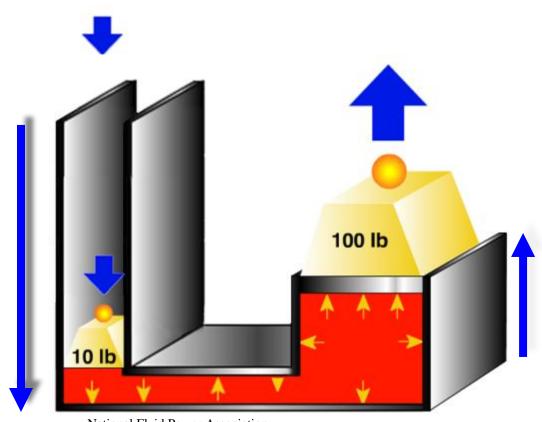


UNIT I- FLUID POWER SYSTEM FUNDAMENTALS

Properties of fluids and ISO symbols

Fluid Power Principles


Pascal's Law

Hydraulic Press

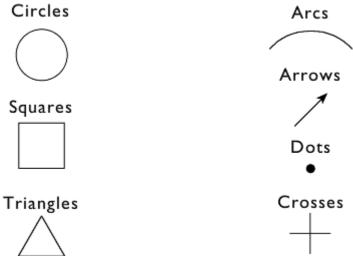
10 lb can lift 100 lb

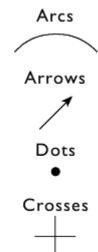
What is the tradeoff?

Distance

National Fluid Power Association

Fluid Power Schematics


Symbols


Critical for technical communication

Not language-dependent

Emphasize function and methods of operation

Basic Symbols

(An Autonomous Institution)

Fluid Power Schematics

Lines		Continuous lines indicate working, pilot supply, return or electrical lines
		Dashed lines indicate a pilot, drain, purge, or bleed line
	———	Flexible lines indicate a hose which usually connects moving parts
		Crossing lines use loops at cross over
		Lines joining may use a dot at the junction
	—	Components (like this filter) inserted into lines

(An Autonomous Institution)

<u>Department</u> of Mechanical Engineering

Fluid Power Schematics Reservoirs

	Vented reservoirs are shown as rectangles without top lines
	Pressurized reservoirs are shown as capsules
	Above oil level return-line reservoir
Ш	Below oil level return-line reservoir
Ш	Common reservoir symbol minimizes the need to draw a number of lines into one reservoir

(An Autonomous Institution)

Department of Mechanical Engineering

Fluid Power Schematics

Pumps

Rotary devices are shown as circles

Pumps having a triangle indicating where the energy is leaving component

A variable pump has an arrow drawn sloping through the circle

A pressure-compensated pump is drawn with a control symbol and connected adjustable spring. The control symbol's triangle indicates the source of energy

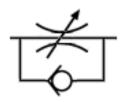
The drain line indicates internal leakage that returns to tank

Ap/Mech

Department of Mechanical Engineering

Fluid Power Schematics

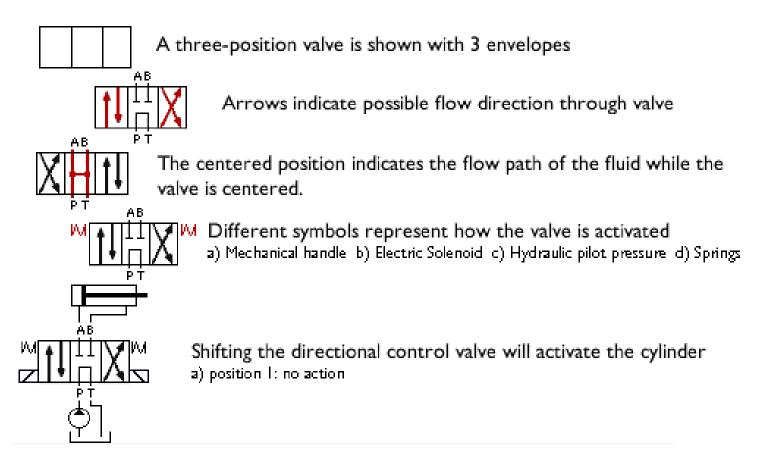
Flow Control Valves


An upper and lower arc symbolize a fixed orifice flow control valve

An arrow through the arcs indicate an adjustable orifice

An arrow inside a control box indicates pressure compensated flow control

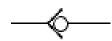
A check valves indicates reverse flow around the valve

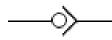


(An Autonomous Institution)

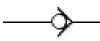
Department of Mechanical Engineering

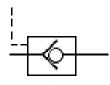
Fluid Power Schematics Directional Control Valves

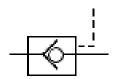

(An Autonomous Institution)



Fluid Power Schematics


Check Valves


Check valves are drawn with small circles inside an open triangle

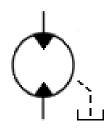

Free flow is opposite the direction the triangle is pointed

As the circle moves into the triangle, the flow is blocked

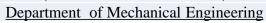
Pilot to open is indicated with a pilot line directed to the triangle

Pilot to close is indicated by directing pilot line to back of the circle

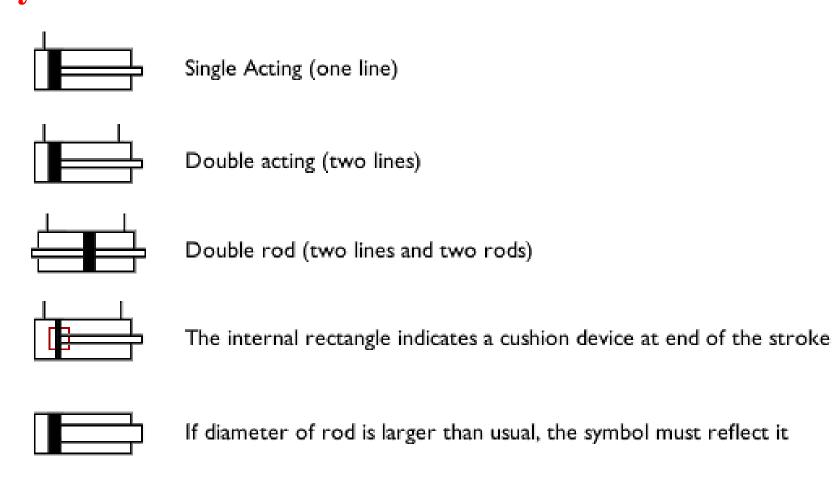
Fluid Power Schematics


Motors

Energy triangle points into the circle indicating fluid energy entering



Two energy triangles indicate a bi-directional or reversible motor


A dashed line leaving the circle indicates a drain line to tank

(An Autonomous Institution)

Fluid Power Schematics Cylinders

