
1 / 26

SNS COLLEGE OF TECHNOLOGY
COIMBATORE

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE New Delhi & affiliated to the Anna University, Chennai

DEPARTMENT OF MCA

Course Name : 19CAT609 - DATA BASE MANAGEMENT SYSTEM

Class : I Year / II Semester

Unit III - DATA STORAGE

Topic IV – Indexing - Tree structured indexing

1

2 / 26

Basic Concepts

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

• Indexing mechanisms used to speed up access to desired data.

•l E.g., author catalog in library

• Search Key - attribute or set of attributes used to look up records in a
•file.

• An index file consists of records (called index entries) of the form

• Index files are typically much smaller than the original file

• Two basic kinds of indices:

•l Ordered indices: search keys are stored in some sorted order

•l Hash indices: search keys are distributed uniformly across
•“buckets” using a “hash function”.

June 24, 2023

search-key pointer

2

3 / 26

Basic Concepts

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

 Indices are typically much smaller than the original, e.g.:

Table of contents in a book

Index in a book

Catalog in a library

Inventory in a warehouse

June 24, 2023

3

4 / 26

Ordered Indices

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n In an ordered index, index entries are stored sorted on the search
key value. E.g., author catalog in library.

n Primary index: in a sequentially ordered file, the index whose
search key specifies the sequential order of the file.

l Also called clustering index

l The search key of a primary index is usually but not necessarily the
primary key.

n Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

n Index-sequential file: ordered sequential file with a primary index.

June 24, 2023

4

5 / 26

Secondary Indices Example

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

Secondary index on

salary field of instructor

n Index record points

to a bucket that

contains pointers to

all the actual

records with that

particular search-key

value.

n Secondary indices

have to be dense

June 24, 2023

5

6 / 26

Primary and Secondary Indices

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n Indices offer substantial benefits when searching for records.

n BUT: Updating indices imposes overhead on database modification --when
a file is modified, every index on the file must be updated,

n Sequential scan using primary index is efficient, but a sequential scan
using a secondary index is expensive

l Each record access may fetch a new block from disk

l Block fetch requires about 5 to 10 milliseconds, versus
about 100 nanoseconds for memory access

June 24, 2023

6

7 / 26

Secondary Indices

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n Frequently, one wants to find all the records whose values in a
certain field (which is not the search-key of the primary index)
satisfy some condition.

l Example 1: In the instructor relation stored sequentially by ID, we
may want to find all instructors in a particular department

l Example 2: as above, but where we want to find all instructors
with a specified salary or with salary in a specified range of
values

n We can have a secondary index with an index record for each
search-key value

June 24, 2023

7

8 / 26

B+-Tree Index

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

B+-tree indices are an alternative to indexed-sequential files.

n Disadvantage of indexed-sequential files

l performance degrades as file grows, since many overflow blocks get created.

l Periodic reorganization of entire file is required.

n Advantage of B+-tree index files:

l automatically reorganizes itself with small, local, changes, in the face of
insertions and deletions.

l Reorganization of entire file is not required to maintain
performance.

n (Minor) disadvantage of B+-trees:

l extra insertion and deletion overhead, space overhead.

n Advantages of B+-trees outweigh disadvantages

l B+-trees are used extensively

June 24, 2023

8

9 / 26

B+-Tree Index

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

B+-tree indices are an alternative to indexed-sequential files.

n Disadvantage of indexed-sequential files

l performance degrades as file grows, since many overflow blocks get created.

l Periodic reorganization of entire file is required.

n Advantage of B+-tree index files:

l automatically reorganizes itself with small, local, changes, in the face of
insertions and deletions.

l Reorganization of entire file is not required to maintain
performance.

n (Minor) disadvantage of B+-trees:

l extra insertion and deletion overhead, space overhead.

n Advantages of B+-trees outweigh disadvantages

l B+-trees are used extensively

June 24, 2023

9

10 / 26

Example of B+-Tree

Topic IV – Indexing - Tree structured indexing/MCA/SNSCTJune 24, 2023

10

11 / 26

B+-Tree Index Files (Cont.)

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

A B+-tree is a rooted tree satisfying the following properties:

n All paths from root to leaf are of the same length

n Each node that is not a root or a leaf has between n/2 and
n children.

n A leaf node has between (n–1)/2 and n–1 values

n Special cases:

l If the root is not a leaf, it has at least 2 children.

l If the root is a leaf (that is, there are no other nodes in
the tree), it can have between 0 and (n–1) values.

June 24, 2023

11

12 / 26

B+-Tree Node Structure

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

Typical node

Ki are the search-key values

l Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

n The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

June 24, 2023

12

13 / 26

B+-Tree Node Structure

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

Properties of a leaf node:

n For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key
value Ki,

n If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or equal
to Lj’ssearch-key values

n Pn points to next leaf node in search-key order

June 24, 2023

13

14 / 26

B+-Tree Node Structure

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n Since the inter-node connections are done by pointers,
“logically” close blocks need not be “physically”close.

n The non-leaf levels of the B+-tree form a hierarchy of sparse indices.

n The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values

Next level has at least 2* n/2 * n/2 values

.. etc.

l If there are K search-key values in the file, the tree height is no more than
logn/2(K)

l thus searches can be conducted efficiently.

n Insertions and deletions to the main file can be handled efficiently, as the index can
be restructured in logarithmic time.

June 24, 2023

14

15 / 26

Queries on B+-Trees

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n Find record with search-key value V.

1. C=root

2. While C is not a leaf node {

1. Let i be least value s.t. V  Ki.

2. If no such exists, set C = last non-null pointer in C

3. Else { if (V= Ki) Set C = Pi +1 else set C =Pi}

}

3. Let i be least value s.t. Ki =V

4. If there is such a value i, follow pointer Pi to the desired record.

5. Else no record with search-key value k exists.

June 24, 2023

15

16 / 26

Handling Duplicates

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n With duplicate search keys

l In both leaf and internal nodes,

we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1

but can guarantee K1  K2  K3  . . .  Kn–1

l Search-keys in the subtree to which Pi points

are  Ki,, but not necessarily < Ki,

To see why, suppose same search key value V is present in two leaf node Li
and Li+1. Then in parent node Ki must be equal to V

June 24, 2023

16

17 / 26

Queries on B+-Trees (Cont.)

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n If there are K search-key values in the file, the height of the tree is no more than

logn/2(K).

n A node is generally the same size as a disk block, typically 4

kilobytes

l and n is typically around 100 (40 bytes per index entry).

n With 1 million search key values and n = 100

l at most log50(1,000,000) = 4 nodes are accessed in a lookup.

n Contrast this with a balanced binary tree with 1 million search key values — around 20

nodes are accessed in a lookup

l above difference is significant since every node access may need a disk I/O, costing

around 20 milliseconds

June 24, 2023

17

18 / 26

Queries on B+-Trees (Cont.)

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n Splitting a leaf node:

l take the n (search-key value, pointer) pairs (including the one being inserted) in sorted

order.

Place the first n/2 in the original node, and the rest in a new node.

l let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

l If the parent is full, split it and propagate the split further up.

n Splitting of nodes proceeds upwards till a node that is not full is found.

l In the worst case the root node may be split increasing the height of the tree by 1.

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

June 24, 2023

18

19 / 26

B+-Tree Insertion

Topic IV – Indexing - Tree structured indexing/MCA/SNSCTJune 24, 2023

B+-Tree before and after insertion of “Adams”

19

20 / 26

B+-Tree Insertion

Topic IV – Indexing - Tree structured indexing/MCA/SNSCTJune 24, 2023

B+-Tree before and after insertion of “Lamport”

20

21 / 26

Examples of B+-Tree Deletion

Topic IV – Indexing - Tree structured indexing/MCA/SNSCTJune 24, 2023

n Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

21

22 / 26

Examples of B+-Tree Deletion (Cont.)

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

Deletion of “Singh” and “Wu” from result of previous example
n Leaf containing Singh and Wu became underfull, and borrowed a value

Kim from its left sibling

n Search-key value in the parent changes as a result

June 24, 2023

22

23 / 26

Examples of B+-Tree Deletion (Cont.)

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

Deletion of “Singh” and “Wu” from result of previous example
n Leaf containing Singh and Wu became underfull, and borrowed a value

Kim from its left sibling

n Search-key value in the parent changes as a result

June 24, 2023

23

24 / 26

Non-Unique Search Keys

Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

n Alternatives to scheme described earlier l Buckets on

separate block (bad idea) l List of tuple pointers with

each key

Extra code to handle long lists

Deletion of a tuple can be expensive if there are many
duplicates on search key (why?)

Low space overhead, no extra cost for queries

l Make search key unique by adding a record-identifier

Extra storage overhead for keys

Simpler code for insertion/deletion

Widely used
June 24, 2023

24

25 / 26

Reference

1. https://www.tutorialspoint.com/dbms/dbms_file_structure.htm#:~:text=Relative%20data%20and%20information%20is,
blocks%20that%20can%20store%20records.

2. https://www.javatpoint.com/dbms-file-organization
3. https://www.tutorialspoint.com/dbms/dbms_storage_system.htm

Topic IV – Indexing - Tree structured indexing/MCA/SNSCTJune 24, 2023

25

https://www.tutorialspoint.com/dbms/dbms_file_structure.htm
https://www.tutorialspoint.com/dbms/dbms_storage_system.htm

26 / 26Topic IV – Indexing - Tree structured indexing/MCA/SNSCT

THANK YOU

June 24, 2023

26

