

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) **DEPARTMENT OF MATHEMATICS**

Volume of triple integral .

$$V = \iiint dx dy dz \quad (or) \iiint dz dy dx$$

1) Find the volume of the sphere x2+y2+z=a2 without transformation.

$$V = 8 \times \text{volume of the first octant.}$$

7 varies from 0 to
$$\sqrt{a^{2}-x^{2}-y^{2}}$$

7 varies from 0 to $\sqrt{a^{2}-x^{2}-y^{2}}$

7 varies from 0 to $\sqrt{a^{2}-x^{2}}$

7 varies from 0 to a.

8 $\sqrt{a^{2}-x^{2}-y^{2}}$

8 $\sqrt{a^{2}-x^{2}-y^{2}}$

9 varies from 0 to a.

10 $\sqrt{a^{2}-x^{2}-y^{2}}$

11 varies from 0 to a.

12 $\sqrt{a^{2}-x^{2}-y^{2}}$

13 $\sqrt{a^{2}-x^{2}-y^{2}}$

14 $\sqrt{a^{2}-x^{2}-x^{2}-x^{2}}$

15 $\sqrt{a^{2}-x^{2}-$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
DEPARTMENT OF MATHEMATICS

Find the volume of the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Soln:

Volume = $8 \int \int \frac{x^2}{a^2} \int \frac{x^2}{a^2} \int \frac{y^2}{b^2} \int \frac{z^2}{c^2} = 1$

$$= 8 \int \int \frac{x^2}{a^2} \int \int \frac{x^2}{a^2} \int \frac{y^2}{b^2} \int \frac{y^2}{a^2} \int \frac{y^2}{a^$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
DEPARTMENT OF MATHEMATICS

Find the volume of the tetrahedron bounded by the Coordinate planes
$$x = 0$$
, $y = 0$, $z = 0$ and
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Soln:

$$a b(1-x/a) c(1-x/a-y/b)$$

$$V = \int \int \int dz dy dx$$

$$= \int \int c(1-\frac{x}{a}) c(1-\frac{x}{a}-\frac{y}{b}) dy dx$$

$$= c \int (y-\frac{x}{a}) y-\frac{y^2}{2b} dy dx$$

$$= c \int (1-\frac{x}{a}) y-\frac{y^2}{2b} dy dx$$

$$= c \int (1-\frac{x}{a}) y-\frac{y^2}{2b} dx$$

$$= c \int (1-\frac{x}{a}) dx dx$$