SNS COLLEGE OF TECHNOLOGY

COIMBATORE
AN AUTONOMOUS INSTITUTION

NSO,

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A’ Grade
Approved by AICTE New Delhi & affiliated to the Anna University, Chennai

DEPARTMENT OF MCA

Course Name : 19CAT609 - DATA BASE MANAGEMENT SYSTEM
Class : | Year / Il Semester

Unit Il - DATA STORAGE

Topic IV — Indexing - Tree structured indexing

Basic Concepts >

FIrionts

* Indexing mechanisms used to speed up access to desired data.

E.g., author catalog in library

« Search Key - attribute or set of attributes used to look up records in a
*file.

- An index file consists of records (called index entries) of the form

search-key | pointer e——

 Index files are typically much smaller than the original file
- Two basic kinds of indices: 2
Ordered indices: search keys are stored in some sorted order

Hash indices: search keys are distributed uniformly across
*“buckets” using a “hash function”.

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT 2/ 26

Basic Concepts

M Indices are typically much smaller than the original, e.g.:
oTable of contents in a book
oIndex in a book
o Catalog in a library
olnventory in a warehouse

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

3/ 26

Ordered Indices >

n In an ordered index, index entries are stored sorted on the search
key value. E.g., author catalog in library.

n Primary index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.

Also called clustering index
The search key of a primary index is usually but not necessarily the
primary key.

n Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called
non-clustering index.

n Index-sequential file: ordered sequential file with a primary index.

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

4/ 26

Secondary index on
salary field of instructor

n Index record points
to a bucket that
contains pointers to
all the actual
records with that
particular search-key
value.

n Secondary indices
have to be dense

June 24, 2023

Secondary Indices Example

40000

60000

62000

65000

72000

75000

80000

87000

90000

92000

95000

IR

FIrionts

10101 | Srinivasan | Comp. Sci. | 65000 N
12121 | Wu Finance 90000 =
15151 | Mozart Music 40000 —
22222 | Einstein Physics 95000 _ |
32343 | El Said History 60000 _|
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri | History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000

VVVVVAVVY g eee

Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

5/ 26

Primary and Secondary Indices >

FIrionts

n Indices offer substantial benefits when searching for records.

n BUT: Updating indices imposes overhead on database modification --when
a file is modified, every index on the file must be updated,

n Sequential scan using primary index is efficient, but a sequential scan
using a secondary index is expensive

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus
about 100 nanoseconds for memory access

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT 6/ 26

Secondary Indices >

n Frequently, one wants to find all the records whose valuesin a
certain field (which is not the search-key of the primary index)
satisfy some condition.

Example 1: In the instructor relation stored sequentially by ID, we
may want to find all instructors in a particular department

Example 2: as above, but where we want to find all instructors
with a specified salary or with salary in a specified range of
values 7

n We can have a secondary index with an index record for each
search-key value

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

7/ 26

B*-Tree Index

B*-tree indices are an alternative to indexed-sequential files.

n Disadvantage of indexed-sequential files

performance degrades as file grows, since many overflow blocks get created.
Periodic reorganization of entire file is required.
n Advantage of B*-tree index files:

automatically reorganizes itself with small, local, changes, in the face of
insertions and deletions.

Reorganization of entire file is not required to maintain
performance.

n (Minor) disadvantage of B*-trees:

extra insertion and deletion overhead, space overhead.
n Advantages of B*-trees outweigh disadvantages

B*-trees are used extensively

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

8/ 26

B*-Tree Index

B*-tree indices are an alternative to indexed-sequential files.

n Disadvantage of indexed-sequential files

performance degrades as file grows, since many overflow blocks get created.
Periodic reorganization of entire file is required.
n Advantage of B*-tree index files:

automatically reorganizes itself with small, local, changes, in the face of
insertions and deletions.

Reorganization of entire file is not required to maintain
performance.

n (Minor) disadvantage of B*-trees:

extra insertion and deletion overhead, space overhead.
n Advantages of B*-trees outweigh disadvantages

B*-trees are used extensively

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

9/ 26

Example of B+-Tree

Mozart | B ettt
|Einstein| | Gold Srlmvasan o
Leaf nodes--
Y o
Brandt| |Califieri| |Crick|-4»{ [Einstein| |El Said Gold Katz Kim IMozart | Singh 1, |Srinivasan| [Wu ;*-*--
—>» 10101 Srinivasan Comp. Sci. 65000
—— 12121 Wu Finance 90000
" » 15151 Mozart Music 40000
» 22222 Einstein Physics 95000
» 32343 Fl Said History 80000
» 33456 Gold Physics 87000
» 45565 Katz Comp. Sci. 75000
> 58583 Califieri History 60000
——> 76543 Singh Finance 80000
> 76766 Crick Biology 72000
» 83821 Brandt Comp. Sci. 92000
» 98345 Kim Elec. Eng. 80000
June 24,2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

10/ 26

B*-Tree Index Files (Cont.) O’ S

A B*-tree is a rooted tree satisfying the following properties:

n All paths from root to leaf are of the same length

n Each node that is not a root or a leaf has between n/2F and
n children.

n A leaf node has between |_(n—1)/2_\ and n—1 values
n Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n—1) values.

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

11/ 26

B*-Tree Node Structure >

Typical node

P K, P, .. P, K. P,

K. are the search-key values

P.are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

n The search-keys in a node are ordered
Ki<Ki<K;<...<K,_4

(Initially assume no duplicate keys, address duplicates later)

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

12/ 26

B*-Tree Node Structure >

Properties of a leaf node:

nFori=1,2,... n=-1, pointer P;points to a file record with search-key
value K,

n If L, L;are leaf nodes and i <j, Lissearch-key values are less than or equal
to L/ssearch-key values

n P, points to next leaf node in search-key order

! Brandt | Califieri ! Crick >

10101 Srinivasan Comp. Sci. 65000

12121 Wu Finance 90000

13 15151 Mozart Music 40000

22222 Einstein ~ Physics 95000

32343 El Said History 80000

33456 Gold Physics 87000

45565 Katz Comp. Sci. 75000

> 58583 Califieri History 60000

76543 Singh Finance 80000

> 76766 Crick Biology 72000

» 83821 Brandt Comp. Sci. 92000

98345 Kim Elec. Eng. 80000

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

13/ 26

B*-Tree Node Structure >

n Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically”close.

n The non-leaf levels of the B*-tree form a hierarchy of sparse indices.
n The B*-tree contains a relatively small number of levels

» Level below root has at least 2* _n/2_\ values
» Next level has at least 2* | n/2 | * | n/2 | values
» .. etc.

If there are K search-key values in the file, the tree height is no more than
logr21(K) |)
thus searches can be conducted efficiently.

n Insertions and deletions to the main file can be handled efficiently, as the index can
be restructured in logarithmic time.

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

14 / 26

Queries on B*-Trees >

n Find record with search-key value V.
1. C=root
2. While Cis not a leaf node {
1. Letibe leastvalues.t. V <K.
2. If no such exists, set C = last non-null pointer in C
3. Else{if(V=K)SetC=P,,,elseset C=P}

}
3. Letibeleastvalues.t. K=V
4. If there is such a value j, follow pointer P, to the desired record.
5. Else no record with search-key value k exists.
[Mozart|
/‘ \
| Califieri| |Einstein| |Gold| nmvasan
Adams| |Brandt - |Califieri| | Crick > |Einstein | |El Said > |Gold Srinivasan

June 24,2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT 15/ 26

Handling Duplicates

n With duplicate search keys
" In both leaf and internal nodes,
» we cannot guarantee that K, < K, < K;< ... <K, ;
» but can guarantee K; <K, <K;< .. . <K,
' Search-keys in the subtree to which Pi points
» are < K, but not necessarily < Ki,

» To see why, suppose same search key valueV is present in two leaf node Li
and Li+1. Then in parent node Ki must be equal to V

16

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

16/ 26

Queries on B+Trees (Cont.) >

n If there are K search-key values in the file, the height of the tree is no more than
HOQFn/zT(Kﬂ-

n A node iIs generally the same size as a disk block, typically 4
kilobytes

and n is typically around 100 (40 bytes per index entry).
n With 1 million search key values and n = 100
at most l0g54(1,000,000) = 4 nodes are accessed in a lookup.

n Contrast this with a balanced binary tree with 1 million search key values — around 20
nodes are accessed in a lookup

above difference is significant since every node access may need a disk I/O, costing
around 20 milliseconds &

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

17 / 26

Queries on B+Trees (Cont.) >

FIrionts

n Splitting a leaf node:

take the n (search-key value, pointer) pairs (including the one being inserted) in sorted
order.

Place the first| n/2 | in the original node, and the rest in a new node.

let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

If the parent is full, split it and propagate the split further up.
n Splitting of nodes proceeds upwards till a node that is not full is found.

In the worst case the root node may be split increasing the height of the tree by 1.

|Adams|,| Brandt g Califieri|,| Crick >
C L

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

June 24,2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT 18/ 26

Bt-Tree Insertion

| Mozart|, oo
IEinstein Gold | ISrinivasanl ;“_:--
\ Leaf nodes--
Y
| Brandt| |Califieri| | Crick|-»- |Einstein| [El Said | Gold | | Katz | | Kim|> Mozart| | Singh 1, |Srinivasan| | Wu ;
| | | | | | | | | | | |
|Mozart|
/ \
|Califieri| |Einstein| | Gold|, [Srinivasan|,
Adams | |Brandt > |Califieri| | Crick Einstein | [El Said > |Gold| |Katz| |Kim Mozart| [Singh Srinivasan| (Wu

B+-Tree before and after insertion of “‘Adams”

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

19/ 26

June 24, 2023

Bt-Tree

Insertion

”-Caliﬁeri

Adams | |Brandt P |Califieri |Crick - |Einstein| [El SaldI > Srinivasan| |Wu
| Gold | | Mozart |
| Califieri | | Einstein | Kim | Srinivasan |
Adams | |Brandt Califieri | |Crick Einstein | |El Said + Gold | |Katz Lamport -I» Mozart | [Singh 1 | Srinivasan | [Wu

B*-Tree before and after insertion of “Lamport”

Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

20/ 26

Examples of B*-Tree Deletion

|Mozart|
Califieril [instein| [Gold] Stinivasan
Adams| [Brandt - |Califieri| | Crick - |Einstein | [EI Sandl 7 |Gold| [Katz| |Kim|-p-| [Mozart| [Singh ->[Srinivasan| (Wu
Gold

Before and after deleting “Srinivasan” | |

A

Adams | |Brandt Califieri| | Crick Einstein| |El Sa1d| Gold | [Katz | [Kim |1>{ |Mozart| | Singh| [Wu

Mozart

n Deleting “Srinivasan” causes merging of under-full leaves

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

21/ 26

Examples of B+-Tree Deletion (Cont.)

ARECEH

Califieri | Einstein | Kim

Y
Y

Gold | | Katz

Adams| | Brandt - | Califieri| | Crick | | Einstein| [EI Said Kim | | Mozart

22

Deletion of “Singh” and “Wu” from result of previous example
n Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

n Search-key value in the parent changes as a result

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

22/ 26

Examples of B+-Tree Deletion (Cont.)

ARECEH

Califieri | Einstein | Kim

Y
Y

Gold | | Katz

Adams| | Brandt - | Califieri| | Crick | | Einstein| [EI Said Kim | | Mozart

23

Deletion of “Singh” and “Wu” from result of previous example
n Leaf containing Singh and Wu became underfull, and borrowed a value
Kim from its left sibling

n Search-key value in the parent changes as a result

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

23/ 26

Non-Unique Search Keys > A

n Alternatives to scheme described earlier | Buckets on
separate block (bad idea) List of tuple pointers with
each key

» Extra code to handle long lists

» Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)

» Low space overhead, no extra cost for queries
Make search key unique by adding a record-identifier

» Extra storage overhead for keys

» Simpler code for insertion/deletion

» Widely used

June 24, 2023 Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

24/ 26

Reference

FIronts

1. https://www.tutorialspoint.com/dbms/dbms file structure.htm#:~:text=Relative%20data%20and%20information%?20is,
blocks%20that%20can%20store%20records.

2. https://www.javatpoint.com/dbms-file-organization

3. https://www.tutorialspoint.com/dbms/dbms storage system.htm

25

Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

25/ 26

https://www.tutorialspoint.com/dbms/dbms_file_structure.htm
https://www.tutorialspoint.com/dbms/dbms_storage_system.htm

i é O
T l &

THANK YOU

26

Topic IV — Indexing - Tree structured indexing/MCA/SNSCT

26/ 26

