

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

4)
$$f(z) = \frac{1}{z-2}$$
 $f(z) = \frac{1}{z-2}$
 $f'(z) = -1$
 $f'(z) = -1$
 $f''(z) = -1$
 $f''(z) = -1$
 $f''(z) = -1$
 $f''(z) = -1$
 $f'''(z) = -1$

Laurent's series:
$$\frac{1}{2}$$
 14 mark

1) Expand $\frac{1}{2}(z) = \frac{1}{4} \frac{1}{z-2}$ in Laurent's theorem.

 $\frac{1}{2}(z-2)(z+1)$

$$\frac{7z^{-2}}{7(z-2)(z+1)} = \frac{A}{z} + \frac{B}{z-2} + \frac{C}{z+1}$$

$$\frac{7(z-2)(z+1)}{+z-2} = \frac{A(z-2)(z+1) + B(z(z+1) + Cz(z-2))}{z(z-2)(z+1)}$$

$$\exists z - a = A(z - a)(z + 1) + Bz(z + 1) + Cz(z - 2)$$

Put
$$z=0$$
 $0.2 = A(0-2)(0+1)$
 $7(3)-2 = Ba(a+1)$
 $7(-1)-2 = c(-1)(-1)$
 $-2 = -aA$
 $12 = 6B$
 $-4 = 3c$
 $13 = 6B$
 $-4 = 3c$
 $13 = 6B$
 $-4 = 3c$
 $13 = 6B$
 $13 = 3c$
 $13 = 6B$
 $13 = 3c$
 $13 = 6B$
 $14 = 2c$
 $15 = 2c$

$$0 \frac{7z-2}{z(z-2)(z+1)} = \frac{1}{z} + \frac{2}{z-2} - \frac{3}{z+1}$$