brass: Modulus of elasticity = 80 GN/m²;
 Coefficient of expansion = 17 x 10 -6 /°C
- For steel: Modulus of elasticity = 210 GN/m²;
 Coefficient of expansion = 11 x 10 -6 /°C

Solution

44

Area of brass rod (A_b) =
$$\frac{\pi \times 20^2}{4}$$
 = 314.16 mm²

Area of steel tube (A_s) =
$$\frac{\pi x (36^2 - 30^2)}{4}$$
 = 311.02 mm^2
 $A_s E_s = 311.02 \times 10^{-6} m^2 \times 210 \times 10^9 N / m^2 = 0.653142 \times 10^8 N$

$$\frac{1}{A_s E_s} = 1.53106 \ x \ 10^{-8}$$

Solution Contd.

45

$$A_b E_b = 314.16 \times 10^{-6} m^2 \times 80 \times 10^9 N / m^2 = 0.251327 \times 10^8 N$$

$$\frac{1}{A_b E_b} = 3.9788736 \times 10^{-8}$$

$$T(\alpha_b - \alpha_s) = 50(17 - 11) \times 10^{-6} = 3 \times 10^{-4}$$

With increase in temperature, brass will be in compression while steel will be in tension. This is because expands more than steel.

i.e.
$$F\left[\frac{1}{A_s E_s} + \frac{1}{A_b E_b}\right] = T(\alpha_b - \alpha_s)$$

i.e.
$$F[1.53106 + 3.9788736] \times 10^{-8} = 3 \times 10^{-4}$$

F = 5444.71 N

Solution Concluded

(46**)**

Stress in steel tube =
$$\frac{5444.71N}{311.02 \text{ mm}^2} = 17.51N / \text{mm}^2 = 17.51MN / \text{m}^2 \text{(Tension)}$$

Stress in brass rod =
$$\frac{5444.71N}{314.16 \text{ mm}^2} = 17.33N / \text{mm}^2 = 17.33MN / \text{m}^2 (Compression)$$

(b) Stresses due to compression force, F' of 20 kN

$$\sigma_s = \frac{F'E_s}{E_sA_s + E_bA_b} = \frac{20 \times 10^3 N \times 210 \times 10^9 N/m^2}{0.653142 + 0.251327 \times 10^8} = 46.44 MN/m^2 (Compression)$$

$$\sigma_b = \frac{F'E_b}{E_sA_s + E_bA_b} = \frac{20 \times 10^3 N \times 80 \times 10^9 N/m^2}{0.653142 + 0.251327 \times 10^8} = 17.69 MN/m^2 (Compression)$$

Resultant stress in steel tube = - 46.44 + 17.51 = 28.93 MN/m² (Compression)

Resultant stress in brass rod = $-17.69 - 17.33 = 35.02 \text{ MN/m}^2$ (Compression)